

International Research Journal of Natural and Applied Sciences ISSN: (2349-4077) Impact Factor- 5.46, Volume 4, Issue 12, December 2017 Website- www.aarf.asia, Email : editor@aarf.asia, editoraarf@gmail.com

DETERMINATION OF LOSARTAN AND HYDROCHLOROTHIAZIDE IN A COMBINED PHARMACEUTICAL UV DERIVATIVE SPECTROPHOTOMETRIC METHODS

Abdulhakeem Abdullah Mohammed AL-BAZI, A. Hakan AKTAŞ 1*

¹Department of Chemistry, Faculty of Science and Arts, Süleyman Demirel University, Isparta, Turkey

ABSTRACT

A new spectrophotometric methods for determination Losartan (LOS) and Hydrochlorothiazide (HCTZ) depends on 1st and 2nd derivative spectrum of the two drugs by using (Water:methanol:ethanol 60:20:20) as a solvent. Many techniques were proportionated with concentration (peak to base line, peak to peak and peak area). The linearity of the methods ranged between (5-50µg.ml-1). The results were precise and accurate throw RSD% were between (0.229-0.994%) and (0.228-0.995%), Rec% values between (98.23-102.64%) and (97.91-102.50%) while the LOD between (0.0510-0.2310µg.ml-1) and (0.055-0.316µg.ml-1) and LOQ between (0.17-0.77µg.ml-1) and (0.183-1.130µg.ml-1) of (LOS) and of (HCTZ) respectively. These methods were successfully Applied to determination of (LOS) and (HCTZ) in the pharmaceutical preparations.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

Keywords: Spectrophotometric, determination, Losartan and Hydrochlorothiazide, First and second order derivative of spectrum.

1. Introduction

Losartan (LOS) is an angiotensin II receptor antagonist and chemically it is 2-nbutyl-4-chloro-5-hydroxymethyl-1-[2'-(1H-tetrazol-5-yl) (biphenyl-4-yl) methyl] imidazole, a strong antihypertensive agent Fig.1. Losartan was developed by DuPont-Merck laboratories as a potent non-peptide angiotensin II receptor (type AT1) antagonist for hypertension treatment [1]. is a Loop Diuretics used as an antihypertensive by reducing symtomatic oedema. This reduces the volume of the blood, decreasing blood return to the heart and thus cardiac output and, by other mechanisms, is believed to lower peripheral vascular resistance. Literature survey reveals the availability of several methods for estimation of both Losartan [2-7]. However, several methods have been described for the determination of losartan drug substance in tablet of losartan drug substance in tablet Various methods developed are HPLC, [8-11]spectrophotometric, [12-14] capillary electrophoresis (CE), [15] voltamatric, [16] capillary zone electrophoresis HPTLC and liquid chromatography electrospray ionization tandem mass spectrometry.

Hydrochlorothiazide (HCT), 6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7sulphonamide 1,1-dioxide, is a popular diuretic drug of the thiazide classFig.2. The diuretic action of HCT reduces plasma volume, with consequent increase in urinary loss, plasma renin activity, aldosterone secretion and decrease in serum [17]. There are several methods for the determination hydrochlorothiazide in tablet dosage forms by using spectrophotometric [18- 20], fluorodensistometric [21], gas and liquid chromatographic [22- 24], LCM SMS [25] polarographic techniques [26]. The aim of this study is to develop spectral methods based on the first and second derivative

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

as a pure substance. In pharmaceutical preparations using the peak to baseline height, peak to peak height, in addition to the area of the peak.

Fig. 1: Chemical structure of Losartan

Figure. 2: Chemical structure of Hydrochlorothiazide

2. Materials and Methods

Losartan (LOS) and Hydrochlorothiazide (HCTZ) were kindly supplied by Gremspiny and Hetero Pharmaceuticals, India. Marketed sample of LOS and HCTZ

© Associated Asia Research Foundation (AARF)

(Angizaar-H ,MİCRO) in their combined tablet dosage form. Each tablet contained 50mg of LOS,12.5mg of HCTZ. ForUV work distilled water was prepared in the laboratory. Methanol nad ethnol used was of UV and were purchased from Baker Chemicals.

A double-beam SHIMADZU UV-Visible- Lc-20AB instrument has been used in the analysis of these two drugs. The measurements has been made within wavelength range of (109-400 nm), package width of (2.0nm) and medium scanning speed by using quartz cells.

2.1.Methods

A range of concentrations (5-50 μ g/ml) of Losartan and hydrochlorothiazide has been prepared. A scan of the wavelengths between (190-400 nm) was performed for zero-scale spectrometry. As it showed compliance with the law of Per - Lambert and then the first and second derivatives of the zero spectrum were recorded and the calibration curves were constructed depending on D1 at wavelength (231,276 nm) for (peak to base line) and(231+276 nm) for (peak to to peak) and wavelength (267-312nm) for (area peak).D2 at wavelength(240,262,287nm) for (peak to base line) and wavelength (240-262,262-287nm)for(peak to peak) and wavelength(228for (area peak). While, determine reckon on D1 at 248,248-276,276-310) wavelength (231.75,254.52,280,24,330 nm) for (peak to base line) and wavelength (231.75-254.52,254.52-280.24,280.24+330 nm) for(peak to peak) and wavelength (218-246,246-268,268-300,300-358 nm) for (area peak).D2 at wavelength (221,242,268,288nm) for (peak to base line) and wavelength (221-242,242-268,268+288nm) for (peak to peak) and wavelength (210-231,231-256,256-278,278_304nm) for (area peak) losartan and hydrochlorothiazide respectively As inTable 1.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

2.2.Standard Stock Solutions 1000µg/ml

0.1g and (99) purity of losartan and hydrochlorothiazide that obtained from Gremspiny andHetero company has been dissolved individually in an amount of (water:methnol:ethnol 60:20:20) and then the 100ml volumetric flask was filled to the mark by adding solvent. Dilute solutions were prepared with concentrations of (5-50 μ g/ml) using the solvent.

2.3.Analysis of Tablet Formulation

Twenty pill of MİCRO were milled and a mean weight of pill contains 0.05 g of Losartan and 0.0125g of hydrochlorothiazide was dissolved in 100 ml of the solvent and placed in the ultrasound bath. It was then filtered with a 0.42 Whatman paper to give concentrations of 500 μ g/ml and 125 μ g/ml respectively.

2.4.Absorption Spectra

The absorbance spectra of the medicinal drugs, which show the absorbance spectrometry of the zero derivative of the Losartan, hydrochlorothiazide and mixture, were recorded at a concentration of (20:15:20-10 μ g/ml) respectively, showing the highest absorption at (250,263, 267 nm) respectively, as shown in the Fig.3.

© Associated Asia Research Foundation (AARF)

Fig.3: (A) Absorbance spectra for LOS 20 μg / mL (B) Absorbance spectra for HCTZ 15 μg / mL (C) Absorbance spectra for LOS 20 μg / mL and HCTZ 10 μg / mL

While the Figs 4.-7show the absorption spectra of the first and second derivatives of Losartan and hydrochlorothiazide the range of concentrations (5-50 μ g/ml) respectively

Fig. 4:First derivative spectrum for LOS

Fig. 5: Ssecond derivative spectrum for LOS

© Associated Asia Research Foundation (AARF)

Fig.6: First derivative spectrum for HCTZ

Fig.7: Second derivative spectrum for HCTZ

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

3.Calibration Curves

3.1.Limit of Detection (LOD) and Limit of Quantitation (LOQ)

The calibration curves has been constructed peak high to base line, peak to peak and peak area of the first and second derivatives. The linearity of the methods ranged between ($5-50\mu$ g.ml⁻¹). the LOD between ($0.0510-0.2310 \mu$ g.ml⁻¹) and ($0.055-0.316 \mu$ g.ml⁻¹) and LOQ between ($0.17-0.77\mu$ g.ml⁻¹) and ($0.183-1.130 \mu$ g.ml⁻¹) of (LOS) and of (HCTZ) respectively as shown in table1.

4.Accuracy and Precision

In order to evaluate the results of the methods used in the estimation of these two drugs, the accuracy and compatibility have been calculated for them. The linearity of the methods ranged between (5-50µg.ml-1). The results were precise and accurate throw RSD% were between (0.229-0.994%) and (0.228-0.995%), Rec% values between (98.23-102.64 %) and (97.91-102.50%) of losartan and hydrochlorothiazide respectively as shown in table2.

5.Application Method

The results of the suggested methods for estimating the two drugs were used in pharmaceutical preparations. Table 3 shows the results of a variety of different pharmaceutical

Compoun d	Order of derivative	Mode of calculation	λ.max (nm)	Regression equation	\mathbb{R}^2	LOD	LOQ	Linearit y	Slope
		Peak to base line	231	y = -0.0011x - 0.046	0.9996	0.0760	0.2530		- 0.0011
LOS	First	Peak to base line	276	y = -0.0011x - 0.0184	0.9996	0.0960	0.3200	5-50	- 0.0011
		Peak to Peak	231+276	y = 0.0022x + 0.0645	0.9998	0.0510	510 0.1700 μg.ml ⁻¹		0.0022
		Peak area	215-245	y = -0.0286x -	0.9994	0.1210	0.4030		-

both drugs Losartan and Hydrochlorothiazide respectively as shown in table3.

© Associated Asia Research Foundation (AARF)

				0.5905					0.0286
			267-312	y = -0.0287x -	0.9997	0.1410	0.4700		-
		Peak area		0.4983					0.0287
		Peak to	240	y = 9E-05x +	0.9994	0.2310	0.7700		9E-05
		base line		0.0061					
		Peak to	262	y = -3E-05x -	0.9995	0.0780	0.2600		-3E-05
		base line		0.0032					
		Peak to	287	y = 0.0001x +	0.9992	0.0930	0.3100		0.0001
		base line		0.0017					
		Peak to	240+262	y = 0.0001x +	0.9992	0.0660	0.2200	5-	0.0001
	Second	Peak		0.0093				50ug ml ⁻	
	becond	Peak to	262+287	y = 0.0001x +	0.9993	0.0790	0.2630	1	0.0001
		Peak		0.0049					
		Peak area	228-248	y = 0.0005x +	0.9998	0.0560	0.1860		0.0005
		i oun urou		0.0808					
		Peak area	248-276	y = -0.0012x -	0.9997	0.1410	0.4700		0.0012
				0.0572					-
		Peak area	276-310	y = 0.0002x +	0.9996	0.076	0.253		0.0002
				0.0484					
		Peak to	231.75	Y=-0.0032x-0.0004	0.9996	0.0990	0.3300		-
		base line							0.0032
		Peak to	254.52	Y=-0.0022x-0.0014	0.9996	0.1780	0.5930		-
		base line							0.0022
		Peak to	280.24	Y=-0.0024x-0.0021	0.9998	0.0870	0.2900		-
		base line							0.0002
		Peak to	330	Y=-0.0004x-0.0015	0.9997	0.3010	1.0030		-
		base line							0.0004
		Peak to	231+254.5	$V = 0.0054 x \pm 0.0018$	0 0008	0.0950	0.3160		0.0054
TT OPPO	-	Peak	2	1=0.0054x+0.0010	0.7770	0.0950		5-50	0.0054
HCIZ	First	Peak to	254.52+28	Y=0.0046x+0.0034	0 9999	0.2860	0.9530	µg.ml⁻¹	0.0046
		Peak	0.24		017777	0.2000	0.5000		010010
		Peak to	280.24+33	Y=0.0028x+0.0036	0.9999	0.0790	0.2630		0.0028
		Peak	0						
		Peak area	218-246	Y=-0.0439x-0.3773	0.9999	0.3160	1.0530		0.0439
		Peak area	246-268	Y=0.0251x+0.0251	0 9998	0.0740	0.2460		0.0251
		Peak area	268-300	V= 0.0278- 0.200	0.0004	0.2120	1.0400		0.0279
			311 259	$1 = -0.02/8 \times -0.296$	0.9990	0.5150	1.0400		0.0278
		Peak area 311-358	511-556	Y=-0.0084x-0.0332	0.9994	0.0940	0.3130		-
									0.0084

© Associated Asia Research Foundation (AARF) A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

		Peak to	221	Y=-0.0004x+0.0002	0.9997	0.0550	0.1830		0.0004
		base line							
		Peak to	242	Y=0.0005x+0.0009	0.9996	0.1210	0.4030		0.0005
		base line							
		Peak to	268	Y=-0.0003x-0.0001	0.9998	0.1780	0.5930		-
		base line							0.0003
		Peak to	288	Y=0.0002x+0.0002	0.9999	0.1840	0.6130		0.0002
		base line							
		Peak to	221+248	Y=0.0009x+0.0007	0 9998	0.0550	0.1830		0.0009
	Second	Peak			0.,,,,0		011020	5-	010007
		Peak to	242+268	Y=0.0008x+0.001	0.9998	0.2010	0.670	50µg.ml ⁻	0.0008
		Peak						1	
		Peak to	268+288	Y=0.0005x+0.0003	0.9999	0.0810	0.2700		0.0005
		Peak							
		Peak area	210-231	Y=-0.0028x-0.0314	0.9995	0.0860	0.2860		-
		i oun urou							0.0028
		Peak area	231-256	Y=0.0057x+0.0456	0.9998	0.0640	0.213		0.0057
		Peak area	256-278	.	0.0004	0.0000	1.100		0.0007
		i can aica		Y=-0.0037x-0.0151	0.9994	0.3390	1.130		0.0037
		Peak area	278-304	Y=0.0058x-0.0432	0.9997	0.0980	0.326		0.0058

Table 1: Results of meta - analysis of Losartan and Hydrochlorothiazide using the first and second derivatives

Compound	Order of	Mode of	λ .max	Drug conc. (μ g.mL ⁻)		Rec%	*R.S.D%
	derivative	anarysis	(IIII)	Taken	Found		
		Peak to	221	24	24.6	102.5	0.583
		base line	251	34	34.5	101.47	0.771
	Finat	Peak to	221 276	24	24.4	101.66	0.526
	FIISt	peak	251-270	34	33.9	99.70	0.337
		Deals area	215 245	24	24.2	100.83	0.604
LOG		Peak area	213-243	34	34.4	101.17	0.884
LUS	Second	Peak to	240	24	24.5	101.47	0.294
		base line	240	34	34.2	100.58	0.639
		Peak to	240.262	24	24.4	101.66	0.551
		peak 240-262		34	34.6	101.76	0.228
		Deals area	220 240	24	24.1	100.41	0.393
		Peak area	220-240	34	34.4	101.17	0.832
		Peak to	021 75	24	23.7	98.75	0.478
HCTZ	First	base line	251.75	34	34.4	101.17	0.629
		Peak to	231.75-	24	24.4	101.66	0.982

© Associated Asia Research Foundation (AARF) A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

	peak	254.52	34	34.2	100.88	0.749
	Peak area	246 268	24	23.6	98.33	0.738
		240-208	34	34.5	101.47	0.563
Second	Peak to	242	24	24.4	101.66	0.933
	base line	242	34	33.6	98.82	0.729
	Peak to	221 242	24	23.6	98.33	0.228
	peak 221-242		34	34.4	101.17	0.682
	Peak area	231-256	24	23.8	99.16	0.604
			34	33.4	98.23	0.995

Table 2: Calculate the Accuracy and precision of Losartan and

Hydrochlorothiazide meta-analysis results in the proposed work method

Sampla	Order	Mode of) (nm)	Drug.amount(mg)		Baa%	*D C D0/	
Sample	Oldel	analysis	M(IIII)	Taken.d	Found	Kec 70	R.D.D /0	
		Peak to	231	50	51.4	102.84	0.117	
		base line	267	50	50.9	101.91	0.664	
		Peak to	231-	50	50	100	0.729	
	First	Peak	276	50	50	100	0.729	
	1 1130		215-	50	51.1	102 31	0.993	
		Peak area	245	50	51.1	102.51	0.775	
		Teak area	267-	50	507	101.45	0.629	
			312	50	50.7	101.45	0.027	
	-	Peak to	240	50	51.2	102.51	0.412	
		base line	262	50	49.49	98.99	0.582	
Losartan (50mg)			287	50	50.9	101.81	0.839	
		Peak to Peak	240-	50	50.7	101.41	0.036	
			262	50	50.7	101.41	0.750	
			262-	50	51.09	102.17	0.748	
			287	50	51.00	102.17	0.740	
	Second		228-	50	49 50	99.01	0 296	
			248	50	19.50	<i>))</i> .01	0.270	
		Peak area	248-	50	51 33	102.66	0.473	
		i can area	276	50	51.55	102.00	0.775	
			276-	50	50.7	101.58	0.572	
			310	50	50.7	101.50	0.572	

© Associated Asia Research Foundation (AARF)

		Peak to	231.75	12.5	12.71	101.69	0.739
		base line	254.52	12.5	12.52	100.16	0.117
		Peak to	231.75-	12.5	12.18	97.44	0.529
	First	Peak	254.52				
			218-	12.5	12.84	102.72	0.549
		Peak area	245				
			245-	12.5	12.93	103.44	0.337
			267				
		Peak to base line	221	12.5	12.39	99.12	0.304
hydrochlorothiazide			242	12.5	12.5	100	0.782
(12.5 mg)			268	12.5	12.5	100	0.412
		Peak to Peak	221-	12.5	12 70	101.63	0.473
			242	12.0			0.175
			2242-	12.5	12.59	100.72	0.739
	(Second)		268	1210	12109	100112	01102
			210-	12.5	12.56	100 55	0.839
			231	12.0	12.00	100.55	0.057
		Peak area	231-	12.5	12 67	101 36	0 584
		i cun arca	256	12.5	12.07	101.50	0.004
			256-	12.5	12.60	100.81	0 774
			278	12.5	12.00	100.01	0.774

Table 3: Estimation of Losartan and Hydrochlorothiazide in somepharmaceutical preparations according to the proposed methods

6.Conclusions

A range of simple, sensitive and rapid spectral methods were developed, based on spectrums of the first and second derivatives for estimating the Losartan and hydrochlorothiazide drugs. In their pure forms and their pharmaceutical preparations. These methods are suitable for quality control laboratories and routine work because they do not need to control the working conditions and do not need expensive detectors or solvents.

[©] Associated Asia Research Foundation (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

References

1. Prabhakar, A. H., Giridhar R, A rapid colorimetric method for the determination of losartan potassium in bulk and in synthetic by First Order Derivative Spectroscopy, International Journal of Pharmacy and Pharmaceutical Sciences,5(1)2013,464-466.

2. Gandhimathi M. HPLC determination of losartan pottassium and ramipril in tablets. Indian drugs, *41*, 2004, 120–2.

3. Byyny, R.L., Losartan potassium lowers blood pressure measured by ambulatory blood pressure monitoring. J.Hypertension, *13*, 1995, S29–S33.

4. Lastra OC, Lemus IG, Sanchez HJ, Perez RF. Development and validation of an UV derivative spectrophotometric determination of Losartan potassium in tablets. J Pharm Biomed Anal, *33*, 2003, 175–80.

5. Zarapkar, S.S. and Kanyawar, N.S., Simultaneous estimation of Amlodipine and Losartan potassium in pharmaceutical dosage by RP-HPLC. Indian drugs, *39(6)*, 2002, 338- 341.

6. Rao, J.R., et al., Methods of estimation of multicomponent formulations: a review, Indian drugs, *39*(7), 2002, 378-381.

7. Deanne, L. Hertzog, et al., developed and validated stability-indicating HPLC method for the simultaneous determination of losartan potassium, hydrochlorothiazide, and their degradation products. Pharmacopoeial Forum, 31(5), 2005, 1453-1463.

8. Giuseppe, C. Giancarlo, P., Simultaneous determination of losartan and hydrochlorothiazide in tablets by highperformance liquid chromatography, J Pharm Biomed Anal,*23*,2000,185-189.

9. Maria del Rosario B, Yaritza C. Determination of losartan, telmisartan, and valsartan by direct injection of human urine into a column-switching liquid chromatographic system with fluorescence detection. J Pharm Biomed Anal,*50*,2009,194-199.

[©] Associated Asia Research Foundation (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

10. Mehdi, A. Maryam, K., Derivative spectrophotometric method for determination of losartan in pharmaceutical formulations, Iranian J Pharmacol Therap,*3*,2004,21-25.

11. Olga CL, Igor GL. Development and validation of an UV derivative spectrophotometric determination of losartan potassium in tablets. J Pharm Biomed Anal,*33*,2003,175-180.

12. Ali Asghar, E. Reza, H., Determination of losartan and triamterene in pharmaceutical compounds and urine using cathodic adsorptive stripping, Anal Sci, *24*,2008,1449-1454.

13. Williams, R.C., Alasandro MS. Comparison of liquid chromatography, capillary electrophoresis and super-critical fluid chromatography in the determination of losartan potassium drug substance in Cozaartablets, J Pharm Biomed Anal, *14*(*11*), 1996, 1539-1546.

14. Sathe, S.R., Bari, S.B., Simultaneous analysis of losartan potassium, atenolol, and hydrochlorothiazide in bulk and in tablets by HPTL chromatography with UV absorption densitometry, Acta Chromatographica, *19*, 2007, 270-278.

15. Zhongxi, Z.Qingxi, W., Identification of losartan degradates in stressed tablets by LC-MS and LC-MS/MS, J Pharm Biomed Anal,20,1999,129-136.

16. Habib, H.I. Weshahy, S.A., Cathodic stripping voltammetric determination of losartan in bulk and pharmaceutical products, Portugaliae Electrochimica Acta, *26*(*4*), 2008, 315-324.

17. Pires, M.A.S. Souza dos Santos, R.A., Sinisterra, R.D.; Pharmaceutical composition of hydrochlorothiazide: β -cyclo-dextrin: preparation by three different methods, physico-chemical characterization and in vivo diuretic activity evaluation, Molecules, *16*, (2011),4482–4499.

18. Sidika, E. Sevil Muge, C. and Sedef, A., Simultaneous Determination of Moexipril Hydrochloride and Hydrochlorothiazide in Tablets by Derivative

[©] Associated Asia Research Foundation (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

Spectrophotometric and High-Performance Liquid Chromatographic Methods, Journal of Pharmaceutical and Biomedical Analysis, *33*,(2003),505-511.

19. Bhatia, N.M. Bhatia, M.S. and Choudhari, P.B., Development and Validation of Spectrophotometric and Ion Pair Chromatographic Technique for Estimation of Valsartan and Hydrochlorothiazide. Journal of Pharmaceutical Research and Health Care, 2,(2010), 2-14.

20. Dhandapani, B. Thirumoorthy, N. and Jose Prakash, D.,Development and Validation for the Simultaneous Quantification of Nebivolol Hydrochloride and Hydrochlorothiazide by UV Spectroscopy, RP-HPLC and HPTLC in Tablets. E-Journal of Chemistry, *7*,(2010),341-348.

21. El-Gindy, A. Ahmed, A. and Abdel-Fattah, L., Application of LC and HPTLC-Densitometry for the Simultaneous Determination of Benazepril Hydrochloride and Hydrochlorothiazide, Journal of Pharmaceutical and Biomedical Analysis, *25*, (2001), 171-179.

22. Morra, P.V. Davita, P.C. and Vincenti, M., Fast Gas Chromatographic/Mass Spectrometric Determination of Diuretics and Masking Agents in Human Urine Development and Validation of a Productive Screening Protocol for Antidoping Analysis, Journal of Chromatography A, *1135*,(2006),219-229.

23. Jayaseelan, S. Rajasekar, M. and Ganesh, S.,RP-HPLC Method Development and Validation for Simultaneous Estimation of Losartan Potassium, Amlodipine Besilate and Hydrochlorthiazide in Tablet Dosage Form. Scholars Research Library Der Pharma Chemica, *2*,(2010),31-36.

24. Safeer, K. Anbarasi, B. and Senthil Kumar, N., Analytical Method Development and Validation of Amlodipine and Hydrochlorothiazide in Combined Dosage Form by RP-HPLC, International Journal of ChemTech Research, *2*,(2010),21-25.

25. Gao, F. Zhang, M.F. Cui, X.Y. Wang, Z.H. Sun, Y.T. and Gu, J.K., Simultaneous Quantitation of Hydrochlorothiazide and Metoprolol in Human

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

Plasma by Liquid Chromatography-Tandem Mass Spectrometry, Journal of Pharmaceutical and Biomedical Analysis, *52*,(2010),149-154.

26. Martoan, M.E. Hernaandez, O.M. and Jimeanez, A.I., Partial Least-Squares Method in Analysis by Differential Pulse Polarography Simultaneous Determination of Amiloride and Hydrochlorothiazide in Pharmaceutical Preparations, Analytica Chimica Acta, *381*,(1999), 247-256.

•

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.