

STRUCTURE OF G-TYPE SPACES

A.R. Alizadeh M.

Department of Mathematics, Faculty of Science,

Yasouj University, Yasouj, Iran

Abstract.*The issue of G-structures founded by Goldman in 1951 and then its extension named*"*G-type structures*"*was raised in 2012 by Karamzadeh and Moslemi. In this paper is expressed the applications of G-type structures in spectral spaces, which in for G-type domain R has been introduced a new domain saying*"*pullback of G-type domain*"*with title of* \tilde{R} . *It has been proven, if R is a G-type domain then* $Spec(\tilde{R})$ *homomorphic to* Spec(R) *and in special if R is a saturated G-type domain and* $S^{-1}R \subset R^*$.then Ris coincides to \tilde{R} .

2010 Mathematics Subject Classification: Primary 03E72, 08A72, Secondary 03E75, 20N25

Key words and Phrases. G-Domain, Fuzzy G-subdomain, Fuzzy Subset, Fuzzy Subdomain

1. Introduction

The properties of Hilbert ring and Hilbert Nullstellensatz was the one of important concepts raised by Goldman in 1951, this purpose were defined as a new structure by the title of "*G*-structures", the main idea was been the applications of these structures in Hilbert rings, these concepts as a suitable classified form have come in commutative algebra of Kaplansky[13]. After a long time was expressed a new concept of extension of these structures with the title of "*G*-type structures" by Karamzadeh and Moslemi in 2012[14], where in was pointed the suitable and broader of Hilbert Nullstellensatz, on this way G-structures, G-type domains and G-type ideals were defined and also some Theorems and Corollaries were presented.

In this paper is discovered the applying of G-type structures to spectral spaces by instruction of the historical concepts.

So firstly, the G-type domains and G-type ideals are defined, then by paper [14] some important Theorems are come and finally after the presenting a few Lemmas is proved some important Theorems as the following:

A Noetherian domain R is a G-type domain if and only if it has just countable number of nonzero minimal prime ideals. In addition, if R is a G-type domain then $Spec(\tilde{R})$ homomorphic to Spec(R).

2. Mathematical Notations

Definition 2.1 A commutative ring with unit in which every finitely generated ideal is principal is called a Bézout ring, if a Bézoutring has no zero divisors it is called a Bézout domain.

If each finitely generated ideal of an integral domain R is invertible, then it's called a prüfer domain.

Lemma 2.2.[14] Let R be a domain with quotient field K, R is said to be aG-domain if K is a finite type R-algebra.

Lemma 2.3. [15]Let $P(R) = \bigcap_{P \in Spec(R)_{P \neq 0}} P$, (pseudo-radical of R), R is a G-domain if and only if $P(R) \neq 0$. In addition Spec(R) is finite set then R is evidently a G-domain.

Definition 2.4. A domain R is called a G-type Domain if its quotient field is countably generated as a R-algebra.

R is a G-type Domain if and only if its zero ideal is the contraction of a maximal ideal in $R[x_1 \, . \, x_2 \, . \, \cdots \, . x_n \, \cdots]$.

A prime ideal *I* of $R[x_1 \, x_2 \, \dots \, x_n \, \dots]$ is G-type if and only if its contraction in R and $R[x_1 \, x_2 \, \dots \, x_n]$ for all $n \ge 1$ are G-type.

Theorem 2.5.[14]*Let P be a prime ideal in a ring R, then the following areequivalent: i) P is a G-type ideal in R.*

ii) There is a countable multiplicative closed set $S \subseteq R$ such that: P is maximal with respect to having the empty intersection with S.

iii) There are either only a countable number of prime ideals in R/P orany uncountable set of prime ideals properly containing P, say F, can be written in the form $F = \bigcup_{n \in \Lambda} F_n$, where Λ is a subset of the natural numbers, P is properly contained in $\bigcup_{Q \in F_n} Q$ for each n and some of the F_n are uncountable.

[2] **Corollary 2.6.** Let *R* be a domain, such that each of its ideals countably generated, then *R* is a *G*-type domain if and only if there exists a countably generated *R*-algebra"*T*"contains the quotient field of *R*.

Theorem 2.7. [16] If R be a countable domain, then there is a maximal ideal M in $R[x_1 . x_2 x_n ...]$ such that $M \cup R = (0)$ and each $x_n + M$ is algebraic over $\frac{R+M}{M} \cong R$.

Corollary 2.8. [2] Let R is a domain, R is a G-type domain if and only if there exists amaximal ideal M in $R[x_1 . x_2 x_n ...]$ such that $M \cup R = (0)$.

Corollary 2.9. [2] Let K be an algebraically closed field and $R = K[x_1 . x_2 x_n]$ then each maximal ideal M of R is of the form $M = (x_1 - \alpha_1 . x_2 - \alpha_2)$ if and only if K is uncountable.

Definition 2.10 Let *R* be a ring, then:

i) $\dim R$ = the supremum of all lengths of chain of distinctprime ideals in R. ii) Let M be an R-module, the Krull dimension of M, which is denoted by "k-dim M", is defined by transfinite recursion as follows: k-dim M = -1 if M = (0) and for every ordinal

number of α , we say that $k - \dim M = \alpha$ if $k - \dim \alpha$ and given any infinite descending chain $M_1 \supseteq M_2 \supseteq \cdots$ of submodules in M there exists some k such that: $k - \dim M_m / M_{m+1} < \alpha$ for all $m \ge k$.

The Krulldimension of a ring R, "*k*-dimR", is defined to be the Krull dimension of a right *R*-module *R*.

Theorem 2.11. [14]*Let* R *be a Noetherian domain,* R *is a G-domain if and only if* R *issemilocal and* $k - \dim R \le 1$.

Remark 2.12. [3] The ring of *R* is said has the "*CPA*" property (*Countable PrimeAvoidance*) if $A \subseteq \bigcup_{i=1}^{\infty} p_i$ (A an ideal of R) then $A \subseteq P_i$. $\exists i$.

Theorem 2.13. [2] Let *R* be a complete Noetherian semi-local ring, then a primeideal *P* of *R* is a *G*-type ideal if and only if *R* is a *G*-type idealif and only if it is a *G*-ideal.

Theorem 2.14. [14] Let R has countable Noetherian dimension, then R is a finitedirect sum of G-type domain if and only if each localization R_P is a G-type domain or countably generated as a $\phi_P(R)$ – algebra, where $\phi_P: R \rightarrow R_P$ is the natural homomorphism.

Definition 2.15. Let *R* be a ring and *X* is the set of all prime ideals of *R*, let $E \subseteq R$, if we define V(E) as follows:

$$V(E) = \{ P \in X : P \supseteq E \}$$

Then : $i)V(0)=X, V(1) = \emptyset.$ ii) If $(E_i)_{i\in I}$ be every family of subsets of *R*, then: $V(\bigcup_{i\in I} E_i) = \bigcap_{i\in I} V(E_i)$ $iii)V(a \cap b) = V(ab) = V(a) \cup V(b)$, *a* and *b* are arbitrary ideals of *R*.

Note 2.16.1) The set of V(E) is satisfying all the axioms of closed sets in atopological space, which is called the Zariski topology.

2) A topological space X is called, prime spectrum of R and it's written by Spec(R).

Definition 2.17.Let $\forall f \in R$. X_f be the complement of V(f) in the X=spec(R), so the sets X_f are open, therefore they form abasis of open sets for the Zariski topology, which are:

1) $X_f \cap X_g = X_{fg}$ 2) If X = 0 then figuril pot

2) If $X_f = \emptyset$ then *f* is nil potent.

3) $X_f = X \Leftrightarrow f$ is a unit.

4) $X_f = X_g \Leftrightarrow V(< f >) = V(< g >)$

5) X is quasi-compact (that is every open covering of X has a finite sub covering).

6) Furthermore, each X_f is also quasi-compact.

7) An open subset of X is quasi-compact if and only if it is afinite union of sets X_f .

Note 2.18. [3] The sets X_f are called basic open sets of X = Spec(R). A topological space X is said to be irreducible either $X \neq \emptyset$ or every pair of non-empty open sets in X intersect. Equivalently if every non-empty open set is dense in X, therefore Spec(R) is irreducible if and only if the nil radical of R is a prime ideal.

Remark 2.19. [6] If *R* be a ring and X=Spec(R), then the irreducible components of *X* are the closed sets *V*(*P*), where P is a minimal prime ideal of *R*.Let $R = \prod_{i=1}^{n} R_i$ be the direct product

of rings R_i , so Spec(R) is the disjoint union of open (and closed) subspaces X_i , where X_i is canonically homeomorphic with $Spec(R_i)$.

Conversely, Let R be any ring ,the following are equivalent: i) X = Spec(R) is disconnected.

ii) $R \simeq R_1 \times R_2$, where any of the rings $R_1 \cdot R_2$ aren't the zero ring.

iii) *R* contains an idempotent not equal to 0, 1.

Note 2.20.Let *R* is a Boolean ring X = Spec(R), then:

i) For each $f \in R$, the set X_f is both open and closed in *X*.

ii) Let $\{f_1, f_2, \dots, f_n\} \in R$, then $X_{f_1} \cup \dots \cup X_{f_n} = X_f$. $\exists f \in R$.

iii) The sets X_f are the only subsets of X those are both openand closed.

iv) X is a compact Hausdorff space.

Definition 2.21.Let *R* be a domain with quotient field *K* and *P* be any prime idealof *R* and S = R - P be a *"mcs"(Multiplicative Closed Subset)* of *R* and \overline{R} be the integral closure of *R* and *T* be the ring of fraction of *R* so:

i) \tilde{R} is a pullback of a ring of fraction T of R such that each nonzero prime of T is contained in the union of height *I* primes.

ii) R^+ : the seminormalization of R.

iii)R['] : the integral closure of *R*.

iv) R^* : the complete integral closure of R.

v) Let $P(R) = \bigcap_{P \in Spec(R)_{P \neq (0)}} P$, it's shown that for brevity by P, so it's defined as following:

1) P^+ : seminormalization of P.

2) P': integral closure of P.

3) P^* : complete integral closure of P.

vi)X(R): denote the set of all valuation overrings of R.

 $X^1(R)$: The set of all one-dimensional valuation overrings of R.

vii) m_V : denote the maximal ideal of any given valuation ringV.

Theorem 2.22. [6] Let *R* be a *G*-domain. Then, the following are equivalent: 1) { $x \in K | x^2 \in P . x^3 \in P$ } $\subset R$. 2) $P = P^+$.

2) P = P'. 3) P = P'. 4) $P = P^*$. 5) $\cap \{m_V | V \in X^1(R)\} \subset R$.

The G-domain R is called saturated if it satisfies in each of equivalent conditions of Theorem"2.22".

Corollary 2.23. [7] *i*) If R is a seminormal G-domain, then R is saturated if and only $ifP(R) = P(R') = P(R^*)$.

ii) For a saturated G-domain R, $P(R) = P(S^{-1}R)$ if and only if $S^{-1}R \subset R^*$. *iii)* If R is a saturated G-domain, then $R^* = \cap \{V | V \in X^1(R)\}$ and is completely

integrally closed.

Lemma 2.24. [6] A pullback diagram of commutative rings

$$\begin{array}{cccc} A \times_T R & \stackrel{\pi_1}{\to} & A \\ \pi_2 \downarrow & \phi_2 \downarrow \\ R & \stackrel{\phi_1}{\to} & T \end{array}$$

where ϕ_1 is surjective, naturally gives rise to acommutative diagram

$$\begin{array}{ccccc} Spec(A \times_T R) & \leftarrow & \mu_1 & \leftarrow & Spec(A) \\ \mu_2 \uparrow & & & Spec(\phi_2) \uparrow \\ Spec(R) & \leftarrow Spec(\phi_1) \leftarrow & Spec(T) \end{array}$$

in such a way that $Spec(A \times_T R)$ is identified with the topological space $Spec(A) \cup_{Spec(T)} Spec(R)$ via the maps μ_1 and μ_2 . Moreover, π_1 is a surjective map and μ_1 gives a closed embedding of Spec(A) into $Spec(A \times_T R)$.

3. Some Important Properties of G-type Domains

Definition 3.1. The *G*-type domain *R* is called essential (i.e., a *G*-type domain of essential type) if each nonzero prime ideal of *R* is contained in the union of the height 1 prime ideals of *R*. Each *R* which is *G*-type domain with one dimensional such that its motivation $S^{-1}R$ is essential, so that \tilde{R} is apullback of an essential *G*-type domain.

Definition 3.2. For each commutative ring R, let $Spec^{i}(A)$ denote the subspace of Spec(R) consisting of the height *i* primes. In particular if $Spec^{1}(R) = \{P_{1} . P_{2} P_{n}\}$, then: $S^{-1}R = \cap R_{p_{i}}$.

Lemma 3.3. Let *R* be a *G*-type domain, then: *i*) Every overring of *R* is a *G*-type domain, in particular $S^{-1}R$ is a *G*-type domain. *ii*) $P(S^{-1}R) = S^{-1}(P(R))$ *iii*) $S^{-1}(R) \subset \cap \{R_Q | Q \in Spec^1(R)\}$ **Proof.** i) It is concluded immediately from definition of a *G*-typedomain. *ii*) Since we have $P(R) = \cap \{Q | Q \in Spec^1(R)\}$ and also $P(S^{-1}R) = \cap \{S^{-1}Q | S^{-1}Q \in Spec^1(S^{-1}R)\}$ $= \cap \{S^{-1}Q | Q \in Spec^1(R) . Q \cap S = \emptyset\}$

But $S = R - \cup \{Q | Q \in Spec^{1}(R)\}$ implies that $Q \cap S = \emptyset$ is true for every $Q \in Spec^{1}(R)$.thus:

$$P(S^{-1}R) = \cap \{S^{-1}Q | Q \in Spec^{1}(R)\}$$

$$⊃ S^{-1}(\cap \{Q | Q \in Spec^{1}(R)\}) = S^{-1}(P(R)).$$

To verify thereverse containment, let:

 $x = \frac{x_1}{x_2} \in P(S^{-1}R) \subset S^{-1}(R). \text{ where } x_1 \in R \text{ and } x_2 \in S$ Since $x \in \cap \{S^{-1}Q | Q \in \text{Spec}^1(R)\}$, it follows that, for every $Q \in \text{Spec}^1(R)$ there exists $s_Q \in S$ such that $s_Q x \in Q$. Then since $s_Q x_1 = s_Q x_2 x \in Q$, so we have $x_1 \in Q$ for every $Q \in \text{Spec}^1(R)$ and therefore, $x \in S^{-1}(\cap \{Q | Q \in \text{Spec}^1(R)\})$ as claimed. iii) Since $S \subset R/Q$ for every $Q \in \text{Spec}^1(R)$ therefore the proof is completed.

Lemma 3.4.Let R be a G-type domain, then:

i) Every valuation overring of *R* other than *K* is contained in amaximal valuation overring of *R* distinct from *K*.

ii) Every $0 \neq Q \in Spec(R)$ contains a minimal nonzeroprime, therefore: $P(R) = \bigcap \{P | P \in Spec^{1}(R)\}$

iii)
$$P(R) = \cap \{ (m_V \cap R) | V \in X^1(R) \}$$

Proof.i) Since each overring of an *G*-type domain is alsoan *G*-type domain and each union of *G*-type domains is an *G*-typedomain, therefore by Zorn's lemma, let $\{R_{\alpha}\}$ be achain of valuation rings in $X(R) - \{K\}$, then $W = \bigcup R_{\alpha}$ is necessarily a valuation overring of *R*.Now let $0 \neq x \in P(R)$, since x lies in every nonzero prime ideal of *R*, then $1/x \notin R$ for every nontrivial $R \neq X(R)$ therefore $1/x \notin W$ and hence $W \neq K$.

ii)By Zorn's lemma, if $\{P_{\alpha}\}$ be a chain of prime ideals in $Spec(R) - \{0\}$, then $Q = \bigcap P_{\alpha}$ also is a prime ideal, since $0 \neq P(R) \subset P_{\alpha}$. $\forall \alpha$. Therefore $P(R) \subset Q$ and hence $Q \neq 0$.

iii) Let $P \in Spec^{1}(R)$ be an arbitrary prime ideal, there exists $V \in X(R)$ such that $V \subset W$. Thus $m_{V} \cap R$ is anonzero prime inside P, whence $m_{W} \cap R = P$.

Corollary 3.5. For every G-type domain R we have:

$$\frac{S^{-1}R}{P(S^{-1}R)} \simeq S^{-1}(\bar{R})$$

Definition 3.6. Let *R* be any ring. We denote by ZD(R) (respectively, NZD(R) the set of all zero divisors (all nonzero divisors) of *R*.the totalquotient ring of *R*, denoted Tot(R), is: $\{r/s | r \in R \text{ and } s \in NZD(R)\}$.

Lemma 3.7. Let R be an G-type domain with pseudo-radical P, and let Y be theunion of all minimal primes of $\overline{R} = R/P$. Then: i) $Y = ZD(\overline{R})$ ii) $Tot(\overline{R}) = S^{-1}(\overline{R}) \simeq (S^{-1}R)/(P(S^{-1}R)).$

Proof.i) That $Y \subset ZD(\overline{R})$ is well known. For the reverse, note that: $P = \cap \{Q | Q \in Spec^1(R)\}$. Thus, if $\overline{x}\overline{y} = 0$ and $\overline{y} \neq 0$, then there exists $Q \in Spec^1(R)$ such that $y \notin Q$. It follows that $x \in Q$ and so $\overline{x} \in Y$. ii) Let $\overline{x} \in \overline{R}$. By (i) $\overline{x} \in NZD(R)$ if and only if $x \neq \bigcup \{Q | Q \in Spec^1(R)\}$ and if and only if $x \in S$. Thus $Tot(\overline{R}) = S^{-1}(\overline{R})$. Therefore: $S^{-1}(\overline{R}) \simeq (S^{-1}R)/(P(S^{-1}R))$

Note 3.8. By the proof of last lemma a *G*-type domain R has essential type if and only if $\overline{R} = Tot(\overline{R})$. Thus every one dimensional *G*-type domain has essential type. Since it is Known that all Noetherian and all Krull *G*-type domain satisfy $dim(R) \le 1$, it follows that all Noetherian and Krull *G*-type domains have essential type. In addition each valuation ring *V* of finite dimension $n \ge 2$ is a *G*-type domain of nonessential type (indeed, the pseudo-radical of *V* is the unique height 1 prime *P* of *V* and so $S^{-1}V = V_P \ne V($.

Theorem 3.9. Let *R* be an integrally closed *G*-type domain. then: *i*) $R^* = \cap \{V | V \in X^1(R)\}$ *ii*) $P(R) = P(R^*) = \cap \{m_V | V \in X^1(R)\}$

Proof. i) This is a similar result due to Gillmer and Heinzer[11].

ii) By lemma "3.4" (iii) $P(R^*) = \bigcap \{ (m_V \cap R^*) | V \in X^1(R^*) \}$ and by the part of (i) $X^1(R) = X^1(R^*)$, therefore:

 $P(R^*) = (\cap \{m_V | V \in X^1(R)\}) \cap R^*.$ On the other hand, applying Lemma "3.4"(ii) to R yields: $P(R) = \cap \{(m_V \cap R) | V \in X^1(R)\} = (\cap \{m_V | V \in X^1(R)\}) \cap R.$ An application of Lemma "3.4"(i) makesclear that: $\cap \{m_V | V \in X^1(R)\} = \cap \{m_V | V \in X(R)\} \subset \cap \{V | V \in X(R)\} = R$ (Since R is integrally closed). The assertions now followeasily.

Lemma 3.10. Let a ring R have dcc on finite intersections of prime ideals (Rhas "dcc" (Descending Chain Conditions) on prime ideals, R/P has only a countable number of nonzero minimal primes for each prime P), then each prime ideal Pof R is a G-ideal (G-type ideal).

Proof. At first we must show that a domain with "*dcc*" onfinite intersections of prime ideals is G-domain. To see this, let A be minimal among the ideals which are finite intersections of nonzero prime ideals, (i.e., $(0) \neq A$ is in fact the intersection of all the nonzero prime ideals and we are through. For the other part, we must show that each domain R with dcc on prime ideals and having only a countable number of nonzero minimal prime ideals is G-type ideal. To see this, let $P_1, P_2, \ldots, P_n, \ldots$ be the nonzero minimal prime ideals of R and note that each nonzero prime ideal contains one of $P'_i s$. Nowfor each n, take $0 \neq a_n \in P_n$, and let S be the "mcs" setgenerated by $\{a_1, a_2, \ldots, a_n, \ldots\}$. It is now that $S \cap P \neq (0)$ for each nonzero prime ideal P and this completes the proof.

Theorem 3.11. Let *R* be a Noetherian domain, then *R* is a *G*-type domain if and only if *R* has only a countable number of nonzero minimal primeideals

Proof. If R has only a countable number of nonzerominimal prime ideals, then we are through by lemma of "3.9".

Conversely, let $S = \{s_1, s_2, ..., s_n, ...\}$ be a countable "mcs" set such that $S \cap P \neq \emptyset$ for all nonzero primeideals P. Let us assume that the set of nonzero minimal primeideals is uncountable and drive a contradiction. Now there must an element $s \in S$ such that s belongs to an uncountable number of nonzero minimal prime ideals. Clearly each of these prime ideals are minimal over (s) and it goes without saying that(s) is not a prime ideal. Now considering the Noetherian ringR/(s) which has an infinite number of minimal prime ideals, it gives us the desired contradiction.

Corollary 3.12. Let k - dimR = n, then R is a G-type domain if and only if thenumber of nonzero minimal prime ideals in R are countable.

Theorem 3.13. Let R be a Noetherian domain with the CPA property, then R is aG-type domain if and only if Spec(R) is countable and each nonzeroprime ideal is maximal. (i.e., $k - \dim R \le 1$)

Proof. If Spec(R) is countable and $k - \dim R \le 1$, then by Theorem "3.11" R is a G-type domain.

Conversely, we claim that every prime ideal has the rank less or equal one and by theorem of "3.11", the proof is complete. So, let $P \in Spec(R)$ is a primeideal with $rank(P) \ge 2$ and derive a contradiction.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. International Research Journal of Mathematics, Engineering and IT (IRJMEIT)

It is well-known that the rank of every prime ideal in Noetherian ringsis finite (i.e., we may assume that rank(P)=n). Hence there exists a chain of prime ideals.

 $P = P_n \supset P_{n-1} \supset ... \supset P_2 \supset P_1 \supset (0)$, of length"n", (i.e., $rank(P_2) = 2$) In view of theorem of "9" there exist only countable numbers of primeideals of rank less than or equal to one. Thus we may assume that $P_1 = Q_1, Q_2, ..., Q_n$, ... are the only primes between (0) and P_2 . But by the "CPA" property we can have $P_2 \subseteq \bigcup_{i=1}^{\infty} Q_i$, so there exists $x \in P_2$ and then by the "Principal Ideal Theorem" we have $rank(P_2) \leq 1$ which is the desired contraction.

Theorem 3.14.*i*) If R is a G-type domain, then $Spec(\tilde{R})$ ishomeomorphic to Spec(R) (via the map induced by the naturalinclusion of Rin \tilde{R}).

ii) If R is a saturated (e.g., seminormal) G-type domain and $S^{-1}R \subset R^*$, then $\tilde{R} = R$ is a pullback type.

Proof. This Proof is similar to theorem of [7,thm.2.15]

i) By definition of G-type domain, since each overringof a G-type domain is also G-type domain and each pullback of aG-type domain is also an overring of it, so it is obviously a G-type domain. Now by pullback diagram of canonical homomorphism's:

$$\begin{array}{cccc} \tilde{R} & \stackrel{\pi_1}{\to} & \bar{R} \\ \pi_2 \downarrow & \phi_2 \downarrow \\ S^{-1}R & \stackrel{\phi_1}{\to} & T \end{array}$$

We obtain a commutative diagram

$$Spec(\tilde{R}) \leftarrow \mu_{1} \leftarrow Spec(\bar{R})$$

$$\mu_{2} \uparrow \qquad \alpha_{2} \uparrow$$

$$Spec(S^{-1}R) \leftarrow \alpha_{1} \leftarrow Spec(T)$$

which is $Spec(\tilde{R})$ is identified with $Spec(\bar{R}) \cup_{Spec(T)} Spec(S^{-1}R)$ and μ_1 is a closedembedding. The map α_1 , being induced by the surjection ϕ_1 , is just the standard correspondence between prime ideals in $T = (S^{-1}R)/(P(S^{-1}R))$ and prime ideals in $S^{-1}R$ that contain $P(S^{-1}R)$. Since each nonzero prime contains the pseudo-radical, the image of α_1 is $Spec(S^{-1}R) \setminus \{0\}$. But every $\alpha_1(P)$ in this image is identified with the corresponding $\alpha_2(P)$ in $Spec(\bar{R})$.

Thus, up to homeomorphism, $Spec(\bar{R}) \cup_{Spec(T)} Spec(S^{-1}R) = Spec(\bar{R} \cup \{0\})$ (the second union being disjoint).

Moreover, since μ_1 is a closed embedding, $\operatorname{Spec}(\overline{R})$ is a closed set in $\operatorname{Spec}(\overline{R}) \cup \{0\}$ and the proper closed sets of $\operatorname{Spec}(\overline{R}) \cup \{0\}$ are in 1-1 correspondence with all closed sets of $\operatorname{Spec}(R)$. Thus, we have a bijection $\operatorname{Spec}(\overline{R}) \cup_{\operatorname{Spec}(T)} \operatorname{Spec}(S^{-1}R) \to \operatorname{Spec}(R)$

which is both continuous and closed, therefore it is ahomeomorphism.

ii) By the universal property of pullback diagrams, R is always dentified with a subring of \tilde{R} via the injection by $\phi(r) = (\bar{r}, r/1)$. If R is saturated and $S^{-1}R \subset R^*$, we claim that ϕ must be surjective as well. To see this, let $(\bar{r}, \frac{a}{t}) \in \bar{R} \times_T S^{-1}R$ be arbitrary. By definition,

$$\overline{r} = (\overline{a/t})$$
 in T, whence $b = r - \frac{a}{t} \in P(S^{-1}R)$. Therefore $P(S^{-1}R) = S^{-1}(P(R)) = P(R)$.

Thus,
$$b \in P(R) \subset R$$
. So $\frac{a}{t} = r - b \in R$, and $\left(\bar{r}, \frac{a}{t}\right) = \left(\left(\frac{\bar{a}}{t}\right), \frac{a}{t}\right) = \phi\left(\frac{a}{t}\right) \in \phi(R)$. \Box

Corollary 3.15. If R is a Prüfer G-type domain, then $S^{-1}R \subset R^*$, R has pullback type, and $R^* = \cap \{R_P | P \in Spec^1(R)\}$ has essential type. If in addition, R is a Bézout G-typedomain, then $S^{-1}R = R^*$.

Proof. Since each Prüfer G-type domain is necessarilya GD-type domain (R as a G-type domain is called a going-downG-type domain if for every overring T of R, the inclusion map $R \rightarrow T$ satisfies the going-down property), hence $S^{-1}R \subset R^*$ and obviously R has pullback type and furthermore for each Prüfer domain (specially PrüferG-type domain) we have $R^* = \cap \{R_P | P \in Spec^1(R)\}$ as a essential type .

Now if R is a *Bézout* G-type domain, since each overring of R is a ring of fraction of R. So if $R^* = T^{-1}R$ for some saturated multiplicatively closed set T, then:

 $S^{-1}R \subset T^{-1}R = R^* = \cap \{R_P | P \in Spec^1(R)\}.$ Therefore,

 $T \supset S$ and $R_P \supset T^{-1}R$, $\forall P \in Spec(R)$. It follows that $T \cap P = 0$, $\forall P \in Spec^1(R)$, and so $S \supset T$. Thus $S^{-1}R = T^{-1}R = R^*$. \Box

Remark 3.16. If *R* is a *G*-type domain such that Spec(R) is a countable set, then:

 $S^{-1}R = \cap \{R_P | P \in Spec(R)\}$ is a countable set of one-dimensional quasi local rings. The condition that $Spec^1(R)$ be countable is characterized by $S^{-1}R$ being semiquasilocal of dimension at most 1.

Therefore it is obvious that a G-type domain R satisfies Spec(R) is countable and R has essential type if and only ifevery nonzero principal ideal of R is countably intersection of (height 1) primary ideals.

Example 3.17.We exhibit a one-dimensional quasi local domain R such that R^* is a onedimensional (therefore, essential) Prüfer *G*-typedomain, but not semi quasi local. Let V be a one-dimensional valuation domain with quotient field K such that there exists an algebraic field extension L of K having infinitely many valuation subrings extending V. (for instance, take $V = Z_{PZ}$ and L thefield of algebraic numbers.) Let T be the integral closure of V in L. Then T is one-dimensional and Prüfer, but notsemiquasilocal.

Corollary 3.18.Let $R_1, R_2, ..., R_n, ...$ befinite-dimensional conducive domains which are not fields, with Q_i being the (unique) height 1 prime of R_i . Let $R = \bigcap_{i=1}^{\infty} R_i$ and pick $q_i = Q_i \cap R$. Let (V_i, M_i) be the (unique) one dimensional valuation overring of R_i and let $b_i = (R_i: V_i) \cap M_i$ (which is nonzero by the conducive property). Let $W = \bigcap_{i=1}^{\infty} V_i$ and

 $m_i = M_i \cap W$. Assume further that R and each of the R_i 's have accommon quotient field K and that $q_i \not\subseteq q_i$ whenever $i \neq j$. then:

1) *R* is a *G*-type domain and $R^* = W$, a one-dimensional semi quasi local Bézout domain. 2) $Spec^1(R) = \{q_1, q_2, ..., q_n, ...\}$. 3) $S^{-1}R = \bigcap_{i=1}^{\infty} R_{q_i} \subset R^*$.

4) If each R_i is a one-dimensional, then $R = S^{-1}R$ isone-dimensional and semi quasi local. 5) If each R_i is saturated, then R is saturated and $R = \tilde{R} \simeq \bar{R} \times_{T^*} R^*$ where T^* is the total quotient ring of R^*/P^* .

Corollary 3.19.*Spec*¹(R) is finite for every G-type domain R such that R' is a strong G-type domain.

Example 3.20. Spec(R) is finite and $dim(R) \le 1$ if (and only if) *R* is acompactly packed *G*-type domain of essential type. (*R* is compactlypacked if, for any subset Ω of Spec(R) and any ideal *I* of *R*, the condition $I \subset \bigcup \{P | P \in \Omega\}$ implies $I \subset P$, $\exists P \in \Omega$. In a compactly packed ring, every prime ideal *P* is the radical of a principal ideal. By essentiality, $dim(R) \le 1$. Thus, for every P, $Spec(R) \setminus P$ is a quasi-compact Zariski- open set, and therefore it is closed when Spec(R) is discrete. Since the patchtopology is compact, Spec(R) must be finite.

Acknowledgment

The author would like to thank the referee for the valuable suggestions and comments.

References

- 1. A.R.Alizadeh.M, *Some Properties of G-Primary Ideals*, Far East Journal of Mathematical Sciences, 45(1), (2010)81-88.
- 2. A.R.Alizadeh.M, *Foundations on G-Type Domains*, Journal of Mathematical Extension, 8(2), (2014)11-23.
- 3. M.F.Atiyeh, I.G.Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley, Reading, Massachusetts, (1969).
- 4. G.Artico, U.Marconi and R.Moresco, A Subspace of Spec(A) and its Connexions with the Maximal Ring, Rend, Sem, Mat, Univ, Padova, 64, (1981).
- 5. K.Belaid, O.Echi and R.Gargouri, *A-spectral spaces*, Topology Appl. 138(2004)315-322.
- 6. F.W.Call, *Integral Closures of Noetherian Integral Domains as Intersections*, Proc. Amer. Soc., 122, (1995)1049-1052.
- 7. D.E.Dobbs, R.Fedder and M.Fontana, *G-Domains and Spectral Spaces*, Journal of Pure and Applied Algebra, 51, (1988)89-110.
- 8. D.E.Dobbs, M.Fontana and G.Picavat, *Generalized Going-down Homomorphisms of Commutative Ring*, J.Algebra, (2001).
- 9. M.Fontana, *Topologically Defined Classes of Commutative Rings*, Ann. Mat. pura Appl., 123(1980)331-355.
- 10. 1R.W.Gilmer, Jr., *Overring of Prüfer domains*, J. Algebra, MR 34 "2609", 4(1966)331-340.
- 11. R.W.Gilmer, W.J.Heinzer, *The Complete Integral Closure of an Integral Domain*, J. Austral. Math. Soc. (1966)351-361.
- 12. O.Goldman, Hilbert Rings and the Hilbert Nullstellensatz, Math.Z., 54(1951)136-140.
- 13. I.Kaplansky, Commutative Rings, Allyn and Bacon, Boston, (1974).
- 14. O.A.S.Karamzadeh, B.Moslemi, On G-Type Domains, J. Algebra Appl., 11 (2012)1-18.
- 15. P.Maroscia, Some results on G-domains, Boll. Un. Mat. Ital. B. 17(1980)1166-1177.
- 16. I.Ramaswamy, T.M.Viswanathan, *Overring Properties of G-Domains*, Proc.Amer.Math. Soc., 58(1976)59-66.