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ABSTRACT 

                    S.Ahlgren, Bringmann and Lovejoy [1] defined  2M spt n  to be the number of 

smallest parts in the partitions of n  without repeated odd parts and with smallest part even 

and  Bringmann, Lovejoy and Osburn [4]derived the generating function for  2M spt n . 

Hanumareddy and Manjusri [5] derived generating function for the number of smallest parts 

of partitions  of n   by using r partitions of .n  In this chapter we defined  1M spt n  as the 

number of smallest parts in the partitions of n  without repeated even parts and with smallest 

part odd and also derive its generating function by using 1r M partitions of n . We also 

derive generating function for  1M spt n . 

Keywords: Partition, r-partition, M1Partition, Smallest part of the M1Partition. 

Subject classification: 11P81 Elementary theory of Partitions. 

1. Introduction: 

                      Let  1 nM  be denote the set of all 1M partitions  of n  with even numbers not 

repeated and smallest parts are odd numbers. Let  1 nM p be the cardinality of  1 nM  , 

write  1 r nM p  for the number of 1r M partitions  of n in  1 nM  each consisting of 

exactly parts, i.e 1r M partitions of n  in  .1 nM   Let  ,1 k nM p
 
represent  the number of 

1M partitions  of n  in  1 nM   using natural numbers at least as large as only. Let the 

partitions in  1 nM   be denoted by 1 .M partitions  

   

               Let  1 nM spt be denotes the number of smallest parts including repetitions in all 

partitions of in  1 nM   and  1 nsumM spt  be denotes the sum of the smallest parts. 

r

k

n
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 1 sM m  number of smallest parts of  in  1 nM  . 

 1 nM spt =  
 

1 s

n

M m
 





 

 1 nM  be denote set of all 1M partitions of n . 

     7 : 1 7 11 1 7 28

7, 6 1, 4 3, 5 1 1 , 4 2 1, 3 3 1, 4 1 1 1 , 3 2 1 1, 3 1 1 1 1 ,

2 1 1 1 1 1, 1 1 1 1 1 1 1.

Forexample 1 M p M sptM   

                 

          

: 

 

We observe that 

 

1.1.     The generating function for the  number  of r partitions of n with even numbers not 

repeated is  
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1.2.     The generating function for the number of 1r M partitions of n with even numbers 

appears at most one time and smallest parts are odd numbers is  
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2. Generating function for  1M spt n
  

 

                The generating function for the number of smallest parts of all partitions of positive 

integer n is derived by G.E. Andrews. By utilizing 1r M partitions of n, we propose a 

formula for finding the number of smallest parts of n. 

 

 

 

2.1 Theorem:    

    1

1 1

1 if 2 1|
1 2 1, 2 1 where

0 otherwisek t

k n
M spt n M p k n k t  
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Proof:  Let  11 2

1 2 1 2 1 1( , , ... , ) = , ,..., ,l l

r ln k
        

 ,

   11 2

1 2 1 1, ,..., , 1l l

l k M n
     

  , 
1 2 1,k k k N   be any 1r M partition of n  with l 

distinct parts such that even parts not repeated and smallest parts are odd numbers 

Case 1: Let lr t 
 

which implies 1r t k   . Subtract all 1 'k s , we get 

 11 2

1 1 2 1, ,..., l

ln tk
    

  ,    11 2

1 2 1, ,..., 1l

l M n
    

   

Hence  11 2

1 1 2 1, ,..., l

ln tk
    

   is a   1r t M partition 
 

of 1n tk with 1l -  

distinct parts and each part is greater than or equal to 1 1k  . Here we get the number of 

1r M partitions with smallest part 1k  that occurs exactly  t times among all

1r M partitions of n is  1
1 11, .r tM p k n tk  

 

Case 2:   Let lr t 
 
which implies 1r t k  

 
 

Omit 1 'k s from last t  places, we get  11 2

1 1 2 1 1, ,..., ,l l t

ln tk k
      

  ,

   11 2

1 2 1 1, ,..., , 1l l t

l k M n
      

  . Hence  11 2

1 1 2 1 1, ,..., ,l l t

ln tk k
      

  is a

  1r t M partition 
 
of 1n tk  with l  distinct parts and the least part is 1k .  

Now we get the number of 1r M partitions with smallest part 1k  that occurs more 

than t times among all 1r M partitions of n is  1
1 1,r tM f k n tk 

 

Case 3: Let lr t   which implies all parts in the partition are equal which are odd.  

The number of partitions of n with equal parts in set   11 , 2 1M n k N    is equal to the 

number of divisors of 2 1n . Since the number of divisors of 2 1n  is  2 1 ,d n  the number 

of partitions of n with equal parts in set   11 , 2 1M n k N   is

  11 if |
2 1 where

0 otherwise

k n
d n 


  


 

From cases (1), (2) and (3) we get 1r M partitions of n with smallest part 1k that 

occurs t times is 

   1 1
1 1 1 1, 1,r t r tM f k n tk M p k n tk      

 

  11
1 1

1 if |
, where

0 otherwise
r t

k n
M p k n tk  


    


 

The number of smallest parts in 1M partitions  of n is 
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1

11

1 1

1 1

1 if |
1 , where

0 otherwisek t

k n
M spt n M p k n tk  

 

 


    


  

    1

1 1

1 if 2 1|
1 2 1, 2 1 where

0 otherwisek t

k n
M spt n M p k n k t  

 

 


       


  

2.2. Theorem:    1 12 1, 2r rM p k n M p n kr    

Proof: Let 1 2( , , ... , ), 2r in k i      , be any 1r M partition  of n such that even 

numbers not repeated and smallest parts are odd numbers. Subtracting 2k  from each part, we 

get  1 22 2 , 2 ,..., 2rn kr k k k        

Hence  1 22 2 , 2 ,..., 2rn kr k k k       is a 1r M partition  of 2n kr  with even parts 

not repeated and smallest parts are odd. 

Therefore the number of 1r M partitions of n with parts greater than or equal to 2 1k  is

 1 2 .rM p n kr  

Hence    1 12 1, 2 .r rM p k n M p n kr  
 

2.3. Theorem:  
 

   

2 1 2 2
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Proof:  From theorem (2.1) we have 

    1

1 1

1 2 1, 2 1
k t

M spt n M p k n k t 
 

 

      

   

    1

1 1 1

first replace 2 1 by 2 1, then replace by 2 1 in theorem 2.2.

2 1 2 2r

t r n

k k n n k t

M p n k t r k 
  

  

   

     
  

1 if 2 1|
where

0 otherwise

k n



 


 

     
 

2 1 2 2 2 2 1

2 12 2
1 1 1 1

,

1,

r k t r k
k

r

k
k t r k
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2 1 2Put , , in theorem 2.1 'The Theoryof partitions'byG.E.Andrewskt q a q q q   

 
 
 

2 2 1 12 1
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2.4 .Corollary:         1

1 1 1 1

1 1

1 2 1 , 2 1
k t

c M spt n M p c k n c k t 
 

 

      

 

 1

1 1

1 if 2 1 |
where and 2 1, N

0 otherwise

c k n
c c c


   


 

2.5. Theorem:    1 1

1 12 1, 2r rM p c k n M p n c kr  
1where 2 1, Nc c c    

Proof:  Let 1 2 1( , , ... , ), 2r in c k i      , be any 
1r M partition of n such that even 

numbers not repeated and smallest parts are odd numbers and c   is a  constant. Subtracting 

12c k  from each part, we get  1 1 1 2 1 12 2 , 2 ,..., 2rn c kr c k c k c k        

Hence  1 1 1 2 1 12 2 , 2 ,..., 2rn c kr c k c k c k       is a 1r M partition of 12n c kr  with even 

parts not repeated and smallest parts are odd. 

Therefore the number of 1r M partitions of n with parts greater than or equal to 12 1c k  is

 1

12 .rM p n c kr  
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Hence    1 1

1 12 1, 2r rM p c k n M p n c kr  
1where 2 1, Nc c c  

 

 

2.6.Theorem:
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2.7. Theorem:  
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