

International Research Journal of Mathematics, Engineering and IT Vol. 3, Issue 9, September 2016 IF- 3.563 ISSN: (2349-0322) © Associated Asia Research Foundation (AARF) Website: www.aarf.asia Email : editor@aarf.asia , editoraarf@gmail.com

ON THE EQUATION
$$(3xy^2 - x^3)^2 + (3x^2y - y^3)^2 = 8z^{12}$$

Dr. P. Shanmuganandham

Department of Mathematics,

National College, Trichy-620 001 (Tamil Nadu).

ABSTRACT

We presents non zero solutions of the 12 th degree non-homogeneous Diophantine equation in three unknowns represented by $(3xy^2 - x^3)^2 + (3x^2y - y^3)^2 = 8z^{12}$. A few interesting properties among the solutions are exhibited.

Keywords: Higher degree equation with three unknowns, Integral solutions, polygonal numbers, star numbers.

2010 MSC number 11D41

Introduction

Diophantine equations have an unlimited field for research by reason of their variety. These equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians [1-6]. The problem of finding all integer solutions of a Diophantine equation with three or more variables and degree at least three, in general, presents a good deal of difficulties. There is vast general theory of homogeneous quadratic equations with three variables. Cubic equations in two variables fall into the theory of elliptic curves which is a very developed theory but still an important topic of current research [7,8]. A lot is known about equations in two variables in higher degrees. For equations with more than three variables and degree at least three very little is known. In [9,10] a few higher order equations are considered for integral solutions. In this communication a twelfth degree diophantine equation with three variables represented by is considered and in particular a few interesting relations among the solutions are presented.

Notations

 $Hex_{n} = Hexagona1 \text{ number of rank } n = 2n^{2} - n$ $Star_{n} = Star \text{ number of rank } n = 6n(n-1)+1$ $CH_{n} = Centered \text{ hexagonal number of rank } n = 3n^{2} - 3n + 1$ $SO_{n} = Stella \text{ Octangula number of rank } n = n(2n^{2} - 1)$ $Pro_{n} = Pronic \text{ number of rank } n = n(n+1)$ $To_{r} = Truncated \text{ octahedral number of rank } r = 16r^{3} - 33r^{2} + 24r - 6$

Method of Analysis

The equation under consideration is

$$\left(3xy^2 - x^3\right)^2 + \left(3x^2y - y^3\right)^2 = 8z^{12}$$
⁽¹⁾

By applying the linear transformations

$$x = m + n \text{ and } y = m - n \tag{2}$$

in equation (1), it reduced to

$$m^2 + n^2 = z^4 (3)$$

Which is similar to well known Pythagorean equation

$$m^2 + n^2 = \left(z^2\right)^2 \tag{4}$$

Thus the solution of equation (4) are taken as

$$m = p^2 - q^2, n = 2pq \text{ and } z^2 = p^2 + q^2$$
 (5)

In equation (5), the expression $z^2 = p^2 + q^2$ is also a Pythagorean equation.

Therefore,
$$p = r^2 - s^2$$
, $q = 2rs \ and \ z = r^2 + s^2$ (6)

Applying equation (6) in (5), and then in (2) the solution of equation (1) is,

$$x(r,s) = (r^{2} - s^{2})^{2} - 4r^{2}s^{2} + 4rs(r^{2} - s^{2})$$
$$y(r,s) = (r^{2} - s^{2})^{2} - 4r^{2}s^{2} - 4rs(r^{2} - s^{2})$$
$$z(r,s) = (r^{2} + s^{2})$$

Numerical examples

r	S	Х	У	Z
1	2	-23	25	5
2	3	-239	4	13
3	1	124	-68	10
3	4	-863	-191	25
4	1	401	-79	17

Proposition 1

The following expressions forms Nasty number

i)
$$3[x(r,s)+y(r,s)+8r^2s^2]$$

ii) $180(r^4+s^4)-60[x(r,s)+y(r,s)+z^2(r,s)]$

Solution:

Clearly,
$$x(r,s) + y(r,s) = 2(r^2 - s^2)^2 - 8r^2s^2$$

Therefore, $3[x(r,s) + y(r,s) + 8r^2s^2]$ forms a nasty number. Which is i)
ii) $x(r,s) + y(r,s) + z^2(r,s) = 3(r^4 + s^4) - 10r^2s^2$
so, $30(r^4 + s^4) - 10[x(r,s) + y(r,s) + z^2(r,s)] = (100r^2s^2)$
 $180(r^4 + s^4) - 60[x(r,s) + y(r,s) + z^2(r,s)]$ forms a nasty number.

Hence the proof.

Proposition 2

$$x(r,1) - y(r,1) + z(r,1) + 6r + 4 = To_r + 11Ch_r - 4So_r + Pro_r$$

Solution:

Cleary,
$$x(r,s) - y(r,s) + z(r,s) = 8r^3s - 8rs^3 + r^2 + s^2$$

$$x(r,1) - y(r,1) + z(r,1) = 8r^3 - 8r + r^2 + 1$$

$$= To_r - 8r^3 - 32r + 34r^2 + 7$$

= $To_r + 11Ch_r - 8r^3 + 4r + r^2 - 5r + 4$
= $To_r + 11Ch_r - 4So_r + Pro_r - 6r + 4$

Hence, $x(r,1) - y(r,1) + z(r,1) + 6r + 4 = To_r + 11Ch_r - 4So_r + Pro_r$

Proposition 3

x(r,1)y(r,1) = Difference of two squares

Solution:

Clearly,
$$x(r,1)y(r,1) = \left[\left(r^2 - s^2 \right)^2 - 4r^2 s^2 \right]^2 - \left[4rs(r^2 - s^2) \right]^2$$

Therefore, x(r,1)y(r,1) is difference of two squares.

Proposition 4

$$x(1,s) + y(1,s) + z(1,s) = Hex_{s^2} - 2Star_s - 12s + 6$$

Solution:

$$x(1,s) + y(1,s) + z(1,s) = 3 + 2s^{4} - 13s^{2}$$
$$= 3 + Hex_{s^{2}} - 12s^{2}$$
$$= 6 - 12s + Hex_{s^{2}} - 2Star_{s}$$

Hence the proof.

Proposition 4

 $x(r,s) + y(r,s) + z^2(r,s) + 10r^2s^2$ is three times sum of quartic integer.

Solution:

Clearly,
$$y(r,s) + z^2(r,s) = 2r^4 + 2s^4 - 4r^2s^2 - 4r^3s + 4rs^3$$

$$x(r,s) + y(r,s) + z^{2}(r,s) = 3r^{4} + 3s^{4} - 10r^{2}s^{2}$$

Hence, $x(r,s) + y(r,s) + z^2(r,s) - 10r^2s^2 = 3$ (sum of two quartic integers)

Proposition 5

$$30(r^4 + s^4) - 10[x(r,s) + y(r,s) + z^2(r,s)]$$

Solution:

From proposition 1, we have

$$x(r,s) + y(r,s) + z^{2}(r,s) = 3(r^{4} + s^{4}) - 10r^{2}s^{2}$$

therefore, $3(r^4 + s^4) - 10[x(r,s) + y(r,s) + z^2(r,s)]$ is a perfect square.

References:

- 1. Carmichael, R.D., *The Theory of Numbers and Diophantine Analysis*, Dover Publications, New York (1959).
- 2. Dickson, L.E., *History of the theory of numbers*, Vol.II, Chelsia Publishing Co., New York. (1952).
- 3. Mollin, R.A., *All solutions of the Diophantilne equation* $x^2 Dy^2 = n$, For East J.Msth. Sci., Soecial Volume, Part III, pages-257-293 (1998).
- 4. Mordell, L.J., *Diophantine Equations*, Academilc Press, London (1969).
- 5. Telang, S.G., *Number theory*, Tata Mc Graw Hill Publishing Company, New Delhi (1996).
- 6. Nigel, P.Smart, *The Algorithmic Resolutions of Diophantine Equations*, Cambridge University Press, London (1999).
- 7. Gopalan MA; Note on the Diophantine Equation $x^2 + xy + y^2 = 3z^2$, Acta Ciencia India 2000; XXXVIM (3); 265-266.
- 8. Gopalan MA; Manju Somanath; Vanitha N; Ternary Cubic Diophantine equation $x^2 + y^2 = 2z^3$, Advances in Theoretical and Applied Mathematics 2010; 1(3); 227-231.
- 9. Gopalan MA; Sangeetha G; On the Heptic Diophantine equation five unknowns $x^4 + y^4 = (X^2 Y^2)z^5$; Antartica J Math; 2012; 9(5); 371-375.
- 10. Gopalan MA; Sangeetha G; On the Sextic Diophantine equation three unknowns

 $x^{2} - xy + y^{2} = (k^{3} + 3)^{n} z^{6}$; Impact J.Sci.Tech, 2010; 4(4); 89-93.