International Research Journal of Mathematics, Engineering and IT Vol. 3, Issue 12, December 2016

Impact Factor- 5.489 ISSN: (2349-0322)

A NOTE ON M1 PARTITIONS OF n

Dr. K. Hanumareddy
Department of Mathematics
Hindu College
Acharya Nagarjuna University
Guntur, India.

Gudimella V R K Sagar
L/Mathematics
Govt.Polytechnic
Ponnur
Guntur, India.

Abstract

S.Ahlgren, Bringmann and Lovejoy [1] defined M2spt(n) to be the number of smallest parts in the partitions of n without repeated odd parts and with smallest part even and Bringmann, Lovejoy and Osburn [4]derived the generating function for M2spt(n). Hanumareddy and Manjusri [5] derived generating function for the number of smallest parts of partitions of n by using r-partitions of n. In this chapter we defined $M 1 \operatorname{spt}(n)$ as the number of smallest parts in the partitions of n without repeated even parts and with smallest part odd and also derive its generating function by using $r-M 1$ partitions ofn. We also derive generating function for M1spt (n).

Keywords: Partition, r-partition, M1Partition, Smallest part of the M1Partition.
Subject classification: 11P81 Elementary theory of Partitions.

1. Introduction:

Let $M 1 \xi(n)$ be denote the set of all M1partitions of n with even numbers not repeated and smallest parts are odd numbers. Let $M 1 p(n)$ be the cardinality of $M 1 \xi(n)$, write $M 1 p_{r}(n)$ for the number of r-M1partitions of n in $M 1 \xi(n)$ each consisting of exactly r parts, i.e $r-M 1$ partitions of n in $M 1 \xi(n)$. Let $M 1 p(k, n)$ represent the number of M1partitions of n in $M 1 \xi(n)$ using natural numbers at least as large as k only. Let the partitions in $M 1 \xi(n)$ be denoted by $M 1$ partitions.

Let $M 1 \operatorname{spt}(n)$ be denotes the number of smallest parts including repetitions in all partitions of n in $M 1 \xi(n)$ and $\operatorname{sumM1spt(n)}$ be denotes the sum of the smallest parts.
$M 1 m_{s}(\lambda)=$ number of smallest parts of λ in $M 1 \xi(n)$.
$M 1 \operatorname{spt}(n)=\sum_{\lambda \in \xi(n)} M 1 m_{s}(\lambda)$
$M^{1} \xi(n)$ be denote set of all M^{1} partitions of n.
Forexample $M 1 \xi(7): \quad M 1 p(7)=11 \quad M 1 \operatorname{spt}(7)=28$
$\underline{7}, 6+\underline{1}, 4+\underline{3}, 5+\underline{1}+\underline{1}, 4+2+\underline{1}, 3+3+\underline{1}, 4+\underline{1}+\underline{1}+\underline{1}, 3+2+\underline{1}+\underline{1}, 3+\underline{1}+\underline{1}+\underline{1}+\underline{1},:$
$2+\underline{1}+\underline{1}+\underline{1}+\underline{1}+\underline{1}, \underline{1}+\underline{1}+\underline{1}+\underline{1}+\underline{1}+\underline{1}+\underline{1}$.

We observe that
1.1. The generating function for the number of r - partitions of n with even numbers not repeated is

$$
M^{1} p_{r}(n)=\frac{q^{r}\left(-q, q^{2}\right)_{r}}{\left(q^{2}, q^{2}\right)_{r}}
$$

1.2. The generating function for the number of $r-M 1$ partitions of n with even numbers appears at most one time and smallest parts are odd numbers is

$$
\begin{equation*}
M 1 p_{r}(n)=\frac{q^{r}\left(-q, q^{2}\right)_{r-1}}{\left(q^{2}, q^{2}\right)_{r}} \tag{1.1}
\end{equation*}
$$

2. Generating function for $M 1 \operatorname{spt}(n)$

The generating function for the number of smallest parts of all partitions of positive integer n is derived by G.E. Andrews. By utilizing $r-M 1$ partitions of n, we propose a formula for finding the number of smallest parts of n.

2.1 Theorem:

$$
M 1 \operatorname{spt}(n)=\sum_{k=1}^{\infty} \sum_{t=1}^{\infty} M^{1} p(2 k-1, n-(2 k-1) t)+\beta \quad \text { where } \quad \beta= \begin{cases}1 & \text { if } 2 k-1 \mid n \\ 0 & \text { otherwise }\end{cases}
$$

Proof: Let $n=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)=\left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, \ldots, \mu_{l-1}^{\alpha_{l-1}}, k_{1}^{\alpha_{l}}\right)$,
$\left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, \ldots, \mu_{l-1}^{\alpha_{l-1}}, k_{1}^{\alpha_{l}}\right) \in M 1 \xi(n), k_{1}=2 k-1, k \in N$ be any $r-M 1$ partition of n with l distinct parts such that even parts not repeated and smallest parts are odd numbers
Case 1: Let $r>\alpha_{l}=t$ which implies $\lambda_{r-t}>k_{1}$. Subtract all $k_{1}{ }^{\prime} s$, we get $n-t k_{1}=\left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, \ldots, \mu_{l-1}^{\alpha_{l-1}}\right),\left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, \ldots, \mu_{l-1}^{\alpha_{l-1}}\right) \in M 1 \xi(n)$

Hence $n-t k_{1}=\left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, \ldots, \mu_{l-1}^{\alpha_{l-1}}\right)$ is a $(r-t)-M^{1}$ partition of $n-t k_{1}$ with $l-1$ distinct parts and each part is greater than or equal to $k_{1}+1$. Here we get the number of $r-M 1$ partitions with smallest part k_{1} that occurs exactly t times among all $r-M 1$ partitions of n is $M^{1} p_{r-t}\left(k_{1}+1, n-t k_{1}\right)$.

Case 2: Let $r>\alpha_{l}>t$ which implies $\lambda_{r-t}=k_{1}$
Omit k_{1} 's from last t places, we get $n-t k_{1}=\left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, \ldots, \mu_{l-1}^{\alpha_{l-1}}, k_{1}^{\alpha_{1}-t}\right)$, $\left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, \ldots, \mu_{l-1}^{\alpha_{l-1}}, k_{1}^{\alpha_{1}-t}\right) \in M 1 \xi(n)$. Hence $n-t k_{1}=\left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, \ldots, \mu_{l-1}^{\alpha_{l-1}}, k_{1}^{\alpha_{1}-t}\right)$ is a $(r-t)-M 1$ partition of $n-t k_{1}$ with l distinct parts and the least part is k_{1}.

Now we get the number of $r-M 1$ partitions with smallest part k_{1} that occurs more than t times among all $r-M 1$ partitions of n is $M^{1} f_{r-t}\left(k_{1}, n-t k_{1}\right)$

Case 3: Let $r=\alpha_{l}=t$ which implies all parts in the partition are equal which are odd.
The number of partitions of n with equal parts in $\operatorname{set}\left\{M 1 \xi(n), k_{1} \in 2 N-1\right\}$ is equal to the number of divisors of $2 n-1$. Since the number of divisors of $2 n-1$ is $d(2 n-1)$, the number of partitions of n with equal parts in $\operatorname{set}\left\{M 1 \xi(n), k_{1} \in 2 N-1\right\}$ is $d(2 n-1)$ where $\quad \beta= \begin{cases}1 & \text { if } k_{1} \mid n \\ 0 & \text { otherwise }\end{cases}$

From cases (1), (2) and (3) we get $r-M 1$ partitions of n with smallest part k_{1} that occurs t times is

$$
\begin{aligned}
& M^{1} f_{r-t}\left(k_{1}, n-t k_{1}\right)+M^{1} p_{r-t}\left(k_{1}+1, n-t k_{1}\right)+\beta \\
& =M^{1} p_{r-t}\left(k_{1}, n-t k_{1}\right)+\beta \quad \text { where } \beta= \begin{cases}1 & \text { if } k_{1} \mid n \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The number of smallest parts in M1 partitions of n is
$\operatorname{M1spt}(n)=\sum_{k_{1}=1}^{\infty} \sum_{t=1}^{\infty} M^{1} p\left(k_{1}, n-t k_{1}\right)+\beta$ where $\quad \beta= \begin{cases}1 & \text { if } k_{1} \mid n \\ 0 & \text { otherwise }\end{cases}$
$\Rightarrow M 1 \operatorname{spt}(n)=\sum_{k=1}^{\infty} \sum_{t=1}^{\infty} M^{1} p(2 k-1, n-(2 k-1) t)+\beta \quad$ where $\quad \beta= \begin{cases}1 & \text { if } 2 k-1 \mid n \\ 0 & \text { otherwise }\end{cases}$
2.2. Theorem: $\quad M^{1} p_{r}(2 k+1, n)=M^{1} p_{r}(n-2 k r)$

Proof: Let $n=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right), \lambda_{i}>2 k \quad \forall i$, be any $r-M 1$ partition of n such that even numbers not repeated and smallest parts are odd numbers. Subtracting $2 k$ from each part, we get $n-2 k r=\left(\lambda_{1}-2 k, \lambda_{2}-2 k, \ldots, \lambda_{r}-2 k\right)$

Hence $n-2 k r=\left(\lambda_{1}-2 k, \lambda_{2}-2 k, \ldots, \lambda_{r}-2 k\right)$ is a $r-M 1$ partition of $n-2 k r$ with even parts not repeated and smallest parts are odd.
Therefore the number of $r-M 1$ partitions of n with parts greater than or equal to $2 k+1$ is $M^{1} p_{r}(n-2 k r)$.

Hence $M^{1} p_{r}(2 k+1, n)=M^{1} p_{r}(n-2 k r)$.
2.3. Theorem: $\quad \sum_{n=1}^{\infty} M 1 \operatorname{spt}(n) q^{n}=\sum_{n=1}^{\infty} \frac{q^{2 n-1}\left(-q^{2 n} ; q^{2}\right)_{\infty}}{\left(1-q^{2 n-1}\right)^{2}\left(q^{2 n+1} ; q^{2}\right)_{\infty}}$

Proof: From theorem (2.1) we have
$\operatorname{M1spt}(n)=\sum_{k=1}^{\infty} \sum_{t=1}^{\infty} M^{1} p(2 k-1, n-(2 k-1) t)+\beta$
first replace $2 k+1$ by $2 k-1$, then replace n by $n-(2 k-1) t$ in theorem (2.2.)

$$
=\sum_{t=1}^{\infty} \sum_{r=1}^{\infty} \sum_{n=1}^{\infty} M^{1} p_{r}(n-(2 k-1) t-r(2 k-2))+\beta
$$

where $\quad \beta= \begin{cases}1 & \text { if } 2 k-1 \mid n \\ 0 & \text { otherwise }\end{cases}$
$=\sum_{k=1}^{\infty} \sum_{t=1}^{\infty} \sum_{r=1}^{\infty} \frac{q^{r+(2 k-1)^{t+r}(2 k-2)}\left(-q, q^{2}\right)_{r}}{\left(q^{2}, q^{2}\right)_{r}}+\sum_{k=1}^{\infty} \frac{q^{2 k-1}}{1-q^{2 k-1}}$
$=\sum_{k=1}^{\infty} \sum_{t=1}^{\infty} \sum_{r=1}^{\infty} \frac{q^{(2 k-1) t+r(2 k-1)}\left(-q, q^{2}\right)_{r}}{\left(q^{2}, q^{2}\right)_{r}}+\sum_{k=1}^{\infty} \frac{q^{2 k-1}}{1-q^{2 k-1}}$
$=\sum_{k=1}^{\infty} \sum_{t=1}^{\infty} q^{(2 k-1) t}\left[\sum_{r=1}^{\infty} \frac{\left(q^{2 k-1}\right)^{r}\left(-q, q^{2}\right)_{r}}{\left(q^{2}, q^{2}\right)_{r}}\right]+\sum_{k=1}^{\infty} \frac{q^{2 k-1}}{1-q^{2 k-1}}$

$$
\begin{aligned}
& =\sum_{k=1}^{\infty} \frac{q^{2 k-1}}{1-q^{2 k-1}}\left[\sum_{r=1}^{\infty} \frac{\left(q^{2 k-1}\right)^{r}\left(-q, q^{2}\right)_{r}}{\left(q^{2}, q^{2}\right)_{r}}\right]+\sum_{k=1}^{\infty} \frac{q^{2 k-1}}{1-q^{2 k-1}} \\
& =\sum_{k=1}^{\infty} \frac{q^{2 k-1}}{1-q^{2 k-1}}\left[1+\sum_{r=1}^{\infty} \frac{\left(q^{2 k-1}\right)^{r}\left(-q, q^{2}\right)_{r}}{\left(q^{2}, q^{2}\right)_{r}}\right]
\end{aligned}
$$

Put $t=q^{2 k-1}, a=-q, q=q^{2} \quad$ in theorem 2.1 'The Theory of partitions' by G.E.Andrews
$=\sum_{k=1}^{\infty} \frac{q^{2 k-1}}{\left(1-q^{2 k-1}\right)} \prod_{r=0}^{\infty} \frac{\left(1+q^{2 r+2 k-1+1}\right)}{\left(1-q^{2 r+2 k-1}\right)}$
$=\sum_{k=1}^{\infty} \frac{q^{2 k-1}}{\left(1-q^{2 k-1}\right)} \prod_{r=0}^{\infty} \frac{\left(1+q^{2 r+2 k}\right)}{\left(1-q^{2 r+2 k-1}\right)}$
$=\sum_{k=1}^{\infty} \frac{q^{2 k-1}\left(1+q^{2 k}\right)\left(1+q^{2 k+2}\right)\left(1+q^{2 k+4}\right)\left(1+q^{2 k+6}\right) \ldots}{\left(1-q^{2 k-1}\right)\left(1-q^{2 k-1}\right)\left(1-q^{2 k+1}\right)\left(1-q^{2 k+3}\right)\left(1-q^{2 k+5}\right) \ldots}$
$=\sum_{k=1}^{\infty} \frac{q^{2 k-1}\left(-q^{2 k} ; q^{2}\right)_{\infty}}{\left(1-q^{2 k-1}\right)^{2}\left(q^{2 k+1} ; q^{2}\right)_{\infty}}$
$\sum_{n=1}^{\infty} M 1 \operatorname{spt}(n) q^{n}=\sum_{n=1}^{\infty} \frac{q^{2 n-1}\left(-q^{2 n} ; q^{2}\right)_{\infty}}{\left(1-q^{2 n-1}\right)^{2}\left(q^{2 n+1} ; q^{2}\right)_{\infty}}$
2.4.Corollary: $\quad c_{1} M 1 \operatorname{spt}(n)=\sum_{k=1}^{\infty} \sum_{t=1}^{\infty} M^{1} p\left(c_{1}(2 k-1), n-c_{1}(2 k-1) t\right)+\beta_{1}$
where $\quad \beta_{1}=\left\{\begin{array}{ll}1 & \text { if } c_{1}(2 k-1) \mid n \\ 0 & \text { otherwise }\end{array}\right.$ and $c_{1}=2 c-1, c \in \mathrm{~N}$
2.5. Theorem: $M^{1} p_{r}\left(2 c_{1} k+1, n\right)=M^{1} p_{r}\left(n-2 c_{1} k r\right)$ where $c_{1}=2 c-1, c \in \mathrm{~N}$

Proof: Let $n=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right), \lambda_{i}>2 c_{1} k \quad \forall i$, be any $r-M^{1}$ partition of n such that even numbers not repeated and smallest parts are odd numbers and c is a constant. Subtracting $2 c_{1} k$ from each part, we get $n-2 c_{1} k r=\left(\lambda_{1}-2 c_{1} k, \lambda_{2}-2 c_{1} k, \ldots, \lambda_{r}-2 c_{1} k\right)$

Hence $n-2 c_{1} k r=\left(\lambda_{1}-2 c_{1} k, \lambda_{2}-2 c_{1} k, \ldots, \lambda_{r}-2 c_{1} k\right)$ is a $r-M^{1}$ partition of $n-2 c_{1} k r$ with even parts not repeated and smallest parts are odd.

Therefore the number of $r-M^{1}$ partitions of n with parts greater than or equal to $2 c_{1} k+1$ is $M^{1} p_{r}\left(n-2 c_{1} k r\right)$.

Hence $M^{1} p_{r}\left(2 c_{1} k+1, n\right)=M^{1} p_{r}\left(n-2 c_{1} k r\right)$ where $c_{1}=2 c-1, c \in \mathrm{~N}$

2.6.Theorem:

$\sum_{n=1}^{\infty} c_{1} M 1 \operatorname{spt}(n) q^{n}=\sum_{n=1}^{\infty} \frac{q^{c_{1}(2 n-1)}\left(-q^{c_{1}(2 n-1)+1} ; q^{2}\right)_{\infty}}{\left(1-q^{q_{1}(2 n-1)}\right)^{2}\left(q^{c_{1}(2 n-1)+2} ; q^{2}\right)_{\infty}}$ where $c_{1}=2 c-1$
2.7. Theorem: $\sum_{n=1}^{\infty} \operatorname{sumM} 1 \operatorname{spt}(n) q^{n}=\sum_{n=1}^{\infty} \frac{(2 n-1) q^{2 n-1}\left(-q^{2 n} ; q^{2}\right)_{\infty}}{\left(1-q^{2 n-1}\right)^{2}\left(q^{2 n+1} ; q^{2}\right)_{\infty}}$

3.References:

[1] S.Ahlgren,K.Bringmann,J.Lovejoy. l - adic properties of smallest parts functions. Adv.Math., 228(1):629-645, 2011.
[2] G.E.Andrews, The theory of partitions.
[3] G.E.Andrews, The number of smallest parts in the partitions of n. J.Reine Angew.Math ., 624:133-142,2008.
[4] K.Bringmann,J.Lovejoy and R.Osburn. Automorphic properties of generating functions for generalized rank moments and Durfee symbols.
Int.Math.Res.Not.IMRN, (2):238-260, 2010.
[5] K.Hanumareddy,A.Manjusri The number of smallest parts of Partition of n. IJITE.,Vol.03,Issue-03,(March2015),ISSN:2321-1776.

