SKOLEM DIFFERENCE FIBONACCI MEAN LABELLING OF SOME SPECIAL CLASS OF TREES

L. Meenakshi Sundaram ${ }^{1}$, A. Nagarajan ${ }^{2}$
${ }^{1}$ Assistant professor, Department of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India
${ }^{2}$ Associate professor, Department of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India

Abstract

The concept of Skolem difference mean labelling was introduced by K. Murugan and A. Subramanian[2]. The concept of Fibonacci labelling was introduced by David W. Bange and Anthony E. Barkauskas[1] in the form Fibonacci graceful. This motivates us to introduce skolem difference Fibonacci mean labelling and is defined as follows: "A graph G with p vertices and q edges is said to have skolem difference Fibonacci mean labelling if it is possible to label the vertices $x \in V$ with distinct elements $f(x)$ from the set $\left\{1,2, \ldots, F_{p+q}\right\}$ in such a way that the edge $e=u v$ is labelled with $\left|\frac{f(u)-f(v)}{2}\right|$ if $|f(u)-f(v)|$ is even and $\frac{|f(u)-f(v)|+1}{2}$ if $|f(u)-f(v)|$ is odd and the resulting edge labels are distinct and are from $\left\{F_{1}, F_{2}, \ldots, F_{q}\right\}$. A graph that admits Skolem difference Fibonacci mean labelling is called a Skolem difference Fibonacci mean graph". In this paper, we prove that caterpillar, $S_{m, n}$, olive tree, $K_{1, n} \odot K_{1}$, the graph obtained by identifying $v_{\text {in }}$ with $v_{(i+1) l}$ of $K_{1, n}$, the graph obtained by joining two pendant vertices to each of the pendant vertices of $K_{l, n}$ of graphs are Skolem difference Fibonacci mean graphs.

Keywords: Skolem difference mean labelling, Fibonacci labelling, Skolem difference Fibonacci mean labelling

1. Introduction

A graph G with p vertices and q edges is said to have Skolem difference Fibonacci mean labelling if it is possible to label the vertices $x \in V$ with distinct elements $f(x)$ from the set $\left\{1,2, \ldots, F_{p+q}\right\}$ in such a way that the edge $e=u v$ is labelled with $\left|\frac{f(u)-f(v)}{2}\right|$ if $|f(u)-f(v)|$ is even and $\frac{|f(u)-f(v)|+1}{2}$ if $|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})|$ is odd and the resulting edge labels are distinct and are from $\left\{F_{1}, F_{2}, \ldots, F_{q}\right\}$. A graph that admits Skolem difference Fibonacci mean labelling is
called a Skolem difference Fibonacci mean graph. It was found that standard graphs [7], H- class of graphs [8], some special class of graphs [9] and path related graphs [10] are Skolem difference Fibonacci mean graphs.

2. PRELIMINARIES

In this section, some basic definitions and preliminary ideas are given which is useful for proving theorems.

2.1 Definition [3]:

A caterpillar is a tree with the property that the removal of its end points or pendant vertices (vertices of degree 1) results in a path.

2.2 Definition [3]:

$S_{m, n}$ denotes a star with n spokes in which each spoke is path of length m .

2.3 Definition [3]:

Let O_{n} be the olive tree having n paths of length $1,2, \ldots, \mathrm{n}$ adjoined at one vertex v_{0}.
Let $\mathrm{v}_{0}, \mathrm{v}_{11}, \mathrm{v}_{12}, \ldots, \mathrm{v}_{1 \mathrm{n}}, \mathrm{v}_{21}, \mathrm{v}_{22}, \ldots, \mathrm{v}_{2(\mathrm{n}-1)}, \ldots, \mathrm{v}_{\mathrm{n} 1}$ be the vertices of O_{n}.

2.4 Definition [3]:

The corona $G_{l} \odot G_{2}$ of two graphs G_{l} and G_{2} is defined as the graph G obtained by taking one copy of G_{l} (which has p_{l} points) and p_{l} copies of G_{2} and then joining the $i^{\text {th }}$ point of G_{1} to every point in the $i^{\text {th }}$ copy of G_{2}.

3. Skolem difference Fibonacci mean labelling of some special class of trees

3.1 Theorem

The caterpillar $S\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is skolem difference Fibonacci mean graph for all $n \geq 2$.

Proof:

Let G be the caterpillar $S\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{u}_{\mathrm{ij}} / 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{x}_{\mathrm{i}}\right\}$

$$
\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{ij}} / 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{x}_{\mathrm{i}}\right\}
$$

Then $|V(G)|=X_{1}+X_{2}+\cdots+X_{n}+n$ and

$$
|E(G)|=X_{1}+X_{2}+\cdots+X_{n}+n-1
$$

Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{1,2, \ldots, F_{2\left(X_{1}+X_{2}+\cdots+X_{n}+n\right)-1}\right\}$ be defined as follows

$$
f\left(v_{1}\right)=1
$$

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 F_{\sum_{k=1}^{i-1} X_{k}+(i-1)}+f\left(v_{i-1}\right), 2 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{u}_{1 \mathrm{j}}\right)=2 F_{j}+f\left(v_{1}\right), 1 \leq \mathrm{j} \leq \mathrm{x}_{1} \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{ij}}\right)=2 F_{\sum_{k=1}^{i-1} X_{k}+j+(i-1)}+f\left(v_{i}\right), 2 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{x}_{\mathrm{i}} \\
& \mathrm{f}^{+}(\mathrm{E})=\left\{\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right) / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{ij}}\right) / 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{x}_{\mathrm{i}}\right\} \\
& =\left\{\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{2}\right), \mathrm{f}\left(\mathrm{v}_{2} \mathrm{v}_{3}\right), \ldots, \mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1} \mathrm{v}_{\mathrm{n}}\right)\right\} \cup\left\{\mathrm{f}\left(\mathrm{v}_{1} \mathrm{u}_{11}\right), \mathrm{f}\left(\mathrm{v}_{1} \mathrm{u}_{12}\right), \ldots, \mathrm{f}\left(\mathrm{v}_{1} \mathrm{u}_{1 \times 1}\right), \mathrm{f}\left(\mathrm{v}_{2} \mathrm{u}_{21}\right)\right. \text {, } \\
& \left.f\left(v_{2} u_{22}\right), \ldots, f\left(v_{2} u_{2 \times 2}\right), \ldots, f\left(v_{n} u_{n 1}\right), f\left(v_{n} u_{n 2}\right), \ldots, f\left(v_{n} u_{n \times n}\right)\right\} \\
& =\left\{\left|\frac{\mathrm{f}\left(\mathrm{v}_{1}\right)-\mathrm{f}\left(\mathrm{v}_{2}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{2}\right)-\mathrm{f}\left(\mathrm{v}_{3}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)}{2}\right|\right\} \cup\left\{\left|\frac{\mathrm{f}\left(\mathrm{v}_{1}\right)-\mathrm{f}\left(\mathrm{u}_{11}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{1}\right)-\mathrm{f}\left(\mathrm{u}_{12}\right)}{2}\right|, \ldots,\right. \\
& \left|\frac{\mathrm{f}\left(\mathrm{v}_{1}\right)-\mathrm{f}\left(\mathrm{u}_{1 \mathrm{x}_{1}}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{2}\right)-\mathrm{f}\left(\mathrm{u}_{21}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{2}\right)-\mathrm{f}\left(\mathrm{u}_{22}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{2}\right)-\mathrm{f}\left(\mathrm{u}_{2 \mathrm{x}_{2}}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{n} 1}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{n} 2}\right)}{2}\right|, \ldots, \\
& \left.\left|\frac{\mathrm{f}(\mathrm{vn})-\mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}\right)}{2}\right|\right\} \\
& =\left\{\left|\frac{\mathrm{f}\left(\mathrm{v}_{1}\right)-2 \mathrm{~F}_{\mathrm{x}_{1}+1}-\mathrm{f}\left(\mathrm{v}_{1}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{2}\right)-2 \mathrm{~F}_{\mathrm{x}_{1}+\mathrm{X}_{2}+2}-\mathrm{f}\left(\mathrm{v}_{2}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1}\right)-2 \mathrm{~F}_{\mathrm{x}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{x}_{\mathrm{n}-1}+\mathrm{n}-1}-\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1}\right)}{2}\right|\right\} \mathrm{u} \\
& \left\{\left|\frac{\mathrm{f}\left(\mathrm{v}_{1}\right)-2 \mathrm{~F}_{1}-\mathrm{f}\left(\mathrm{v}_{1}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{1}\right)-2 \mathrm{~F}_{2}-\mathrm{f}\left(\mathrm{v}_{1}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{1}\right)-2 \mathrm{~F}_{\mathrm{x}_{1}}-\mathrm{f}\left(\mathrm{v}_{1}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{2}\right)-2 \mathrm{~F}_{\mathrm{x}_{1}+2}-\mathrm{f}\left(\mathrm{v}_{2}\right)}{2}\right|\right. \text {, } \\
& \left|\frac{\mathrm{f}\left(\mathrm{v}_{2}\right)-2 \mathrm{~F}_{\mathrm{x}_{1}+3}-\mathrm{f}\left(\mathrm{v}_{2}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{2}\right)-2 \mathrm{~F}_{\mathrm{x}_{1}+\mathrm{X}_{2}+1}-\mathrm{f}\left(\mathrm{v}_{2}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)-2 \mathrm{~F}_{\mathrm{x}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{x}_{\mathrm{n}-1}+\mathrm{n}}-\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)}{2}\right| \text {, } \\
& \left.\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)-2 \mathrm{~F}_{\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{n}-1}+\mathrm{n}+1}-\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)-2 \mathrm{~F}_{\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{n}-1}+\mathrm{x}_{\mathrm{n}}+\mathrm{n}-1}-\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)}{2}\right|\right\} \\
& =\left\{\mathrm{F}_{\mathrm{X}_{1}+1}, \mathrm{~F}_{\mathrm{X}_{1}+\mathrm{X}_{2}+2}, \ldots, \mathrm{~F}_{\mathrm{X}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{X}_{\mathrm{n}-1}+\mathrm{n}-1}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{X}_{1}}, \mathrm{~F}_{\mathrm{X}_{1}+2}, \mathrm{~F}_{\mathrm{X}_{1}+3},\right. \\
& \ldots, \mathrm{F}_{\mathrm{X}_{1}+\mathrm{X}_{2}+1}, \ldots, \mathrm{~F}_{\mathrm{X}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{X}_{\mathrm{n}-1}+\mathrm{n}}, \mathrm{~F}_{\mathrm{X}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{X}_{\mathrm{n}-1}+\mathrm{n}+1}, \ldots, \mathrm{~F}_{\left.\mathrm{X}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{X}_{\mathrm{n}-1}+\mathrm{X}_{\mathrm{n}}+\mathrm{n}-1\right\}} \\
& =\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{X}_{1}}, \mathrm{~F}_{\mathrm{X}_{1}+1}, \mathrm{~F}_{\mathrm{X}_{1}+2}, \mathrm{~F}_{\mathrm{X}_{1}+3}, \ldots, \mathrm{~F}_{\mathrm{X}_{1}+\mathrm{X}_{2}+1}, \mathrm{~F}_{\mathrm{X}_{1}+\mathrm{X}_{2}+2}, \ldots, \mathrm{~F}_{\mathrm{X}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{X}_{\mathrm{n}-1}+\mathrm{n}-1},\right. \\
& \left.\mathrm{F}_{\mathrm{X}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{X}_{\mathrm{n}-1}+\mathrm{n}}, \mathrm{~F}_{\mathrm{X}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{X}_{\mathrm{n}-1}+\mathrm{n}+1}, \ldots, \mathrm{~F}_{\mathrm{X}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{X}_{\mathrm{n}-1}+\mathrm{X}_{\mathrm{n}}+\mathrm{n}-1}\right\} \\
& =\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{X}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{X}_{\mathrm{n}-1}+\mathrm{X}_{\mathrm{n}}+\mathrm{n}-1}\right\}
\end{aligned}
$$

Thus, the induced edge labels are distinct.
Hence, the caterpillar $S\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is skolem difference Fibonacci mean graph for all $n \geq 2$.

3.2 Example:

The Skolem difference Fibonacci mean labelling of the caterpillar $S(5,3,6)$ is

Figure 1

3.3 Corollary

When $\mathrm{x}_{\mathrm{i}}=\mathrm{m}, 1 \leq \mathrm{i} \leq \mathrm{n}$, the graph $\mathrm{P}_{\mathrm{n}} \odot \overline{K m}$ is skolem difference Fibonacci mean graph for all $\mathrm{n} \geq 2$ and $\mathrm{m} \geq 1$.

3.4 Example:

The Skolem difference Fibonacci mean labelling of $\mathrm{P}_{3} \odot \overline{K 4}$ is

Figure 2
3.5 Corollary When $m=1$, the graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is called a comb. The comb is skolem difference Fibonacci mean graph.

3.6 Example:

The Skolem difference Fibonacci mean labelling of $\mathrm{P}_{5} \odot \mathrm{~K}_{1}$ is

Figure 3

3.7 Definition:

The graph $\mathrm{P}_{\mathrm{n}-1}(1,2, \ldots, \mathrm{n})$ is a graph obtained from a path of vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ having the path length $\mathrm{n}-1$ by joining i pendant vertices at each of its vertices.

3.8 Corollary

The graph $\mathrm{P}_{\mathrm{n}-1}(1,2, \ldots, \mathrm{n})$ is Skolem difference Fibonacci mean graph.

3.9 Example:

The Skolem difference Fibonacci mean labelling of the graph $\mathrm{P}_{4}(1,2,3,4,5)$ is

Figure 4

3.10 Corollary

Let the path P_{n} has Skolem difference Fibonacci mean labelling f. Then the twig graph G obtained from the path P_{n} by attaching exactly two pendant edges to each internal vertex of the path is also Skolem difference Fibonacci mean graph.

Proof:

Note that $\mathrm{G} \cong S\left(X_{1}, X_{2}, \ldots, X_{n-2}\right)$, where $X_{i}=4,1 \leq \mathrm{i} \leq \mathrm{n}-2$.

[^0]Hence, G is Skolem difference Fibonacci mean graph.

3.11 Example:

The Skolem difference Fibonacci mean labelling of the graph twig of P_{5} is

Figure 5

3.12 Theorem

$S_{m, n}$ is a skolem difference Fibonacci mean graph for all $\mathrm{m}, \mathrm{n} \geq 2$.

Proof:

Let $\mathrm{V}\left(S_{m, n}\right)=\left\{\mathrm{u}, \mathrm{v}_{\mathrm{ij}} / 1 \leq \mathrm{i} \leq \mathrm{m}\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}\right\}$

$$
\mathrm{E}\left(S_{m, n}\right)=\left\{\mathrm{uv}_{1 \mathrm{j}} / 1 \leq \mathrm{j} \leq \mathrm{m}\right\} \cup\left\{\mathrm{v}_{\mathrm{ij}} \mathrm{v}_{(\mathrm{i}+1) \mathrm{j}} / 1 \leq \mathrm{i} \leq \mathrm{m}-1 \text { and } 1 \leq \mathrm{j} \leq \mathrm{n}\right\}
$$

Then $\left|V\left(S_{m, n}\right)\right|=\mathrm{mn}+1$ and $\left|E\left(S_{m, n}\right)\right|=\mathrm{mn}$
Let $\mathrm{f}: \mathrm{V} \rightarrow\left\{1,2, \ldots, \mathrm{~F}_{2 \mathrm{mn}+1}\right\}$ be defined as follows
$\mathrm{f}(\mathrm{u})=1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{lj}}\right)=2 \mathrm{~F}_{\mathrm{j}}+1,1 \leq \mathrm{j} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i} j}\right)=2 \mathrm{~F}_{(\mathrm{i}-1) \mathrm{n}+\mathrm{j}}+\mathrm{f}\left(\mathrm{v}_{(\mathrm{i}-1)_{\mathrm{j}} \mathrm{j}}\right), 2 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{j} \leq \mathrm{n}$
$\mathrm{f}^{+}(\mathrm{E})=\left\{\mathrm{f}\left(\mathrm{uv}_{1 \mathrm{j}}\right) / 1 \leq \mathrm{j} \leq \mathrm{m}\right\} \cup\left\{\mathrm{f}\left(\mathrm{v}_{\mathrm{ij}} \mathrm{v}_{(\mathrm{i}+1 \mathrm{j} \mathrm{j}}\right) / 1 \leq \mathrm{i} \leq \mathrm{m}-1\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}\right\}$
$=\left\{f\left(\mathrm{uv}_{11}\right), f\left(\mathrm{uv}_{12}\right), \ldots, f\left(\mathrm{uv}_{1 \mathrm{n}}\right), f\left(\mathrm{v}_{11} \mathrm{v}_{21}\right), f\left(\mathrm{v}_{21} \mathrm{v}_{31}\right), \ldots, f\left(\mathrm{v}_{(\mathrm{m}-1) 1} \mathrm{v}_{\mathrm{m} 1}\right)\right.$,
$\left.\mathrm{f}\left(\mathrm{v}_{12} \mathrm{v}_{22}\right), \mathrm{f}\left(\mathrm{v}_{22} \mathrm{v}_{32}\right), \ldots, \mathrm{f}\left(\mathrm{v}_{(\mathrm{m}-1) 2} \mathrm{v}_{\mathrm{m} 2}\right), \ldots, f\left(\mathrm{v}_{1 \mathrm{n}} \mathrm{v}_{2 \mathrm{n}}\right), \mathrm{f}\left(\mathrm{v}_{2 \mathrm{n}} \mathrm{v}_{3 \mathrm{n}}\right), \ldots, \mathrm{f}\left(\mathrm{v}_{(\mathrm{m}-1) \mathrm{n}} \mathrm{v}_{\mathrm{mn}}\right)\right\}$
$=\left\{\left|\frac{\mathrm{f}(\mathrm{u})-\mathrm{f}\left(\mathrm{v}_{11}\right)}{2}\right|,\left|\frac{\mathrm{f}(\mathrm{u})-\mathrm{f}\left(\mathrm{v}_{12}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}(\mathrm{u})-\mathrm{f}\left(\mathrm{v}_{1 \mathrm{n}}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{11}\right)-\mathrm{f}\left(\mathrm{v}_{21}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{21}\right)-\mathrm{f}\left(\mathrm{v}_{31}\right)}{2}\right|, \ldots\right.$,
$\left|\frac{\mathrm{f}\left(\mathrm{v}_{(\mathrm{m}-1) 1}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{m} 1}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{12}\right)-\mathrm{f}\left(\mathrm{v}_{22}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{22}\right)-\mathrm{f}\left(\mathrm{v}_{32}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{(\mathrm{m}-1) 2}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{m} 2}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{1 \mathrm{n}}\right)-\mathrm{f}\left(\mathrm{v}_{2 \mathrm{n}}\right)}{2}\right|$,
$\left.\left|\frac{\mathrm{f}\left(\mathrm{v}_{2 \mathrm{n}}\right)-\mathrm{f}\left(\mathrm{v}_{3 \mathrm{n}}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{m}-1) \mathrm{n}}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{mn}}\right)}{2}\right|\right\}$
$=\left\{\left|\frac{1-2 \mathrm{~F}_{1}-1}{2}\right|,\left|\frac{1-2 \mathrm{~F}_{2}-1}{2}\right|, \ldots,\left|\frac{1-2 \mathrm{~F}_{\mathrm{n}}-1}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{11}\right)-2 \mathrm{~F}_{\mathrm{n}+1}-\mathrm{f}\left(\mathrm{v}_{11}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{21}\right)-2 \mathrm{~F}_{2 \mathrm{n}+1}-\mathrm{f}\left(\mathrm{v}_{21}\right)}{2}\right|, \ldots\right.$,
$\left|\frac{\mathrm{f}\left(\mathrm{v}_{(\mathrm{m}-1) 1}\right)-2 \mathrm{~F}_{(\mathrm{m}-1) \mathrm{n}+1}-\mathrm{f}\left(\mathrm{v}_{(\mathrm{m}-1) 1}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{12}\right)-2 \mathrm{~F}_{\mathrm{n}+2}-\mathrm{f}\left(\mathrm{v}_{12}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{22}\right)-2 \mathrm{~F}_{2 \mathrm{n}+2}-\mathrm{f}\left(\mathrm{v}_{22}\right)}{2}\right|, \ldots$,
$\left|\frac{f\left(v_{(m-1) 2}\right)-2 F_{(m-1) n+2}-f\left(v_{(m-1) 2}\right)}{2}\right|, \ldots,\left|\frac{f\left(v_{1 n}\right)-2 F_{2 n}-f\left(v_{1 n}\right)}{2}\right|,\left|\frac{f\left(v_{2 n}\right)-2 F_{3 n}-f\left(v_{2 n}\right)}{2}\right|, \ldots$,
$\left.\left|\frac{\mathrm{f}\left(\mathrm{v}_{(\mathrm{m}-1) \mathrm{n}}\right)-2 \mathrm{~F}_{(\mathrm{m}-1) \mathrm{n}+\mathrm{n}}-\mathrm{f}\left(\mathrm{v}_{(\mathrm{m}-1) \mathrm{n}}\right)}{2}\right|\right\}$
$=\left\{F_{1}, F_{2}, \ldots, F_{n}, F_{n+1}, F_{2 n+1}, \ldots, F_{(m-1) n+1}, F_{n+2}, F_{2 n+2}, \ldots, F_{(m-1) n+2}, \ldots, F_{2 n}, F_{3 n}, \ldots, F_{m n}\right\}$
$=\left\{F_{1}, F_{2}, \ldots, F_{n}, F_{n+1}, F_{n+2}, \ldots, F_{2 n}, F_{2 n+1}, F_{2 n+2}, \ldots, F_{3 n}, \ldots, F_{(m-1) n+1}, F_{(m-1) n+2}, \ldots, F_{m n}\right\}$
$=\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{mn}}\right\}$
Thus, the induced edge labels are distinct and are $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{mn}}$.
Hence, $S_{m, n}$ is a skolem difference Fibonacci mean graph for all $\mathrm{m}, \mathrm{n} \geq 2$.

3.13 Example:

The Skolem difference Fibonacci mean labelling of the graph $S_{3,4}$ is

Figure 6

3.14 Theorem

The olive tree O_{n} is a skolem difference Fibonacci mean graph.

Proof:

Let O_{n} be the olive tree having n paths of length $1,2, \ldots, \mathrm{n}$ adjoined at one vertex v_{0}. Let $\mathrm{v}_{0}, \mathrm{v}_{11}, \mathrm{v}_{12}, \ldots, \mathrm{v}_{1 \mathrm{n}}, \mathrm{v}_{21}, \mathrm{v}_{22}, \ldots, \mathrm{v}_{2(\mathrm{n}-1)}, \ldots, \mathrm{v}_{\mathrm{n} 1}$ be the vertices of O_{n}.

Let $\mathrm{E}\left(O_{n}\right)=\left\{\mathrm{v}_{0} \mathrm{v}_{\mathrm{i} 1} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{v}_{\mathrm{ij}} \mathrm{v}_{\mathrm{i}(\mathrm{j}+1)} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right.$ and $\left.1 \leq \mathrm{j} \leq(\mathrm{n}-\mathrm{i})\right\}$
Then $\left|V\left(O_{n}\right)\right|=\frac{n(n+1)}{2}+1$ and $\left|E\left(O_{n}\right)\right|=\frac{n(n+1)}{2}$

Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{1,2, \ldots, \mathrm{~F}_{\mathrm{n}(\mathrm{n}+1)+1}\right\}$ be defined as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{0}\right)=1 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i} 1}\right)=2 \mathrm{~F}_{\mathrm{i}}+1,1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{ij}}\right)=2 \mathrm{~F}_{(j-1) n-\frac{(j-1)(j-2)}{2}+i}+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}(\mathrm{j}-1)}\right), 2 \leq \mathrm{j} \leq \mathrm{n} \text { and } 1 \leq \mathrm{i} \leq \mathrm{n}-(\mathrm{j}-1) \\
& \mathrm{f}^{+}(\mathrm{E})=\left\{\mathrm{f}\left(\mathrm{v}_{0} \mathrm{v}_{\mathrm{i} 1}\right) / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{\mathrm{f}\left(\mathrm{v}_{\mathrm{ij}} \mathrm{v}_{\mathrm{i}(\mathrm{j}+1)}\right) / 1 \leq \mathrm{i} \leq \mathrm{n}-1 \text { and } 1 \leq \mathrm{j} \leq(\mathrm{n}-\mathrm{i})\right\} \\
& =\left\{f\left(\mathrm{v}_{0} \mathrm{v}_{11}\right), \mathrm{f}\left(\mathrm{v}_{0} \mathrm{v}_{21}\right), \ldots, f\left(\mathrm{v}_{0} \mathrm{v}_{\mathrm{n} 1}\right)\right\} \cup\left\{\mathrm{f}\left(\mathrm{v}_{11} \mathrm{v}_{12}\right), \mathrm{f}\left(\mathrm{v}_{12} \mathrm{v}_{13}\right), \ldots, f\left(\mathrm{v}_{1(\mathrm{n}-1)} \mathrm{v}_{1 \mathrm{n}}\right), \mathrm{f}\left(\mathrm{v}_{21} \mathrm{v}_{22}\right)\right. \text {, } \\
& \left.\mathrm{f}\left(\mathrm{v}_{22} \mathrm{v}_{23}\right), \ldots, \mathrm{f}\left(\mathrm{v}_{2(\mathrm{n}-2)} \mathrm{v}_{2(\mathrm{n}-1)}\right), \ldots, \mathrm{f}\left(\mathrm{v}_{(\mathrm{n}-1) 1} \mathrm{v}_{(\mathrm{n}-1) 2}\right)\right\} \\
& \mathrm{f}^{+}(\mathrm{E})=\left\{\left|\frac{\mathrm{f}\left(\mathrm{v}_{0}\right)-\mathrm{f}\left(\mathrm{v}_{11}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{0}\right)-\mathrm{f}\left(\mathrm{v}_{21}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{0}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{n} 1}\right)}{2}\right|\right\} \cup\left\{\left|\frac{\mathrm{f}\left(\mathrm{v}_{11}\right)-\mathrm{f}\left(\mathrm{v}_{12}\right)}{2}\right|\right. \text {, } \\
& \left|\frac{\mathrm{f}\left(\mathrm{v}_{12}\right)-\mathrm{f}\left(\mathrm{v}_{13}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{1(\mathrm{n}-1}\right)-\mathrm{f}\left(\mathrm{v}_{1 \mathrm{n}}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{21}\right)-\mathrm{f}\left(\mathrm{v}_{22}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{22}\right)-\mathrm{f}\left(\mathrm{v}_{23}\right)}{2}\right|, \ldots, \\
& \left.\left|\frac{\mathrm{f}\left(\mathrm{v}_{2(\mathrm{n}-2)}\right)-\mathrm{f}\left(\mathrm{v}_{2(\mathrm{n}-1)}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{(\mathrm{n}-1) 1}\right)-\mathrm{f}\left(\mathrm{v}_{(\mathrm{n}-1) 2}\right)}{2}\right|\right\} \\
& =\left\{\left|\frac{1-2 \mathrm{~F}_{1}-1}{2}\right|,\left|\frac{1-2 \mathrm{~F}_{2}-1}{2}\right|, \ldots,\left|\frac{1-2 \mathrm{~F}_{\mathrm{n}}-1}{2}\right|\right\} \cup\left\{\left.\frac{\mathrm{f}\left(\mathrm{v}_{11}\right)-2 \mathrm{~F}_{\mathrm{n}+1}-\mathrm{f}\left(\mathrm{v}_{11}\right)}{2} \right\rvert\,\right. \text {, } \\
& \left|\frac{\mathrm{f}\left(\mathrm{v}_{12}\right)-2 \mathrm{~F}_{2 \mathrm{n}}-\mathrm{f}\left(\mathrm{v}_{12}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{1(\mathrm{n}-1)}\right)-2 \mathrm{~F}_{\mathrm{n}(\mathrm{n}-1)-}-\frac{(\mathrm{n}-1)(\mathrm{n}-2)}{2}+1}{2}-\mathrm{f}\left(\mathrm{v}_{1(\mathrm{n}-1)}\right)\right|, \\
& \left|\frac{\mathrm{f}\left(\mathrm{v}_{21}\right)-2 \mathrm{~F}_{\mathrm{n}+2}-\mathrm{f}\left(\mathrm{v}_{21}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{22}\right)-2 \mathrm{~F}_{2 \mathrm{n}+1}-\mathrm{f}\left(\mathrm{v}_{22}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{v}_{2(\mathrm{n}-2)}\right)-2 \mathrm{~F}_{\mathrm{n}(\mathrm{n}-2)}-\frac{(\mathrm{n}-2)(\mathrm{n}-3)}{2}+2-\mathrm{f}\left(\mathrm{v}_{2(\mathrm{n}-2)}\right)}{2}\right|, \ldots, \\
& \left.\left|\frac{\mathrm{f}\left(\mathrm{v}_{(\mathrm{n}-1) 1}\right)-2 \mathrm{~F}_{\mathrm{n}+(\mathrm{n}-1)}-\mathrm{f}\left(\mathrm{v}_{(\mathrm{n}-1) 1}\right)}{2}\right|\right\} \\
& =\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{n}}\right\} \cup\left\{\mathrm{F}_{\mathrm{n}+1}, \mathrm{~F}_{2 \mathrm{n}}, \ldots, F_{\frac{n(n+1)}{2}}, \mathrm{~F}_{\mathrm{n}+2}, \mathrm{~F}_{2 \mathrm{n}+1}, \ldots, F_{\frac{n(n+1)}{2}-1}, \ldots, \mathrm{~F}_{2 \mathrm{n}-1}\right\} \\
& =\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{n}}, \mathrm{~F}_{\mathrm{n}+1}, \mathrm{~F}_{\mathrm{n}+2}, \ldots, \mathrm{~F}_{2 \mathrm{n}-1}, \mathrm{~F}_{2 \mathrm{n}}, \mathrm{~F}_{2 \mathrm{n}+1}, \ldots, F_{\frac{n(n+1)}{2}-1}, F_{\frac{n(n+1)}{2}}\right\} \\
& =\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, F_{\frac{n(n+1)}{2}}\right\}
\end{aligned}
$$

Thus, the induced edge labels are distinct and $\operatorname{areF}_{1}, \mathrm{~F}_{2}, \ldots, F_{\frac{n(n+1)}{2}}$.
Hence, the olive tree O_{n} is a skolem difference Fibonacci mean graph.

3.15 Example:

Skolem difference Fibonacci mean labelling of the graph O_{4} is

Figure 7

3.16 Theorem

The graph $K_{1, n} \odot \mathrm{~K}_{1}$ is skolem difference Fibonacci mean graph for all $\mathrm{n} \geq 1$.

Proof:

Let $\mathrm{V}\left(K_{1, n} \odot \mathrm{~K}_{1}\right)=\left\{\mathrm{u}, \mathrm{u}_{\mathrm{i}}, \mathrm{v}, \mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$

$$
\mathrm{E}\left(K_{1, n} \odot \mathrm{~K}_{1}\right)=\left\{\mathrm{uv}, \mathrm{uu}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}
$$

Then $\left|V\left(K_{1, n} \odot \mathrm{~K}_{1}\right)\right|=2 \mathrm{n}+2$ and $\left|E\left(K_{1, n} \odot \mathrm{~K}_{1}\right)\right|=2 \mathrm{n}+1$
Let $\mathrm{f}: \mathrm{V} \rightarrow\left\{1,2, \ldots, \mathrm{~F}_{4 \mathrm{n}+3}\right\}$ be defined as follows

$$
\begin{aligned}
& f(u)=1 \\
& f\left(u_{i}\right)=2 F_{i}+1,1 \leq i \leq n \\
& f(v)=2 F_{2 n+1}+f(u) \\
& f\left(v_{i}\right)=2 F_{n+i}+f\left(u_{i}\right), 1 \leq i \leq n \\
& f^{+}(E)=\left\{f(u v), f\left(u_{i}\right), f\left(u_{i} v_{i}\right) / 1 \leq i \leq n\right\} \\
&=\left\{f(u v), f\left(u_{1}\right), f\left(u u_{2}\right), \ldots, f\left(u u_{n}\right), f\left(u_{1} v_{1}\right), f\left(u_{2} v_{2}\right), \ldots, f\left(u_{n} v_{n}\right)\right\} \\
&=\left\{\left|\frac{f(u)-f(v)}{2}\right|,\left|\frac{f(u)-f\left(u_{1}\right)}{2}\right|,\left|\frac{f(u)-f\left(u_{2}\right)}{2}\right|, \ldots,\left|\frac{f(u)-f\left(u_{n}\right)}{2}\right|,\left|\frac{f\left(u_{1}\right)-f\left(v_{1}\right)}{2}\right|,\left|\frac{f(u 2)-f\left(v_{2}\right)}{2}\right|, \ldots,\right. \\
&\left.\left|\frac{f\left(u_{n}\right)-f\left(v_{n}\right)}{2}\right|\right\} \\
&=\left\{\left|\frac{f(u)-2 F_{2 n+1}-f(u)}{2}\right|,\left|\frac{1-2 F_{1}-1}{2}\right|,\left|\frac{1-2 F_{2}-1}{2}\right|, \ldots,\left|\frac{1-2 F_{n}-1}{2}\right|,\left|\frac{f\left(u_{1}\right)-2 F_{n+1}-f\left(u_{1}\right)}{2}\right|,\right. \\
&\left.\left|\frac{f\left(u_{2}\right)-2 F_{n}+2-f\left(u_{2}\right)}{2}\right|, \ldots,\left|\frac{f\left(u_{n}\right)-2 F_{2 n}-f\left(u_{n}\right)}{2}\right|\right\} \\
&=\left\{\mathrm{F} 2 \mathrm{n}+1, F_{1}, F_{2}, \ldots, F_{n}, F_{n+1}, F_{n+2}, \ldots, F_{2 n}\right\} \\
&=\left\{F_{1}, F_{2}, \ldots, F_{2 n+1}\right\}
\end{aligned}
$$

Thus, the induced edge labels are distinct and are $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{2 \mathrm{n}+1}$.

Hence, the graph $K_{1, n} \odot \mathrm{~K}_{1}$ is Skolem difference Fibonacci mean graph for all $\mathrm{n} \geq 1$.

3.17 Example:

The Skolem difference Fibonacci mean labelling of the graph $K_{1,4} \odot \mathrm{~K}_{1}$ is

Figure 8

3.18 Theorem

Let $\mathrm{G}_{\mathrm{i}}=\mathrm{K}_{1, \mathrm{n}}$ for $1 \leq \mathrm{i} \leq \mathrm{m}$ with vertex set $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{ij}} / 1 \leq \mathrm{i} \leq \mathrm{m}\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}\right\}$. Let G be the graph obtained by identifying $\mathrm{v}_{\text {in }}$ with $\mathrm{v}_{(\mathrm{i}+1) 1}$ for $1 \leq \mathrm{i} \leq \mathrm{m}-1$ then G is Skolem difference Fibonacci mean graph for all n and m.

Proof:

Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{ij}} / 1 \leq \mathrm{i} \leq \mathrm{m}\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{ij}} / 1 \leq \mathrm{i} \leq \mathrm{m}\right.$ and $\left.1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ and

$$
\mathrm{v}_{\mathrm{in}}=\mathrm{v}_{(\mathrm{i}+1) 1} \text { for } 1 \leq \mathrm{i} \leq \mathrm{m}-1
$$

Then $|V(G)|=\mathrm{mn}+1$ and $|E(G)|=\mathrm{mn}$
Let $\mathrm{f}: \mathrm{V} \rightarrow\left\{1,2, \ldots, \mathrm{~F}_{2 \mathrm{mn}+1}\right\}$ be defined as follows
$\mathrm{f}\left(\mathrm{v}_{1}\right)=1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{~F}_{(\mathrm{i}-1) \mathrm{n}+1}+\mathrm{f}\left(\mathrm{v}_{(\mathrm{i}-1) \mathrm{n}}\right), 2 \leq \mathrm{i} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{v}_{1 \mathrm{j}}\right)=2 \mathrm{~F}_{\mathrm{j}}+1,1 \leq \mathrm{j} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i} 1}\right)=\mathrm{f}\left(\mathrm{v}_{\left.\mathrm{i}-1)_{\mathrm{n}}\right)}\right), 2 \leq \mathrm{i} \leq \mathrm{m}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{~F}_{(\mathrm{i}-1) \mathrm{n}+\mathrm{j}}+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right), 2 \leq \mathrm{i} \leq \mathrm{m}$ and $2 \leq \mathrm{j} \leq \mathrm{n}$
$f\left(v_{1 n}\right)=f\left(v_{21}\right), f\left(v_{2 n}\right)=f\left(v_{31}\right), \ldots, f\left(v_{(m-1) n}\right)=f\left(v_{m 1}\right)$

$$
\begin{aligned}
& \mathrm{f}^{+}(\mathrm{E})=\left\{\mathrm{f}_{\mathrm{i}}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{ij}}\right) / 1 \leq \mathrm{i} \leq \mathrm{m} \text { and } 1 \leq \mathrm{j} \leq \mathrm{n}\right\} \\
& \quad=\left\{\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{11}\right), \mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{12}\right), \ldots, \mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{1 \mathrm{n}}\right), \mathrm{f}\left(\mathrm{v}_{2} \mathrm{v}_{21}\right), \mathrm{f}\left(\mathrm{v}_{2} \mathrm{v}_{22}\right), \ldots, \mathrm{f}\left(\mathrm{v}_{2} \mathrm{v}_{2 \mathrm{n}}\right), \ldots, \mathrm{f}\left(\mathrm{v}_{\mathrm{m}} \mathrm{v}_{\mathrm{m} 1}\right), \mathrm{f}\left(\mathrm{v}_{\mathrm{m}} \mathrm{v}_{\mathrm{m} 2}\right), \ldots,\right. \\
& \left.\mathrm{f}\left(\mathrm{v}_{\mathrm{m}} \mathrm{v}_{\mathrm{mn}}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \quad=\left\{\left|\frac{f\left(v_{1}\right)-f\left(v_{11}\right)}{2}\right|,\left|\frac{f\left(v_{1}\right)-f\left(v_{12}\right)}{2}\right|, \ldots,\left|\frac{f\left(v_{1}\right)-f\left(v_{1 n}\right)}{2}\right|,\left|\frac{f\left(v_{2}\right)-f\left(v_{21}\right)}{2}\right|,\left|\frac{f\left(v_{2}\right)-f\left(v_{22}\right)}{2}\right|, \ldots,\right. \\
& \left.\left|\frac{f\left(v_{2}\right)-f\left(v_{2 n}\right)}{2}\right|, \ldots,\left|\frac{f\left(v_{m}\right)-f\left(v_{m 1}\right)}{2}\right|,\left|\frac{f\left(v_{m}\right)-f\left(v_{m 2}\right)}{2}\right|, \ldots,\left|\frac{f\left(v_{m}\right)-f\left(v_{m n}\right)}{2}\right|\right\}
\end{aligned}
$$

$$
=\left\{\left|\frac{1-2 \mathrm{~F}_{1}-1}{2}\right|,\left|\frac{1-2 \mathrm{~F}_{2}-1}{2}\right|, \ldots,\left|\frac{1-2 \mathrm{~F}_{\mathrm{n}}-1}{2}\right|,\left|\frac{2 \mathrm{~F}_{\mathrm{n}+1}+\mathrm{f}\left(\mathrm{v}_{1 \mathrm{n}}\right)-\mathrm{f}\left(\mathrm{v}_{1 \mathrm{n}}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{2}\right)-2 \mathrm{~F}_{\mathrm{n}+2}-\mathrm{f}\left(\mathrm{v}_{2}\right)}{2}\right|, \ldots\right.
$$

$$
\left|\frac{\mathrm{f}\left(\mathrm{v}_{2}\right)-2 \mathrm{~F}_{2 \mathrm{n}}-\mathrm{f}\left(\mathrm{v}_{2}\right)}{2}\right|,\left|\frac{2 \mathrm{~F}_{(\mathrm{m}-1) \mathrm{n}+1}+\mathrm{f}\left(\mathrm{v}_{(\mathrm{m}-1) \mathrm{n}}\right)-\mathrm{f}\left(\mathrm{v}_{(\mathrm{m}-1) \mathrm{n}}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)-2 \mathrm{~F}_{(\mathrm{m}-1) \mathrm{n}+2}-\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)}{2}\right|, \ldots
$$

$$
\left.\left|\frac{\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)-2 \mathrm{~F}_{(\mathrm{m}-1) \mathrm{n}+\mathrm{n}}-\mathrm{f}\left(\mathrm{v}_{\mathrm{m}}\right)}{2}\right|\right\}
$$

$$
=\left\{F_{1}, F_{2}, \ldots, F_{n}, F_{n+1}, F_{n+2}, \ldots, F_{2 n}, \ldots, F_{(m-1) n+1}, F_{(m-1) n+2}, \ldots, F_{(m-1) n+n}\right\}
$$

$$
=\left\{F_{1}, F_{2}, \ldots, F_{n}, F_{n+1}, F_{n+2}, \ldots, F_{2 n}, \ldots, F_{(m-1) n+1}, F_{(m-1) n+2}, \ldots, F_{m n}\right\}
$$

$$
=\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{mn}}\right\}
$$

Thus, the induced edge labels are distinct and are $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{\mathrm{mn}}$.
Hence, f is a Skolem difference Fibonacci mean labelling of the graph G .

3.19 Example:

Skolem difference Fibonacci mean labelling of the graph obtained by identifying $\mathrm{v}_{\text {in }}$ with $\mathrm{v}_{(\mathrm{i}+1) 1}$ for $1 \leq \mathrm{i} \leq \mathrm{m}-1$ for $\mathrm{K}_{1,6}$ is

Figure 9

3.20 Theorem

Let G be the graph obtained by joining two pendant vertices to each of the pendant vertices of $K_{1, n}$. Then G is Skolem difference Fibonacci mean graph for all $n \geq 1$.

Proof:

Let $\mathrm{V}(\mathrm{G})=\left\{\mathrm{u}, \mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}{ }^{1}, \mathrm{u}_{\mathrm{i}}{ }^{11} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$

$$
\mathrm{E}(\mathrm{G})=\left\{\mathrm{uu}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{1}, \mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{11} / 1 \leq \mathrm{i} \leq \mathrm{n}\right\}
$$

Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\left\{1,2, \ldots, \mathrm{~F}_{6 n+1}\right\}$ be defined as follows
$\mathrm{f}(\mathrm{u})=1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 \mathrm{~F}_{\mathrm{i}}+1,1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{1}\right)=2 \mathrm{~F}_{\mathrm{n}+(\mathrm{i}-1)}+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{11}\right)=2 \mathrm{~F}_{\mathrm{n}+2 \mathrm{i}}+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq \mathrm{n}$
Let f^{+}be the induced edge labelling of f . Then

$$
\begin{aligned}
& \mathrm{f}^{+}(\mathrm{E})=\left\{\mathrm{f}\left(\mathrm{un}_{\mathrm{i}}\right), \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{1}\right), \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}^{11}\right) / 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \\
& =\left\{f\left(u_{1}\right), f\left(u_{2}\right), \ldots, f\left(u_{n}\right), f\left(u_{1} u_{1}{ }^{1}\right), f\left(u_{2} u_{2}{ }^{1}\right), \ldots, f\left(u_{n} u_{n}{ }^{1}\right), f\left(u_{1} u_{1}{ }^{11}\right), f\left(u_{2} u_{2}{ }^{11}\right), \ldots, f\left(u_{n} u_{n}{ }^{11}\right)\right\} \\
& =\left\{\left|\frac{\mathrm{f}(\mathrm{u})-\mathrm{f}\left(\mathrm{u}_{1}\right)}{2}\right|,\left|\frac{\mathrm{f}(\mathrm{u})-\mathrm{f}\left(\mathbf{u}_{2}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}(\mathrm{u})-\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathbf{u}_{1}\right)-\mathrm{f}\left(\mathbf{u}_{1}{ }^{1}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathbf{u}_{2}\right)-\mathrm{f}\left(\mathbf{u}_{2}{ }^{1}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathbf{u}_{\mathrm{n}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}{ }^{1}\right)}{2}\right|\right. \text {, } \\
& \left.\left|\frac{\mathrm{f}\left(\mathrm{u}_{1}\right)-\mathrm{f}\left(\mathrm{u}_{1}{ }^{11}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{u}_{2}\right)-\mathrm{f}\left(\mathrm{u}_{2}{ }^{11}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}{ }^{11}\right)}{2}\right|\right\} \\
& =\left\{\left|\frac{1-2 \mathrm{~F}_{1}-1}{2}\right|,\left|\frac{1-2 \mathrm{~F}_{2}-1}{2}\right|, \ldots,\left|\frac{1-2 \mathrm{~F}_{\mathrm{n}}-1}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{u}_{1}\right)-2 \mathrm{~F}_{\mathrm{n}+1}-\mathrm{f}\left(\mathrm{u}_{1}\right)}{2}\right|,\right. \\
& \left|\frac{\mathrm{f}\left(\mathrm{u}_{2}\right)-2 \mathrm{~F}_{\mathrm{n}+3}-\mathrm{f}\left(\mathrm{u}_{2}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)-2 \mathrm{~F}_{3 \mathrm{n}-1}-\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)}{2}\right|,\left|\frac{\mathrm{f}\left(\mathrm{u}_{1}\right)-2 \mathrm{~F}_{\mathrm{n}+2}-\mathrm{f}\left(\mathrm{u}_{1}\right)}{2}\right| \text {, } \\
& \left.\left|\frac{\mathrm{f}\left(\mathrm{u}_{2}\right)-2 \mathrm{~F}_{\mathrm{n}+4}-\mathrm{f}\left(\mathrm{u}_{2}\right)}{2}\right|, \ldots,\left|\frac{\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)-2 \mathrm{~F}_{3 \mathrm{n}}-\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)}{2}\right|\right\} \\
& =\left\{F_{1}, F_{2}, \ldots, F_{n}, F_{n+1}, F_{n+3}, \ldots, F_{3 n-1}, F_{n+2}, F_{n+4}, \ldots, F_{3 n}\right\} \\
& =\left\{\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{3 \mathrm{n}}\right\}
\end{aligned}
$$

Thus, the induced edge labels are distinct and are $\mathrm{F}_{1}, \mathrm{~F}_{2}, \ldots, \mathrm{~F}_{3 \text { n }}$.
Hence, the graph is Skolem difference Fibonacci mean graph for all $\mathrm{n} \geq 1$.

3.21 Example:

The Skolem difference Fibonacci mean labelling of the graph obtained from $\mathrm{K}_{1,3}$ is

Figure 10

REFERENCES

[1] David W. Bange and Anthony E. Barkauskas, "Fibonacci graceful graphs" (1980).
[2] K. Murugan and A. Subramanian, Skolem difference mean labelling of H- graphs, International Journal of Mathematics and Soft Computing, Vol.1, No. 1, (August 2011), p115-129.
[3] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 18(2014), \#DS6.
[4] Harary, Graph Theory, Addison Welsley (1969).
[5] J.A.Bondy and U.S.R.Murthy, "Graph Theory and Applications" (North-Holland), Newyork, 1976.
[6] Kathiresan K. and Amutha S., Fibonacci graceful graphs, Ph.D. Thesis, Madurai Kamaraj University, (October 2006).
[7] L. Meenakshi sundaram and A. Nagarajan, Skolem difference Fibonacci mean labelling of standard graphs (communicated).
[8] L. Meenakshi sundaram and A. Nagarajan, Skolem difference Fibonacci mean labelling of H - class of graphs (communicated).

[^1][9] L. Meenakshi sundaram and A. Nagarajan, Skolem difference Fibonacci mean labelling of some special class of graphs (communicated).
[10] L. Meenakshi sundaram and A. Nagarajan, Skolem difference Fibonacci mean labelling of path related graphs (communicated).

[^0]: A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

[^1]: A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.
 International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

