

International Research Journal of Mathematics, Engineering and IT Vol. 3, Issue 3, March 2016 IF- 3.563 ISSN: (2349-0322)

© Associated Asia Research Foundation (AARF)

Website: www.aarf.asia Email: editor@aarf.asia, editoraarf@gmail.com

ON p^{α} -CLOSED SETS, p^{α} -CONTINUITY AND α -p-ALMOST COMPACTNESS FOR CRISP SUBSETS OF A FUZZY TOPOLOGICAL SPACE

Anjana Bhattacharyya¹

Department of Mathematics
Victoria Institution (College)
78B, A.P.C. Road, Kolkata-700009, India

ABSTRACT

This paper is a continuation of [1]. A new class of crisp subsets has been introduced and studied here by which α -p-almost compactness of a space X (endowed with a fuzzy topology) has been inherited. Again, p^{α} -continuous function between two fuzzy topological spaces has been introduced under which α -p-almost compactness for crisp subsets remains invariant.

AMS Subject Classification Code: 54A40, 54C99, 54D99

Keywords. α -p-almost compact set, p^{α} -closed set, p^{α} -continuity, fuzzy preopen set, fuzzy preopen function.

1. Introduction

It is clear from literature that a good many researchers have engaged themselves for introducing different types of compactness in fuzzy setting by using the concept of fuzzy cover [2] of a fuzzy topological space (fts, for short) [2]. Afterwards, in 1978 Gantner et al. [3] generalized the idea of fuzzy cover by introducing the concept of α -shading which has paved a new direction for generalizing different types of compactness. In [3], α -compactness for crisp subsets has been introduced. Using the idea of α -shading, in [1]

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

¹ The Author acknowledges the financial support of UGC (Minor Research Project), New Delhi

 α -p-almost compactness for crisp subsets (i.e., ordinary subsets) in a fuzzy topological space has been introduced and studied.

2. Preliminaries

A fuzzy set A in an fts X means a function from a non-empty set X to the closed interval I = [0,1] of the real line, i.e., $A \in I^X$ [6]. A crisp subset A of an fts X means an ordinary subset A of X, i.e., $A \subseteq X$, where the underlying structure on X is a fuzzy topology τ . The support of a fuzzy set A in X will be denoted by suppA [6] and is defined by $suppA = \{x \in X : A(x) \neq 0\}$. A fuzzy point in X with the singleton support $\{x\} \subseteq X$ and the value t $(0 < t \le 1)$ will be denoted by x_t . For two fuzzy sets A and B in X, we write $A \le B$ if $A(x) \le B(x)$, for all $x \in X$, while we write AqB if A is quasi-coincident (q-coincident, for short) with B [5], i.e., A(x) + B(x) > 1, for some $x \in X$. The negation of these two statements are written as $A \le B$ and $A\bar{q}B$ respectively. The complement of a fuzzy set A in an fts A is denoted by A and is defined by A and in fuzzy closure and fuzzy interior of A in A respectively [2].

3. Fuzzy Preopen and Fuzzy Preclosed Sets and α - p-Almost Compact Space

Let us recall some definitions for ready references.

Definition 3.1 [4]. A fuzzy set A in an fts X is said to be fuzzy preopen if $A \le int(clA)$. The complement of a fuzzy preopen set is called fuzzy preclosed.

Definition 3.2 [4]. For a fuzzy set A in an fts X, fuzzy preclosure of A to be denoted by pclA and is defined to be the smallest fuzzy preclosed set containing A, i.e., pclA = A $\{B: A \leq B \text{ and } B \text{ is fuzzy preclosed}\}$. A fuzzy set A in X is fuzzy preclosed iff A = pclA.

Definition 3.3 [4]. For a fuzzy set A in an fts X, the fuzzy preinterior of A to be denoted by pintA and is defined to be the union of all those fuzzy preopen sets contained in A, i.e., $pintA = V \{B: B \le A \text{ and } B \text{ is fuzzy preopen in } X\}$. A fuzzy set A in X is fuzzy prepen iff A = pintA.

Definition 3.4 [3]. Let A be a crisp subset of an fts X. A collection \mathcal{U} of fuzzy sets in X is called an α -shading (where $0 < \alpha < 1$) of A if for each $x \in A$, there is some $U_x \in \mathcal{U}$ such

that $U_x(x) > \alpha$. Taking A = X, we arrive at the definition of α -shading of an fts X, as proposed by Gantner et al. [3].

If the members of an α -shading \mathcal{U} of A (or of X) are fuzzy preopen sets in X, then \mathcal{U} is called a fuzzy preopen α -shading of A (resp., of X).

Definition 3.5 [1]. Let X be an fts and A, a crisp subset of X. A is called α -p-almost compact if each fuzzy preopen α -shading of A has a finite p-proximate α -subshading, i.e., there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\{pclU: U \in \mathcal{U}_0\}$ is again an α -shading of A.

If A = X, in addition, then X is called an α -p-almost compact space.

4. p^{α} -Closed Sets : Some Properties

In this section a new class of crisp subsets in an fts X is defined as follows:

Definition 4.1. Let (X, τ) be an fts and $A \subseteq X$. A point $x \in X$ is said to be p^{α} -limit point of A if for every fuzzy preopen set U in X with $U(x) > \alpha$, there exists $y \in A \setminus \{x\}$ such that $(pclU)(y) > \alpha$. The set of all p^{α} -limit points of A will be denoted by $[A]_{n}^{\alpha}$.

The p^{α} -closure of A, to be denoted by $p^{\alpha} - clA$, is defined by $p^{\alpha} - clA = A \cup [A]_{p}^{\alpha}$.

Definition 4.2. A crisp subset A of an fts X is said to be p^{α} -closed if it contains all its p^{α} -limit points. Any subset A of X is called p^{α} -open if $X \setminus A$ is p^{α} -closed.

Remark 4.3. Definition 4.1 shows that for any $A \subseteq X$, $A \subseteq p^{\alpha} - clA$ and $p^{\alpha} - clA = A$ if and only if $[A]_p^{\alpha} \subseteq A$. Also A is p^{α} -closed if and only if $p^{\alpha} - clA = A$. It is also clear that $A \subseteq B \subseteq X \implies [A]_p^{\alpha} \subseteq [B]_p^{\alpha}$.

Theorem 4.4. In an α -p-almost compact space X, a p^{α} -closed subset A is α -p-almost compact set.

Proof. Let $A \subseteq X$ be p^{α} -closed in an α -p-almost compact space X. Then for any $x \notin A$, x is not a p^{α} -limit point of A and so there is a fuzzy preopen set U_x in X such that $U_x(x) > \alpha$ and $(pclU_x)(y) \le \alpha$, for every $y \in A$. Consider the collection $\mathcal{U} = \{U_x : x \notin A\}$. Let us consider a fuzzy preopen α -shading \mathcal{V} of A. Clearly $\mathcal{U} \cup \mathcal{V}$ is fuzzy preopen α -shading of X. Since X is α -p-almost compact space, there is a finite subcollection $\{V_1, V_2, ..., V_n\}$ of $\mathcal{U} \cup \mathcal{V}$ such that for every $t \in X$, there exists V_i $(1 \le i \le n)$ such that $(pclV_i)(t) > \alpha$.

For every member U_x of \mathcal{U} , $(pclU_x)(y) \leq \alpha$, for every $y \in A$. So if this collection contains any member of \mathcal{U} , we omit it and hence we get the result.

To achieve the converse of Theorem 4.4, we define the following.

Definition 4.5. An fts (X, τ) is said to be α -p-Urysohn if for any two distinct points x, y of X, there exist a fuzzy open set U and a fuzzy preopen set V in X with $U(x) > \alpha$, $V(y) > \alpha$ and $\min((pclU)(z), (pclV)(z)) \le \alpha$, for each $z \in X$.

Theorem 4.6. An α -p-almost compact set in an α -p-Urysohn space X is p^{α} -closed.

Proof. Let A be α -p-almost compact set and $x \in X \setminus A$. Then for each $y \in A$, $x \neq y$. As X is α -p-Urysohn, there exist a fuzzy open set U_y and a fuzzy preopen set V_y in X such that $U_y(x) > \alpha$, $V_y(y) > \alpha$ and $\min\left(\left(pclU_y\right)(z), \left(pclV_y\right)(z)\right) \leq \alpha$, for all $z \in X$ (1).

Then $U = \{V_y : y \in A\}$ is a fuzzy preopen α -shading of A and so by α -p-almost compactness of A, there is finitely many points $y_1, y_2, ..., y_n$ of A such that $U_0 = \{pclV_{y_1}, pclV_{y_2}, ..., pclV_{y_n}\}$ is again an α -shading of A. Now $U = U_{y_1} \cap U_{y_2} \cap ... \cap U_{y_n}$ being a fuzzy open set is a fuzzy preopen set in X such that $U(x) > \alpha$. In order to show that A to be p^{α} -closed, it now suffices to show that $(pclU)(y) \leq \alpha$, for each $y \in A$. If possible, let for some $z \in A$, $(pclU)(z) > \alpha$. Then as $z \in A$, we have $(pclV_{y_k})(z) > \alpha$, for some $k \in A$ and $(pclU_{y_k})(z) > \alpha$. Hence $\min \left((pclU_{y_k})(z), (pclV_{y_k})(z) \right) < \alpha$, contradicting (1).

Corollary 4.7. In an α -p-almost compact, α -p-Urysohn space X, a subset A of X is α -p-almost compact if and only if it is p^{α} -closed.

Theorem 4.8. In an α -p-almost compact space X, every cover of X by p^{α} -open sets has a finite subcover.

Proof. Let $\mathcal{U} = \{U_i : i \in \Lambda\}$ be a cover of X by p^{α} -open sets of X. Then for each $x \in X$, there exists $U_x \in \mathcal{U}$ such that $x \in U_x$. Since $X \setminus U_x$ is p^{α} -closed, there exists a fuzzy preopen set V_x in X such that $V_x(x) > \alpha$, but $(pclV_x)(y) \leq \alpha$, for each $y \in X \setminus U_x \dots$ (1).

Then $\{V_x : x \in X\}$ forms a fuzzy preopen α -shading of X. Since X is α -p-almost compact space, there exists a finite subset $\{x_1, x_2, \dots, x_n\}$ of X such that $\{pclV_{x_i} : i = 1, 2, \dots, n\}$ is again an α -shading of X... (2).

We claim that $\{U_{x_1}, U_{x_2}, ..., U_{x_n}\}$ is a finite subcover of \mathcal{U} . If not, then there exists $y \in X \setminus \bigcup_{i=1}^n U_{x_i} = \bigcap_{i=1}^n (X \setminus U_{x_i})$. Then by (1), $(pclV_{x_i})(y) \leq \alpha$ for i = 1, 2, ..., n and so $(\bigcup_{i=1}^n pclV_{x_i})(y) \leq \alpha$, contradicting (2).

Theorem 4.9. Let (X, τ) be an fts. If X is α -p-almost compact, then every collection of p^{α} -closed sets in X with finite intersection property has non-empty intersection.

Proof. Let $\mathcal{F} = \{F_i : i \in \Lambda\}$ be a collection of p^{α} -closed sets in an α -p-almost compact space X having finite intersection property. If possible, let $\bigcap_{i \in \Lambda} F_i = \varphi$. Then $X \setminus \bigcap_{i \in \Lambda} F_i = \bigcup_{i \in \Lambda} (X \setminus F_i) = X \implies \mathcal{U} = \{X \setminus F_i : i \in \Lambda\}$ is an p^{α} -open cover of X. Then by Theorem 4.8, there is a finite subset Λ_0 of Λ such that $\bigcup_{i \in \Lambda_0} (X \setminus F_i) = X \implies \bigcap_{i \in \Lambda_0} F_i = \varphi$, a contradiction.

5. p^{α} -Continuity : Some Applications

In this section, a new type of function has been introduced under which α -p-almost compactness remains invariant.

Definition 5.1. Let X, Y be fts's. A function $f: X \to Y$ is said to be p^{α} -continuous if for each point $x \in X$ and each fuzzy preopen set V in Y with $V(f(x)) > \alpha$, there exists a fuzzy preopen set U in X with $U(x) > \alpha$ such that $pclU \le f^{-1}(pclV)$.

Theorem 5.2. If $f: X \to Y$ is p^{α} -continuous (where X, Y are, as usual, fts's), then the following are true:

- (a) $f([A]_p^\alpha) \subseteq [f(A)]_p^\alpha$, for every $A \subseteq X$,
- (b) $[f^{-1}(A)]_p^{\alpha} \subseteq f^{-1}([A]_p^{\alpha})$, for every $A \subseteq Y$,
- (c) for each p^{α} -closed set A in Y, $f^{-1}(A)$ is p^{α} -closed in X,
- (d) for each p^{α} -open set A in Y, $f^{-1}(A)$ is p^{α} -open in X.

Proof (a). Let $x \in [A]_p^\alpha$ and U be any fuzzy preopen set in Y with $U(f(x)) > \alpha$. Then there is a fuzzy preopen set V in X with $V(x) > \alpha$ and $pclV \le f^{-1}(pclU)$. Now $x \in [A]_p^\alpha$ and V be a fuzzy preopen set in X with $V(x) > \alpha \Rightarrow pclV(x_0) > \alpha$ for some $x_0 \in A \setminus \{x\} \Rightarrow \alpha < pclV(x_0) \le (f^{-1}(pclU))(x_0) = (pclU)(f(x_0))$ where $f(x_0) \in f(A) \setminus \{f(x)\} \Rightarrow f(x) \in [f(A)]_p^\alpha$. Thus (a) follows.

(**b**) By (a),
$$f([f^{-1}(A)]_p^{\alpha}) \subseteq [ff^{-1}(A)]_p^{\alpha} \subseteq [A]_p^{\alpha} \Rightarrow [f^{-1}(A)]_p^{\alpha} \subseteq f^{-1}([A]_p^{\alpha}).$$

- (c) We have $[A]_p^{\alpha} = A$. By (b), $[f^{-1}(A)]_p^{\alpha} \subseteq f^{-1}([A]_p^{\alpha}) = f^{-1}(A) \Longrightarrow [f^{-1}(A)]_p^{\alpha} = f^{-1}(A) \Longrightarrow f^{-1}(A)$ is p^{α} -closed set in X.
- (d) Follows from (c).

Theorem 5.3. Let X, Y be fts's and $f: X \to Y$ be fuzzy p^{α} -continuous. If $A \subseteq X$ is α -p-almost compact, then so is f(A) in Y.

Proof. Let $\mathcal{V} = \{V_i : i \in \Lambda\}$ be a fuzzy preopen α -shading of f(A), where A is α -p-almost compact set in X. For each $x \in A$, $f(x) \in f(A)$ and so there exists $V_x \in \mathcal{V}$ such that $V_x(f(x)) > \alpha$. As f is fuzzy p^{α} -continuous, there exists a fuzzy preopen set U_x in X such that $U_x(x) > \alpha$ and $f(pclU_x) \leq pclV_x$. Then $\{U_x : x \in A\}$ is a fuzzy preopen α -shading of A. By α -p-almost compactness of A, there are finitely many points a_1, a_2, \ldots, a_n in A such that $\{pclU_{a_i} : i = 1, 2, \ldots, n\}$ is again an α -shading of A. We claim that $\{pclV_{a_i} : i = 1, 2, \ldots, n\}$ is again an α -shading of A. Infact, A is a fuzzy preopen A such that A such that A is a gain an A-shading of A. Infact, A is a fuzzy preopen A such that A such that A is a fuzzy preopen A such that A such that A is a fuzzy preopen A such that A such that A is a fuzzy preopen A such that A such that A is a fuzzy preopen A such that A is a fuzzy preopen A such that A such that A is a fuzzy preopen A such that A such that A is a fuzzy preopen A such that A such that A is a fuzzy preopen A such that A such that A is a fuzzy preopen A such that A such that A is a fuzzy preopen A in A such that A i

We now define a function under which p^{α} -closedness of a set remains invariant.

Definition 5.4. Let X, Y be fts's. A function $f: X \to Y$ is said to be fuzzy preopen if f(A) is fuzzy preopen in Y whenever A is fuzzy preopen in X.

Remark 5.5. For a fuzzy preopen function $f: X \to Y$, every fuzzy preclosed set A in X, f(A) is fuzzy preclosed in Y.

Theorem 5.6. If $f:(X,\tau)\to (Y,\tau_1)$ is a bijective fuzzy preopen function, then the image of a p^{α} -closed set in (X,τ) is p^{α} -closed in (Y,τ_1) .

Proof. Let A be a p^{α} -closed set in (X, τ) and let $y \in Y \setminus f(A)$. Then there exists a unique $z \in X$ such that f(z) = y. As $y \notin f(A)$, $z \notin A$. Now, A is p^{α} -closed in X, z is not a p^{α} -limit point of A and so there exists a fuzzy preopen set V in X such that $V(z) > \alpha$, but $pclV(t) \leq \alpha$, for each $t \in A$... (1).

As f is fuzzy preopen, f(V) is a fuzzy preopen set in Y and also $(f(V))(y) = V(z) > \alpha$. Let $s \in f(A)$. Then there is a unique $s_0 \in A$ such that $f(s_0) = s$. As f is bijective and fuzzy preopen, by Remark 5.5, $pclf(V) \leq f(pclV)$. Then $(pclf(V))(s) \leq f(pclV)(s) = pclV(s_0) \leq \alpha$, by (1). Thus y is not a p^{α} -limit point of f(A). Hence the proof. **Corollary 5.7.** Let $f: X \to Y$ be a fuzzy p^{α} -continuous, bijective and fuzzy preopen function. Then A is p^{α} -closed in Y if and only if $f^{-1}(A)$ is p^{α} -closed in X.

References

- **1.** Bhattacharyya, Anjana; α -p-almost compactness for crisp subsets of a fuzzy topological space, (Communicated).
- 2. Chang, C.L.; Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- **3.** Gantner, T.E., Steinlage, R.C. and Warren, R.H.; Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), 547-562.
- **4.** Nanda, S.; Strongly compact fuzzy topological spaces, Fuzzy Sets and Systems 42 (1991), 259-262.
- **5.** Pu, Pao Ming and Liu, Ying Ming; Fuzzy topology I, Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599.
- **6.** Zadeh, L.A.; Fuzzy Sets. Inform. Control 8 (1965), 338-353.