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Abstract.The issue of G-structures founded by Goldman in 1951 and then 

its extension named"G-type structures"was raised in 2012 by Karamzadeh 

and Moslemi. In this paper is expressed the applications of G-type 

structures in spectral spaces, which in for G-type domain R has been 

introduced a new domain saying"pullback of G-type domain"with title of 𝑅 . 

It has been proven, if R is a G-type domain then 𝑆𝑝𝑒𝑐(𝑅 ) homomorphic to 

Spec(R) and in special if R is a saturated G-type domain and 𝑆−1𝑅 ⊂

 𝑅∗ .then Ris coincides to 𝑅 . 
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1. Introduction 

The properties of Hilbert ring and Hilbert Nullstellensatz was the one of important concepts 

raised by Goldman in 1951, this purpose were defined as a new structure by the title of"G-

structures",the main idea was been the applications of these structures in Hilbert rings, these 

concepts as a suitable classified form have come in commutative algebra of Kaplansky[13]. 

After a long time was expressed a new concept of extension of these structures with the title 

of"G-type structures"by Karamzadeh and Moslemi in 2012[14] , where in was pointed the 

suitable and broader of Hilbert Nullstellensatz, on this way G-structures, G-type domains and 

G-type ideals were defined and also some Theorems and Corollaries were presented. 

In this paper is discovered the applying of G-type structures to spectral spaces by instruction 

of the historical concepts. 

 

So firstly, the G-type domains and G-type ideals are defined, then by paper [14] some 

important Theorems are come and finally after the presenting a few Lemmas is proved some 

important Theorems as the following: 

A Noetherian domain R is a G-type domain if and only if it has just countable number of 

nonzero minimal prime ideals. In addition, if R is a G-type domain then Spec(𝑅 ) 

homomorphic to Spec(R). 
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2. Mathematical Notations 

 

Definition 2.1 A commutative ring with unit in which every finitely generated ideal is 

principal is called a Bézout ring, if a Bézoutring has no zero divisors it is called a Bézout 

domain. 

If each finitely generated ideal of an integral domain R isinvertible, then it's called a prüfer 

domain. 

 

Lemma 2.2.[14] Let R be a domain with quotient field K, R is said to be aG-domain if K is a 

finite type R-algebra. 

 

Lemma 2.3. [15]Let 𝑃(𝑅) =  𝑃𝑃∈𝑆𝑝𝑒𝑐 (𝑅)𝑃≠0
 ,(pseudo-radicalof R), R is a G-domain if and 

only if  𝑃 𝑅 ≠ 0. 

In addition Spec(R) is finite set then R is evidently a G-domain. 

 

Definition 2.4. A domain R is called a G-type Domain if its quotient field is countably 

generated as a R-algebra. 

R is a G-type Domain if and only if its zero ideal is thecontraction of a maximal ideal in 

𝑅[𝑥1 .  𝑥2   .  ⋯ . 𝑥𝑛  .⋯ ]. 
A prime ideal I of 𝑅[𝑥1 .  𝑥2   .  ⋯ . 𝑥𝑛  .⋯ ] is G-type if and onlyif its contraction in R and 

𝑅[𝑥1 .  𝑥2   .  ⋯ . 𝑥𝑛 ]for all 𝑛 ≥ 1are G-type. 

 

Theorem 2.5.[14]Let P be a prime ideal in a ring R, then the following areequivalent: 

i) P is a G-type ideal in R. 

ii) There is a countable multiplicative closed set 𝑆 ⊆ 𝑅 such that: P is maximal with respect 

to having the empty intersection with S. 

iii) There are either only a countable number of prime ideals in 𝑅/𝑃 orany uncountable set 

of prime ideals properly containing P, say F,can be written in the form  𝐹 =∪𝑛∈𝛬 𝐹𝑛   , where 

𝛬is a subset of the natural numbers, P is properly contained in∪𝑄∈𝐹𝑛 𝑄for each n and some 

of the 𝐹𝑛  are uncountable. 

 

[2]  Corollary 2.6. Let R be a domain, such that each of its ideals countably generated ,then R 

is a G-type domain if and only if there exists a countably generated R-algebra"T"contains the 

quotient field of R. 

 

Theorem 2.7. [16] If R be a countable domain, then there is a maximal ideal M in 

𝑅[𝑥1 . 𝑥2 .⋯ . 𝑥𝑛  .⋯ ]such that 𝑀 ∪  𝑅 = (0) and each 𝑥𝑛  +  𝑀 is algebraic over 
𝑅+𝑀

𝑀
≅ 𝑅. 

 

Corollary 2.8. [2] Let R is a domain, R is a G-type domain if and only if there exists 

amaximal ideal M in 𝑅[𝑥1 . 𝑥2  .⋯ . 𝑥𝑛  .⋯ ] such that 𝑀 ∪  𝑅 = (0). 

 

Corollary 2.9. [2] Let K be an algebraically closed field and  R = 𝐾[𝑥1 . 𝑥2  .⋯ . 𝑥𝑛  .⋯ ]then 

each maximal ideal M of R is of the form 𝑀 =  (𝑥1 − 𝛼1 . 𝑥2 −  𝛼2 .⋯ ) if and only if K is 

uncountable. 
 
Definition 2.10 Let R be a ring, then: 

i) dim R = the supremum of all lengths of chain of distinctprime ideals in R. 

ii) Let M be an R-module, the Krull dimension of M , which isdenoted by "k-dim M", is 

defined by transfinite recursion asfollows: k-dim M = -1  if M =(0)and for every ordinal 
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number of 𝛼 , we say that  𝑘 − 𝑑𝑖𝑚 𝑀 = 𝛼  if  𝑘 − 𝑑𝑖𝑚 ≮ 𝛼 andgiven any infinite 

descending chain  "𝑀1 ⊇ 𝑀2 ⊇  ⋯" of submodules in M there exists some k such that: 

𝑘 − 𝑑𝑖𝑚 𝑀𝑚/𝑀𝑚+1 < 𝛼  for all  𝑚 ≥  𝑘.  

The Krulldimension of a ring R," k-dimR",is defined to be the Krull dimension of a right R-

module R. 

 

Theorem 2.11. [14]Let R be a Noetherian domain, R is a G-domain if and only if R 

issemilocal and 𝑘 − 𝑑𝑖𝑚 𝑅 ≤ 1. 

 

Remark 2.12. [3] The ring of R is said has the"CPA"property(Countable PrimeAvoidance) if 

𝐴 ⊆  𝑝𝑖
∞
𝑖=1  ( A an idealof R) then  𝐴 ⊆ 𝑃𝑖  .  ∃𝑖 . 

Theorem 2.13. [2] Let R be a complete Noetherian semi-local ring, then a primeideal P of R 

is a G-type ideal if and only if R is a G-type idealif and only if it is a G-ideal. 

 

Theorem 2.14. [14] Let R has countable Noetherian dimension, then R is a finitedirect sum 

of G-type domain if and only if each localization  𝑅𝑃  is a G-type domain or countably 

generated as a 𝜙𝑃 𝑅 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 ,where 𝜙𝑃 : 𝑅 ⟶  𝑅𝑃  is the natural homomorphism. 

 

Definition 2.15. Let R be a ring and X is the set of all prime ideals of R, let 𝐸 ⊆ 𝑅, if we 

define  V(E) as follows: 

𝑉(𝐸) = {𝑃 ∈ 𝑋 ∶ 𝑃 ⊇  𝐸} 

Then : 

i)V(0)=X ,𝑉(1) = ∅. 

ii) If  𝐸𝑖 𝑖∈𝐼 be every family of subsets of R, then: 

V ∪i∈I Ei =∩𝑖∈𝐼 V(Ei) 
iii)𝑉 𝑎 ∩ 𝑏 = 𝑉 𝑎𝑏 =  𝑉 𝑎 ∪ 𝑉(𝑏) ,a and b are arbitrary ideals of R. 

 

Note 2.16.1) The set of V(E) is satisfying all the axioms of closed sets in atopological space, 

which is called the Zariski topology. 

2) A topological space X is called, prime spectrum of R and it'swritten by Spec(R). 

 

Definition 2.17.Let ∀ 𝑓 ∈ 𝑅 .  𝑋𝑓  be the complement of V(f) in the X=spec(R), so the sets 𝑋𝑓  

are open, therefore they form abasis of open sets for the Zariski topology, which are: 

1)  𝑋𝑓 ∩  𝑋𝑔 = 𝑋𝑓𝑔  

2) If 𝑋𝑓 = ∅ then f is nil potent. 

3) 𝑋𝑓 = 𝑋 ⇔  𝑓 is a unit.\\ 

4) 𝑋𝑓 = 𝑋𝑔 ⇔ 𝑉(< 𝑓 >)  = 𝑉(< 𝑔 >)  

5) X is quasi-compact (that is every open covering of X has afinite sub covering). 

6) Furthermore, each 𝑋𝑓 is also quasi-compact. 

7) An open subset of X is quasi-compact if and only if it is afinite union of sets 𝑋𝑓 . 

 

Note 2.18. [3] The sets 𝑋𝑓  are called basic open sets of 𝑋 = 𝑆𝑝𝑒𝑐(𝑅). A topological space X 

is said to be irreducible either 𝑋 ≠ ∅ or every pair of non-empty open sets in X intersect. 

Equivalently if every non-empty open set is dense in X, therefore Spec(R)is irreducible if and 

only if the nil radical of R isa prime ideal. 

 

Remark 2.19. [6] If R be a ring and X=Spec(R) , then the irreducible componentsof X are the 

closed sets V(P),where P is a minimal prime ideal ofR.Let 𝑅 =  𝑅𝑖
𝑛
𝑖=1  be the direct product 
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of rings 𝑅𝑖  , so Spec(R) is the disjoint union of open (and closed) subspaces𝑋𝑖 ,where 𝑋𝑖  is 

canonically homeomorphic with 𝑆𝑝𝑒𝑐(𝑅𝑖). 
Conversely, Let R be any ring ,the following are equivalent: 

i) X= Spec(R) is disconnected. 

ii) 𝑅 ≃ 𝑅1 × 𝑅2 , where any of the rings 𝑅1 .𝑅2aren't the zero ring. 

iii) R contains an idempotent not equal to 0 , 1. 

 

Note 2.20.Let R is a Boolean ring 𝑋 = 𝑆𝑝𝑒𝑐(𝑅),then: 

i) For each 𝑓 ∈ 𝑅  , the set 𝑋𝑓  is both open and closed inX. 

ii) Let  𝑓1 .𝑓2  .⋯ .𝑓𝑛 ∈ 𝑅 , then 𝑋𝑓1
∪⋯∪ 𝑋𝑓𝑛

=  𝑋𝑓  .   ∃ 𝑓 ∈ 𝑅 . 

iii) The sets 𝑋𝑓  are the only subsets of X those are both openand closed. 

iv) X is a compact Hausdorff space. 

 

Definition 2.21.Let R be a domain with quotient field K and P be any prime idealof R and 

𝑆 = 𝑅 − 𝑃 be a "mcs"(Multiplicative Closed Subset) of R and 𝑅 bethe integralclosure of R and 

T  be the ring of fraction of R so: 

i) 𝑅  is a pullback of a ring of fraction T of R suchthat each nonzero prime of T is contained in 

the union of height 1primes. 

ii)𝑅+ : the seminormalization of R. 

iii)R′  : the integral closure of R. 

iv)𝑅∗ : the complete integral closure of R. 

v) Let 𝑃(𝑅) =  𝑃𝑃∈𝑆𝑝𝑒𝑐  𝑅 𝑃≠ 0 
, it's shown thatfor brevity by P, so it's defined as following: 

 1)   𝑃+: 𝑠𝑒𝑚𝑖𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃. 

2) 𝑃′ : 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑜𝑓 𝑃. 

3)   𝑃∗: 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑜𝑓 𝑃. 

vi)X(R): denote the set of all valuation overrings of R. 

𝑋1(𝑅): The set of all one-dimensional valuation overringsof R. 

vii)𝑚𝑉 :denote the maximal ideal of any given valuation ringV. 

 

 

Theorem 2.22. [6] Let R be a G-domain. Then, the following are equivalent: 

1)   𝑥 ∈ 𝐾 𝑥2 ∈ 𝑃 . 𝑥3 ∈ 𝑃} ⊂ 𝑅 . 
2) 𝑃 = 𝑃+. 
3) 𝑃 = 𝑃′ . 
4) 𝑃 =  𝑃∗. 
5) ∩  𝑚𝑉 𝑉 ∈ 𝑋1 𝑅  ⊂ 𝑅. 
 

The G-domain R is called saturated if it satisfies in each of equivalentconditions of 

Theorem"2.22". 

 

Corollary 2.23. [7] i) If R is a seminormal G-domain, then R is saturated if and only 

if𝑃(𝑅) =  𝑃(𝑅′) =  𝑃(𝑅∗). 

ii) For a saturated G-domain R, 𝑃(𝑅) =  𝑃(𝑆−1𝑅) if and only if𝑆−1𝑅 ⊂ 𝑅∗. 

iii) If R is a saturated G-domain, then 𝑅∗ = ∩ { 𝑉|𝑉 ∈ 𝑋1(𝑅)} and is completely 

integrally closed. 

 

Lemma 2.24. [6] A pullback diagram of commutative rings 
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𝐴 ×𝑇 𝑅
𝜋1
  𝐴

𝜋2 ↓ 𝜙2 ↓

𝑅
𝜙1
  𝑇

 

 

where ϕ1 is surjective, naturally gives rise to acommutative diagram 

 
𝑆𝑝𝑒𝑐(𝐴 ×𝑇 𝑅) ⟵      𝜇1      ⟵             𝑆𝑝𝑒𝑐(𝐴)

𝜇2 ↑ 𝑆𝑝𝑒𝑐(𝜙2) ↑
𝑆𝑝𝑒𝑐(𝑅) ⟵𝑆𝑝𝑒𝑐(𝜙1) ⟵            𝑆𝑝𝑒𝑐(𝑇)

 

 

in such a way that 𝑆𝑝𝑒𝑐(𝐴 ×𝑇 𝑅) is identified with thetopological space 

𝑆𝑝𝑒𝑐 𝐴 ∪𝑆𝑝𝑒𝑐  𝑇 𝑆𝑝𝑒𝑐(𝑅) via the maps𝜇1 𝑎𝑛𝑑 𝜇2. Moreover, 𝜋1 is a surjective map and𝜇1 

gives a closed embedding of 𝑆𝑝𝑒𝑐(𝐴) into𝑆𝑝𝑒𝑐(𝐴 ×𝑇 𝑅). 

 

3. Some Important Properties of G-type Domains 

 

Definition 3.1.The G-type domain R is called essential (i.e.,a G-type domain ofessential type) 

if each nonzero prime ideal of R is contained inthe union of the height 1 prime ideals of R. 

Each R which is G-type domain with one dimensional such that itsmotivation 𝑆−1𝑅 is 

essential, so that  𝑅  is apullback of an essential G-type domain. 

 

Definition 3.2. For each commutative ring R, let 𝑆𝑝𝑒𝑐𝑖(𝐴) denote the subspaceof 𝑆𝑝𝑒𝑐(𝑅) 

consisting of the height i primes.In particular if  𝑆𝑝𝑒𝑐1 𝑅 =  { 𝑃1 .𝑃2  .  ⋯ .𝑃𝑛}, then:  

𝑆−1𝑅 = ∩ 𝑅𝑝𝑖 . 

 

Lemma 3.3.Let R be a G-type domain, then: 

i) Every overring of R is a G-type domain, in particular 𝑆−1𝑅is a G-type domain. 

ii)𝑃(𝑆−1𝑅)  =  𝑆−1(𝑃(𝑅)) 
iii) 𝑆−1 𝑅 ⊂ ∩ {𝑅𝑄|𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅)} 
Proof. i) It is concluded immediately from definition of a G-typedomain. 

ii) Since we have 𝑃 𝑅 = ∩ {𝑄|𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅) } and also 

𝑃 𝑆−1𝑅 = ∩ {𝑆−1𝑄|𝑆−1𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑆−1𝑅)} 
=∩ { S−1Q|Q ∈ Spec1(R) . Q ∩ S = ∅} 

 

But 𝑆 = 𝑅 −∪ {𝑄|𝑄 ∈ 𝑆𝑝𝑒𝑐1 𝑅 } implies that  𝑄 ∩  𝑆 = ∅ is true for every 𝑄 ∈
 𝑆𝑝𝑒𝑐1 𝑅  .thus: 

𝑃 𝑆−1𝑅 = ∩  𝑆−1𝑄 𝑄 ∈  𝑆𝑝𝑒𝑐1(𝑅)}  
 

⊃  𝑆−1(∩ {𝑄|𝑄 ∈  𝑆𝑝𝑒𝑐1(𝑅)}) = 𝑆−1(𝑃(𝑅)). 

 

To verify thereverse containment, let: 

𝑥 =
𝑥1

𝑥2
∈ 𝑃 𝑆−1𝑅 ⊂ 𝑆−1 𝑅  .   𝑤𝑒𝑟𝑒   𝑥1 ∈ 𝑅  𝑎𝑛𝑑  𝑥2 ∈ 𝑆 

Since x ∈∩ {S−1Q|Q ∈ Spec1(R)}, it follows that, for every 𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅) there exists𝑠𝑄 ∈

𝑆 suchthat 𝑠𝑄𝑥 ∈ 𝑄. Then since 𝑠𝑄𝑥1 = 𝑠𝑄𝑥2𝑥 ∈ 𝑄, so we have𝑥1 ∈ 𝑄 for every 𝑄 ∈

𝑆𝑝𝑒𝑐1(𝑅) andtherefore,𝑥 ∈ 𝑆−1(∩ {𝑄|𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅)}) as claimed.  

iii) Since  𝑆 ⊂ 𝑅/𝑄 for every 𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅) thereforethe proof is completed.                       □ 

 

Lemma 3.4.Let R be a G-type domain, then:  
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i) Every valuation overring of R other than K is contained in amaximal valuation overring of 

R distinct from K. 

ii) Every  0 ≠ 𝑄 ∈ 𝑆𝑝𝑒𝑐(𝑅) contains a minimal nonzeroprime, therefore:  

𝑃 𝑅 = ∩ {𝑃|𝑃 ∈ 𝑆𝑝𝑒𝑐1(𝑅)} 
iii)                      𝑃 𝑅 = ∩ { (𝑚𝑉 ∩ 𝑅)|𝑉 ∈ 𝑋1(𝑅)} 

 

Proof.i) Since each overring of an G-type domain is alsoan G-type domain and each union of 

G-type domains is an G-typedomain, therefore by Zorn's lemma, let {𝑅𝛼} be achain of 

valuation rings in  𝑋(𝑅) − {𝐾}, then  𝑊 = ∪ 𝑅𝛼  is necessarily a valuation overring of R.Now 

let 0 ≠ 𝑥 ∈ 𝑃(𝑅) ,since x lies in every nonzero prime ideal ofR, then 1/𝑥 ∉ 𝑅 for every 

nontrivial  𝑅 ≠ 𝑋(𝑅)therefore1/𝑥 ∉ 𝑊 and hence 𝑊 ≠ 𝐾. 

ii)By Zorn's lemma, if { 𝑃𝛼} be a chain ofprime ideals in 𝑆𝑝𝑒𝑐(𝑅) − {0},then 𝑄 =∩ 𝑃𝛼  alsois 

a prime ideal, since 0 ≠ 𝑃 𝑅 ⊂ 𝑃𝛼  .  ∀𝛼 .Therefore 𝑃 𝑅 ⊂ 𝑄 and hence 𝑄 ≠ 0. 

iii) Let 𝑃 ∈ 𝑆𝑝𝑒𝑐1(𝑅)be an arbitrary prime ideal, thereexists 𝑉 ∈ 𝑋(𝑅) such that 𝑉 ⊂ 𝑊. 

Thus 𝑚𝑉 ∩ 𝑅 is anonzero prime inside P, whence 𝑚𝑊 ∩ 𝑅 = 𝑃.                                            □ 

 

Corollary 3.5.For every G-type domain R we have:  

𝑆−1𝑅

𝑃 𝑆−1𝑅 
≃  𝑆−1(𝑅 ) 

 

Definition 3.6. Let R be any ring. We denote by ZD(R) (respectively, NZD(R) the setof all 

zero divisors (all nonzero divisors) of R.the totalquotient ring of R,denoted Tot(R),is:                       

{𝑟/𝑠|𝑟 ∈ 𝑅    𝑎𝑛𝑑    𝑠 ∈ 𝑁𝑍𝐷(𝑅)} . 
 

Lemma 3.7. Let R be an G-type domain with pseudo-radical P, and let Y be theunion of all 

minimal primes of  𝑅 = 𝑅/𝑃.Then: 

i)  𝑌 = 𝑍𝐷(𝑅 ) 
ii)  𝑇𝑜𝑡 𝑅  =  𝑆−1 𝑅  ≃ (𝑆−1𝑅)/(𝑃(𝑆−1𝑅)). 

 

Proof.i) That  𝑌 ⊂ 𝑍𝐷(𝑅 ) is well known. For the reverse, note that: 

𝑃 = ∩ {𝑄|𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅)}.  
Thus, if  𝑥 𝑦 = 0 and𝑦 ≠ 0, then there exists 𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅) such that𝑦 ∉ 𝑄. It follows that 

𝑥 ∈ 𝑄 and so𝑥 ∈ 𝑌. 

ii) Let 𝑥 ∈ 𝑅 . By (i)  𝑥 ∈ 𝑁𝑍𝐷(𝑅) if andonly if 𝑥 ≠∪  𝑄 𝑄 ∈ 𝑆𝑝𝑒𝑐1 𝑅   𝑎𝑛𝑑if and 

only if 𝑥 ∈ 𝑆. Thus 𝑇𝑜𝑡(𝑅 ) = 𝑆−1(𝑅 ). Therefore: 

𝑆−1 𝑅  ≃ (𝑆−1𝑅)/(𝑃(𝑆−1𝑅))                                                       □ 

 

Note 3.8.By the proof of last lemma a G-type domain R has essential type ifand only if  

𝑅 = 𝑇𝑜𝑡(𝑅 ).Thus every one dimensionalG-type domain has essential type. Since it is Known 

that all Noetherian and all Krull G-type domain satisfy  𝑑𝑖𝑚 𝑅 ≤ 1,it follows that all 

Noetherian and Krull G-type domains haveessential type.In addition each valuation ring V of 

finite dimension  𝑛 ≥ 2 is a G-type domain of nonessential type (indeed, the 

pseudo-radical of V is the unique height 1 prime P of V and so 𝑆−1𝑉 = 𝑉𝑃 ≠ 𝑉). 

 

Theorem 3.9. Let R be an integrally closed G-type domain. then: 

 i) 𝑅∗ =∩ {𝑉|𝑉 ∈ 𝑋1(𝑅)} 

 ii) 𝑃 𝑅 =  𝑃 𝑅∗ =∩ {𝑚𝑉|𝑉 ∈ 𝑋1(𝑅)} 

 

Proof. i) This is a similar result due to Gillmer and Heinzer[11]. 
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ii) By lemma "3.4"  iii  𝑃 𝑅∗ =∩  {( 𝑚𝑉 ∩ 𝑅∗)|𝑉 ∈ 𝑋1(𝑅∗)} and by the part of (i) 𝑋1(𝑅) =
𝑋1(𝑅∗), therefore: 

 P R∗ =  ∩  mV  V ∈ X1 R   ∩ R∗ .  
On the other hand, applying Lemma "3.4"(iii) to R yields: 

𝑃 𝑅 =∩   𝑚𝑉 ∩ 𝑅  𝑉 ∈ 𝑋1 𝑅  =  ∩  𝑚𝑉 𝑉 ∈ 𝑋1 𝑅   ∩ 𝑅. 
An application of Lemma "3.4"(i) makesclear that: 

∩  𝑚𝑉 𝑉 ∈ 𝑋1 𝑅  =∩  𝑚𝑉 𝑉 ∈ 𝑋 𝑅  ⊂∩ {𝑉|𝑉 ∈ 𝑋(𝑅)} = 𝑅 

(Since R is integrally closed).  

The assertions now followeasily.                                                                                          □ 

 

Lemma 3.10. Let a ring R have dcc on finite intersections of prime ideals (Rhas "dcc" 

(Descending Chain Conditions) on prime ideals, R/P has only a countable number ofnonzero 

minimal primes for each prime P), then each prime ideal Pof R is a G-ideal (G-type ideal). 

 

Proof. At first we must show that a domain with "dcc" onfinite intersections of prime ideals 

is G-domain. To see this,let A be minimal among the ideals which are finite intersections 

of nonzero prime ideals, (i.e.,  0 ≠  𝐴 is in fact theintersection of all the nonzero prime 

ideals and we are through.For the other part, we must show that each domain R with dcc on 

prime ideals and having only a countable number of nonzero minimalprime ideals is G-type 

ideal. To see this , let 𝑃1, 𝑃2, . . . ,𝑃𝑛 , . . . be the nonzero minimal prime ideals of R andnote that 

each nonzero prime ideal contains one of 𝑃𝑖
′𝑠. Nowfor each n, take 0 ≠  𝑎𝑛 ∈ 𝑃𝑛 , and let S be 

the "mcs" setgenerated by {𝑎1,𝑎2, . . . , 𝑎𝑛 , . . . }. It is now that 𝑆 ∩ 𝑃 ≠ (0)  for each nonzero 

prime ideal P and this completes theproof.                                                                               □ 

 

Theorem 3.11. Let R be a Noetherian domain, then R is a G-type domain if andonly if R has 

only a countable number of nonzero minimal primeideals 

 

Proof. If R has only a countable number of nonzerominimal prime ideals, then we are 

through by lemma of"3.9". 

Conversely, let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛 , . . . } be a countable "mcs"set such that 𝑆 ∩ 𝑃 ≠ ∅ for all 

nonzero primeideals P. Let us assume that the set of nonzero minimal primeideals is 

uncountable and drive a contradiction. Now there mustexist an element 𝑠 ∈ 𝑆 such that s 

belongs to an uncountablenumber of nonzero minimal prime ideals. Clearly each of these 

prime ideals are minimal over (s) and it goes without saying that(s) is not a prime ideal. Now 

considering the Noetherian ring𝑅/(𝑠) which has an infinite number of minimal prime ideals, 

itgives us the desired contradiction.                       □ 

 

Corollary 3.12.Let 𝑘 − 𝑑𝑖𝑚𝑅 =  𝑛, then R is a G-type domain if and only if thenumber of 

nonzero minimal prime ideals in R are countable. 

 

Theorem 3.13. Let R be a Noetherian domain with the CPA property, then R is aG-type 

domain if and only if Spec(R) is countable and each nonzeroprime ideal is maximal. 

(i.e. ,𝑘 − 𝑑𝑖𝑚 𝑅 ≤ 1 ) 

 

Proof. If Spec(R) is countable and 𝑘 − 𝑑𝑖𝑚 𝑅 ≤ 1, thenby Theorem"3.11"R is a G-type 

domain. 

Conversely, we claim that every prime ideal has the rank less or equal one and by theorem 

of"3.11", the proof is complete. So, let 𝑃 ∈ 𝑆𝑝𝑒𝑐(𝑅) is a primeideal with 𝑟𝑎𝑛𝑘 𝑃 ≥ 2 and 

derive a contradiction.  
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It is well-known that the rank of every prime ideal in Noetherian ringsis finite (i.e., we may 

assume that rank (P)=n). Hence there existsa chain of prime ideals. 

𝑃 = 𝑃𝑛 ⊃ 𝑃𝑛  −1 ⊃. . .⊃ 𝑃2 ⊃ 𝑃1 ⊃  0 ,   𝑜𝑓 𝑙𝑒𝑛𝑔𝑡"𝑛" , (𝑖. 𝑒. , 𝑟𝑎𝑛𝑘(𝑃2) = 2) 
In view of theorem of "9" there exist only countable numbers of primeideals of rank less than 

or equal to one. Thus we may assume that𝑃1 = 𝑄1, 𝑄2, . . . ,𝑄𝑛 , .. are the only primes between 

(0) and𝑃2. But by the "CPA" property we can have 𝑃2 ⊆ ∪𝑖=1
∞ 𝑄𝑖 ,so there exists 𝑥 ∈ 𝑃2 and 

then bythe "Principal Ideal Theorem" we have 𝑟𝑎𝑛𝑘 𝑃2 ≤ 1 whichis the desired 

contraction.□ 

 

 

Theorem 3.14.i) If R is a G-type domain, then 𝑆𝑝𝑒𝑐(𝑅 ) ishomeomorphic to Spec(R) (via the 

map induced by the naturalinclusion of Rin 𝑅 ). 

ii) If R is a saturated (e.g.,seminormal) G-type domain and 𝑆−1𝑅⊂  𝑅∗, then 𝑅 = 𝑅 is a 

pullback type. 

 

Proof.This Proof is similar to theorem of [7,thm.2.15] 

i) By definition of G-type domain, since each overringof a G-type domain is also G-type 

domain and each pullback of aG-type domain is also an overring of it, so it is obviously a 

G-type domain. Now by pullback diagram of canonical homomorphism's:  

 

𝑅 
𝜋1
  𝑅 

𝜋2 ↓ 𝜙2 ↓

𝑆−1𝑅
𝜙1
  𝑇

 

We obtain a commutative diagram 

 

 

𝑆𝑝𝑒𝑐 𝑅  ⟵ 𝜇1 ⟵       𝑆𝑝𝑒𝑐 𝑅  

𝜇2 ↑ 𝛼2 ↑

𝑆𝑝𝑒𝑐 𝑆−1𝑅 ⟵ 𝛼1 ⟵     𝑆𝑝𝑒𝑐 𝑇 

 

 

 

which is 𝑆𝑝𝑒𝑐(𝑅 ) is identified with 𝑆𝑝𝑒𝑐 𝑅  ∪𝑆𝑝𝑒𝑐  𝑇 𝑆𝑝𝑒𝑐(𝑆−1𝑅) and 𝜇1 is a 

closedembedding. The map 𝛼1,being induced by the surjection𝜙1,is just the standard 

correspondence between prime idealsin  𝑇 =  (𝑆−1𝑅)/(𝑃(𝑆−1𝑅)) and prime ideals in 𝑆−1𝑅 

thatcontain  𝑃(𝑆−1𝑅). Since each nonzero prime contains thepseudo-radical, the image of 𝛼1 

is 𝑆𝑝𝑒𝑐 𝑆−1𝑅 \{0}. But every 𝛼1(𝑃) in thisimage is identified with the corresponding 𝛼2(𝑃) 

in𝑆𝑝𝑒𝑐(𝑅 ). 
Thus, up to homeomorphism,𝑆𝑝𝑒𝑐 𝑅  ∪𝑆𝑝𝑒𝑐  𝑇 𝑆𝑝𝑒𝑐(𝑆−1𝑅) =  𝑆𝑝𝑒𝑐(𝑅 ∪ {0} 

(the second union being disjoint).  

Moreover, since 𝜇1is a closed embedding, Spec(𝑅 ) is a closed set in 𝑆𝑝𝑒𝑐 𝑅  ∪ {0} and the 

proper closed sets of𝑆𝑝𝑒𝑐 𝑅  ∪ {0} are in 1-1 correspondence with all closedsets of Spec(R). 

Thus, we have a bijection𝑆𝑝𝑒𝑐 𝑅  ∪𝑆𝑝𝑒𝑐  𝑇 𝑆𝑝𝑒𝑐 𝑆
−1𝑅 ⟶ 𝑆𝑝𝑒𝑐(𝑅) 

which is both continuous and closed, therefore it is ahomeomorphism. 

ii) By the universal property of pullback diagrams, R is alwaysidentified with a subring of  𝑅  

via the injectiongiven by ϕ(r) = (𝑟  , r/1).If R is saturated and 𝑆−1𝑅 ⊂ 𝑅∗, we claim that 𝜙 

must be surjectiveas well. To see this, let  𝑟 ,
𝑎

𝑡
 ∈ 𝑅 ×𝑇 𝑆

−1𝑅 be arbitrary. By definition, 

𝑟 =  (𝑎/𝑡) in T, whence 𝑏 = 𝑟 −  
𝑎

𝑡
∈ 𝑃(𝑆−1𝑅). Therefore 𝑃(𝑆−1𝑅) =  𝑆−1(𝑃(𝑅)) = 𝑃(𝑅). 
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Thus,  𝑏 ∈ 𝑃 𝑅 ⊂ 𝑅. So 
𝑎

𝑡
=  𝑟 − 𝑏 ∈ 𝑅, 𝑎𝑛𝑑  𝑟  , 

𝑎

𝑡
 =   

𝑎

𝑡
  , 

𝑎

𝑡
 = 𝜙  

𝑎

𝑡
 ∈ 𝜙(𝑅).       □ 

 

Corollary 3.15.If R is a Prüfer G-type domain, then 𝑆−1𝑅 ⊂ 𝑅∗,R has pullback type, and 

𝑅∗ = ∩ { 𝑅𝑃|𝑃 ∈ 𝑆𝑝𝑒𝑐1(𝑅)}has essential type. If in addition, R is a Bézout G-typedomain, 

then 𝑆−1𝑅 =  𝑅∗. 
 

Proof. Since each Prüfer G-type domain is necessarilya GD-type domain (R as a G-type 

domain is called a going-downG-type domain if for every overring T of R, the inclusion map 

𝑅 ⟶   𝑇 satisfies the going-down property), hence𝑆−1𝑅 ⊂ 𝑅∗ and obviously R has pullback 

type andfurthermore for each Prüfer domain ( specially PrüferG-type domain) we have 

𝑅∗ = ∩ { 𝑅𝑃|𝑃 ∈ 𝑆𝑝𝑒𝑐1(𝑅)} as a essential type . 

Now if R is a Bézout G-type domain, since each overring of Ris a ring of fraction of R. So if 

𝑅∗ = 𝑇−1𝑅 for somesaturated multiplicatively closed set T, then: 

𝑆−1𝑅 ⊂ 𝑇−1𝑅 =  𝑅∗ = ∩ {𝑅𝑃|𝑃 ∈ 𝑆𝑝𝑒𝑐1(𝑅)}.  
Therefore, 

𝑇 ⊃ 𝑆 𝑎𝑛𝑑 𝑅𝑃 ⊃ 𝑇−1𝑅 ,∀𝑃 ∈ 𝑆𝑝𝑒𝑐(𝑅). It follows that 𝑇 ∩ 𝑃 = 0 ,∀ 𝑃 ∈ 𝑆𝑝𝑒𝑐1 𝑅 ,and so 

𝑆 ⊃ 𝑇.Thus𝑆−1𝑅 = 𝑇−1𝑅 = 𝑅∗.  □ 

 

Remark 3.16. If R is a G-type domain such that  Spec(R) is a countable set,then: 

𝑆−1𝑅 = ∩ {𝑅𝑃|𝑃 ∈ 𝑆𝑝𝑒𝑐(𝑅)} is a countable set ofone-dimensional quasi local rings.The 

condition that 𝑆𝑝𝑒𝑐1(𝑅)be countable is characterized by 𝑆−1𝑅 being semiquasilocal 

ofdimension at most 1.  

Therefore it is obvious that a G-type domain R satisfies Spec(R) is countable and R has 

essential type if and only ifevery nonzero principal ideal of R is countably intersection of 

(height 1) primary ideals. 

 

Example 3.17.We exhibit a one-dimensional quasi local domain R such that 𝑅∗is a one-

dimensional (therefore, essential) Prüfer G-typedomain, but not semi quasi local. Let V be a 

one-dimensionalvaluation domain with quotient field K such that there exists analgebraic 

field extension L of K having infinitely many valuation subrings extending V. (for instance, 

take 𝑉 =  𝑍𝑃𝑍  and L thefield of algebraic numbers.) Let T be the integral closure of V inL. 

Then T is one-dimensional and Prüfer, but notsemiquasilocal. 

 

Corollary 3.18.Let 𝑅1,𝑅2 ,… ,𝑅𝑛 ,… befinite-dimensional conducive domains which are not 

fields, with𝑄𝑖  being the (unique) height 1 prime of 𝑅𝑖 . Let𝑅 =∩𝑖=1
∞ 𝑅𝑖  and pick𝑞𝑖 = 𝑄𝑖 ∩

 𝑅.  𝐿𝑒𝑡   𝑉𝑖  , 𝑀𝑖  be the ( unique) one dimensional valuation overring of 𝑅𝑖 and let 𝑏𝑖 =
 𝑅𝑖 :𝑉𝑖 ∩  𝑀𝑖( which is nonzero by theconducive property). Let  𝑊 = ∩𝑖=1

∞ 𝑉𝑖  𝑎𝑛𝑑  
𝑚𝑖 = 𝑀𝑖 ∩𝑊. Assume further that R and each of the 𝑅𝑖 ′𝑠 have acommon quotient field K 

and that 𝑞𝑖 ⊈  𝑞𝑗  whenever𝑖 ≠ 𝑗. then: 

1) R is a G-type domain and 𝑅∗ = 𝑊, a one-dimensionalsemi quasi local Bézout domain. 

2) 𝑆𝑝𝑒𝑐1(𝑅) =  {𝑞1,𝑞2, . . . , 𝑞𝑛 , . . . }.  
3) 𝑆−1𝑅 = ∩𝑖=1

∞ 𝑅𝑞 𝑖 ⊂  𝑅∗.  

4) If each 𝑅𝑖  is a one-dimensional, then 𝑅 =  𝑆−1𝑅 isone-dimensional and semi quasi local. 

5) If each 𝑅𝑖  is saturated, then R is saturated and 𝑅 = 𝑅 ≃  𝑅 ×𝑇∗ 𝑅
∗ 𝑤𝑒𝑟𝑒 𝑇∗is the total 

quotient ring of 𝑅∗/𝑃∗. 
 

 



 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

10 | P a g e 
 

Corollary 3.19.𝑆𝑝𝑒𝑐1(𝑅) is finite for every G-type domain R such that R' isa strong G-type 

domain. 

 

Example 3.20. Spec(R) is finite and 𝑑𝑖𝑚 𝑅 ≤ 1 if (and only if) R is acompactly packed G-

type domain of essential type. (R is compactlypacked if, for any subset Ω of Spec(R) and any 

ideal I ofR, the condition  𝐼 ⊂∪ {𝑃|𝑃 ∈ Ω} implies𝐼 ⊂ 𝑃 , ∃ P ∈ Ω . In a compactly 

packedring, every prime ideal P is the radical of a principal ideal. By essentiality, 𝑑𝑖𝑚 𝑅 ≤
1.Thus, for every P,𝑆𝑝𝑒𝑐 𝑅 \𝑃 is a quasi-compact Zariski- open set, andtherefore it is closed 

when Spec(R) is discrete. Since the patchtopology is compact, Spec(R) must be finite. 
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