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ABSTRACT 

The prominent focus of this work is to analyze the convective heat transfer in a steady boundary 

layer viscoelastic fluid flow and heat transfer over a stretching/shrinking sheet.Three cases were 

considered here. That is (i)The sheet with prescribed surface temperature. (ii) The sheet with 

prescribed surface heat flux. (iii) Convective heating.The governing boundary value problem, 

which is in the form of nonlinear partial differential equations are transformed into nonlinear 

ordinary differential equations, using a suitable similarity transformation and are solved 

numerically using Runge Kutta fourth order method with shooting technique.The numerical 

results for flow and temperature field, are found to depend  firmly  on, Viscoelastic parameter 

(k1),Chandrashekar number (Q), thermal radiation parameter ( Nr),Prandtl number (Pr),wall 

temperature parameter (s), heat source/sink parameter ( ),Biot number (Bi),Eckert Number 

Ec. 

KeyWords: Stretching/shrinking sheet;biot number;PST and PHF cases;Thermal 
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INTRODUCTION 

Many fluids such as blood, dyes, yoghurt, ketchup, shampoo,paint, mud, clay coatings, polymer 

melts, certain oils and greases etc, exhibit  nonlinear relation between stresses and strains. Such 

fluids do not obey the Newton's law of viscosity and are called non-Newtonian fluids. The flows 

of such fluids occur in a wide range of practical applications and have key importance in 

polymer devolatisation, bubble columns, fermentation, composite processing,boiling, plastic 

foam processing, bubble absorption and many others.Therefore, non-Newtonian fluids have 

attracted the attention ofa large variety of researchers including the interests of experimentalists 

and theoreticians like engineers, modelers, physicists, computers cientists and mathematicians. 

However, as these fluids are inthemselves varied in nature, the constitutive equations which 

govern them are many taking account of the variations of rheological properties.The model and 

hence, the arising equations, are much morecomplicated and of higher order than the well known 

Navier--Stokesequations.  

Study of laminar boundary layer flow caused by a moving rigid surface was initiated by Sakiadis 

[1] and later the work was extended to the flow due to stretching of a sheet by Crane [2]. The 

flow of an incompressible fluid past a moving surface has several engineering applications. The 

aerodynamic extrusion of plastic sheets, the cooling of a large metallic plate in a cooling bath, 

the boundary layer along a liquid film in condensation process and a polymer sheet or filament 

extruded continuously from a die, or along thread traveling between a feed roll and a wind-up 

roll are the examples of practical applications of a continuous flat surface. 

In certain dilute polymer solution (such as 5.4% of polyisobutylenein cetane and 0.83% solution 

of ammonium alginate in water [3,4]),the viscoelastic fluid flow occurs over a stretching sheet. 

Any fluid that does not behave in accordance with the Newtonian constitutive relation is called 

non-Newtonian [5–12]. Non-Newtonian fluids have gained considerable importance because the 

power required in stretching a sheet in a viscoelastic fluid is less than when it is placed in a 

Newtonian fluid; and the heat transfer rate for a viscoelastic fluid is found to be less than that of 

Newtonian fluids 

The central problem in non-Newtonian fluid dynamics is the establishment of expressions for the 

stress tensor T to replace the Newtonian expression. The relation between the stress tensor and 

various kinematic tensors is called the constitutive equation or the rheological equation of state. 

Rivlin and Ericksenand Coleman and Noll have presented constitutive relations for the stress 
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tensor as a function of the symmetric part of the velocity gradient and its higher (total) 

derivatives.  

 

Another class of models is the rare-type fluidmodels, such as Oldroyd model, which has been 

modified by Walters.This modified model is referred to as the Walters’ liquid B. The steady two-

dimensional boundary layer equations for Walters’ liquidB were derived by Beard and Walters 

[10] to first-order in elasticity(i.e., for short memory fluids with short relaxation times).Walters’ 

liquid B considered by Sidappa and Abel [13] exhibit normal stress-differences in simple shear 

flows. Rajagopal et al. [14]analyzed the effects of viscoelasticity on the flow of a second-order 

fluid with gradually fading memory and arrived to the boundarylayer equations as that in Ref. 

[13]. H.I.Andersson[15] considered MHD flow of a viscoelastic fluid past a stretching sheet.An 

exact analytical solution of the governing nonlinear boundary layer equation was obtained 

illustrating, that the effect of magnetic field is same as that of viscoelasticity, on flow and heat 

transfer charecteristics. 

On the other hand, Abel and Veena [16] investigated a viscoelastic fluid flow and heat transfer in 

a porous medium over a stretchingsheet and observed that the dimensionless surfacetemperature 

profiles increases with an increase in viscoelasticparameter k1, however, later, Abel et al. 

[17]studied the effect of heat transfer on MHD viscoelasticfluid over a stretching surface and an 

importantfinding was that the effect of viscoelasticity is to decrease dimensionless surface 

temperature profiles inthat flow. 

. Furthermore, Char [18] studied MHD flowof a viscoelastic fluid over a stretching sheet, 

however,only the thermal diffusion is considered in the energyequation; later, Sarma and Rao 

[19] analysed the effects of work due to deformation in that equation. 

However all of the above research dealing with non-newtonian fluids attributes only to the most 

general heat transfer cases of PST and PHF and none of the above problems considered the most 

prominent aspect of convective heating.As a result this research attempts to solve this much 

more complicated problem involving convective heat transfer in a boundary layer.The effects of 

viscoelastic parameter and Biot number on flow and heat transfer charecteristics is a salint 

feature of this study. 
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MATHEMATICAL FORMULATION 

Consider a steady, laminar free convective flow of an incompressible and electrically 

conducting visco-elastic fluid over continuously moving stretching surface embedded in a porous 

medium. Two equal and opposite forces are introduced along the x-axis so that sheet is stretched 

with a speed proportional to the distance from the origin. The resulting motion of the otherwise 

quiescent fluid is thus caused solely by the moving surface. A uniform magnetic field of strength 

B0 is imposed along y-axis. This flow satisfies the rheological equation of state derived by Beard 

and Walters in 1964. 

The steady two-dimensional boundary layer equations for this in usual notation are, 

0
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Here x and y are respectively the directions along and perpendicular to the surface, u, v are the 

velocity components along x & y directions respectively and other symbols have their usual 

meanings.In deriving the equations, it is assumed, in addition to the usual boundary layer 

approximations that the contribution due to the normal stress is of the same order of magnitude 

as the shear stress.  

The boundary conditions applicable to the flow problem are, 

, 0,    0

0,     

u bx v at y

u as y

  

 
                          (3) 

 

b<0 ( Shrinking sheet), b>0( stetching sheet) 

  Equations (1) and (2) admit self-similar solution of the form, 

, ,  
b

u b x f v b f Where y 


            (4) 

where prime  denotes the derivative with respect to  . Clearly u & v satisfy the equation (1) 

identically. Substituting these new variables in equation (2), we obtain, 

 2 2

1 2 IVf f f f k f f f f f Qf                    (5) 
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Where 


bk
k 0

1  , 
2

0B
Q
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, Where 
1k and Q  are the viscoelastic parameter and 

Chandrashekar number respectively. 

Similarly boundary condition (3) takes the form 

(0) 1, (0) 0 0

( ) 0, ( ) 0

f f at

f f as



  

   

   
                            

                                                                                                                  (6) 

 

 

HEAT TRANSFER ANALYSIS 

The energy equation in the presence of radiation and internal heat generation / absorption 

for two-dimensional flow is 
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Where is K thermal conductivity, is heat source/sink, rq is radiative heat flux. 

By using Rosseland approximation , the radiative heat flux is given by  

y

T

K
qr
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               (8) 

Where 
  and K  are respectively, the Stephan-Boltzman constant and the mean absorption 

coefficient. We assume the differences within the flow are such that T
4
 can be expressed as a 

linear function of temperature. Expanding T
4 

in a Taylor series about 
T  and neglecting higher 

order terms thus,  

434 34   TTTT                         (9) 

The boundary conditions are 

s
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x
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 at y=0 and , ,T T as y         PST Case                           (10)               
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w
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 at y=0 and , ,T T as y     PHF Case                (11)                            
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( )f

T
K h T T

y


  


at,y=0and , ,T T as y    Convective Case           (12)   

The fluid temperature which is charecterised by fT , heat transfer coefficient h  

And s is wall temperature parameter. 

          

The similarity transformations are 
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PST  and Convective Case 

Now using equations (13),and(15)  equation (7) becomes 

2 2(1 ) Pr Pr ( ) Pr ( ) 0Nr f f Ecx f                                        (16) 

Where Pr
pC
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are the  Prandtl Number,Radiation parameter and heat source / Sink Parameter respectively. 

PHF CASE 

Now using equations (14),  equation (7) becomes 

2 2(1 ) Pr Pr ( ) Pr ( ) 0Nr g f g f g Ecx g                                       (17) 

The boundary conditions takes  the form: 

(0) 1, ( ) 0 as       PST Case 

(0) 1, ( ) 0 as                    PHF Case     

  (0) 1 (0) , ( ) 0,  iB as                 Convective Case 

                                                                                                                           (18) 
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NUMERICAL SOLUTION 

 Because of the non-linearity and couplings between the momentum and the thermal 

boundary layer equations, exact solutions do not seem feasible for complete set of equations 

(16),(17) and (18), therefore solution must be sought numerically. In order to solve them, we 

employ most efficient shooting technique with fourth order Runge-Kutta integration 

scheme.Selection of an appropriate finite value of 
  is most important aspect in this method. To 

select 
 , we begin with some initial guess value and solve the problem with some particular set 

of parameters to obtain (0)f   and (0).   The solution process is repeated with another larger 

(or smaller, as the case may be) value of 
 . The values of (0)f   and (0)   compared to their 

respective previous values, if they agreed to about six significant digits, the last value of 
  used 

was considered the appropriate value for that particular set of parameters; otherwise the 

procedure was repeated until further changes in 
 did not lead to any more change in the values 

of (0)f   and (0)  . The initial step size employed was h=0.01. The convergence criterion was 

largely depends on fairly good guesses of the initial conditions in the shooting technique. 

 

RESULTS AND DISCUSSION  

The present study considers the flow of viscoelastic incompressible electrically conducting fluid 

flow past a stretching/shrinking sheet in prescence of Magnetic field, uniform heat source/sink 

and convective heat transfer.The aim of the following discussion is to bring about the effect of 

magnetic field, heat source /sink, and convective heat transfer over stretching/shrinking sheet on 

flow and heat transfer charecteristics. 

In Fig (1) it is noticed that the effect of Chandrashekar number Q is to accelerate motion in case 

of shrinking sheet.This is due to the fact that the prescence of viscoelasticity contribute to stored 

energy by obstructing energy loss, as one is aware of the fact that in viscoelastic fluid flows, a 

fixed amount of energy is stored up in the material as stored energy. Because of this the resistive 

force due to magnetic field is overcome , resulting in enhancement in magnitude of velocity. 

Where as in case of stretching sheet the effect of Q is to retard flow velocity within the boundary 

layer. 

Fig 2 is  a graph concerns to the effect of viscoelastic parameter k1 on flow velocity for both  
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stretching/shrinking sheet.Here this Fig 2 depicts that for an increase in viscoelastic parameter k1 

results in decrease of velocity in boundary layer in case of shrinking sheet. This result is 

consistent with the fact that the introduction of tensile stress due to visco-elasticity cause 

transverse contraction of the boundary and hence velocity decreases. Where as  for stretching 

sheet the opposite effect is noticed.  

The effect of Prandtl Number(Pr) is analysed in view of Fig 3, for both PST as well as PHF 

cases.This figure illustrates that increase in Prandtl Number(Pr) results in decrease of 

temperature distribution in thermal boundary layer region, which obviously a means for decrease 

of boundary layer thickness.Decrease of boundary layer thickness results slow rate of thermal 

diffusion.It is also noticed that wall temperature distribution is at unity in case of PST , where as 

in PHF case it  is  other than unity, due to adiabatic boundary condition. 

    The effect of Chandrashekar number  Q, on heat transfer is depicted in Fig. 4 in case of PST 

and PHF respectively. Here it is noticed that the contribution of transverse magnetic field, is to 

thicken thermal boundary layer. This is due to  the fact the applied transverse magnetic field 

produces a body force, in the form of Lorentz force, which enhances temperature distribution in 

flow region.The enhancement in temperature distribution in flow region is because of resistance 

offered by Lorentz force on flow velocity.  

Fig 5 shows the effect of viscoelastic parameter K1 on temperature profile, and it is noticed that 

Temperature profile increases with the increase of viscoelastic parameter K1, in both PST and 

PHF cases. 

An increase in temperature distribution due to the presence of elastic elements may be attributed 

to the fact that when a viscoelastic fluid is in flow, a certain amount of energy is stored up in the 

material as strain energy, which is responsible for enhancement of temperature distribution in 

thermal boundary layer region. 

Fig 6  reveals the influence of radiation parameter Nr on temperature profile, where in it 

produces a significant increase in the thickness of thermal boundary layer, resulting in 

enhancement of temperature in thermal boundary layer region in both PST and PHF cases.The 

prominent effect of Nr is to enhance heat transfer,therefore Nr shold be kept at minimum value 

to fecilitate the cooling process of polymer extrudate in polymer industry. 

The influence of wall temperature parameter s for both PST as well as PHF cases on temperature 

distribution is depicted in Fig 7. Numerical solutions are sought in the range of values of s as 
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mentioned follows,i.e -2.0s2.0   and -2.0s2.0 for PST and PHF cases.Here we notice 

that as the value of s is incremented from negative values to positive values, temperature 

distribution decreases in thermal boundary layer. 

The effect of heat source/sink parameter  on temperature profile within the boundary layer is 

depicted in Fig 8.In this figure it is noticed that the direction of heat transfer depends on 

temperature difference )( TTw  and dimensionless rate of heat transfer (0)  .To interpret the 

heat transfer result physically, we discuss the result of positive   and negative   separately. For 

positive  , we have a heat source in the boundary layer when TTw  and heat sink when 

TTw . Physically, these correspond, respectively, recombination and dissociation within the 

boundary layer. For the case of cooled wall ( TTw ), there is  heat transfer from the fluid to the 

wall even without a heat source. The presence of heat source )0(   will further increase the 

heat flow to the wall. When  is negative, this indicates a heat source for TTw  and a heat sink 

for TTw . This corresponds to combustion and an endothermic chemical reaction. For the case 

of heated wall ( TTw ), the presence of a heat source )0(   creates a layer of hot fluid 

adjacent to the surface and therefore the heat from the wall decreases. For cooled wall case 

( TTw ), the presence of heat sink )0(   blankets the surface with a layer of cool fluid and 

therefore heat flow in to the surface decreases.The effect of Biot number Bi on temperature 

profile is depicted in fig 9. Here it is noticed that an increase in biot number Bi results in increase 

in rate of heat transfer in thermal boundary layer region.Further it is noticed that there is increase 

in  thickness of thermal boundary layer .Fig 10 demonstrates the variation of temperature profiles 

for various values of Eckert number Ec for PST and PHF cases respectively.It is noticed from 

this graph that the effect of viscous dissipation is to enhance temperature within the boundary 

layer in both PST and PHF cases, and further it is observed that values of PST has quatitatively 

higher values than PHF. 

Concluding Remarks 

The governing boundary layer equations of flow and heat transfer for a steady,  flow of an 

incompressible and electrically conducting visco-elastic fluid over continuously moving 

stretching surface with combined effect of thermal radiation and convective heating is analysed. 
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The governing boundary value problem , which is in the form of nonlinear partial differential 

equations are converted into nonlinear ordinary differential equations and are solved numerically 

using Runge-Kutta fourth order method with shooting technique..  

Numerical evaluations were performed and graphical results were obtained to demonstrate the 

details of flow and heat transfer characteristics and their dependence on some of the physical 

parameters.  

The important findings of our investigations are 

 The increase of Chandrashekar number leads to the enhanced deceleration of the flow 

and hence the velocity decreases but increases temperature in the boundary layer. 

 The effect of  increase in Viscoelastic parameter 1k leads to decrease the horizontal 

velocity profile but increase the temperature in the boundary layer.The effect of heat 

source in the boundary layer generates energy, which causes the temperature to increase 

while the presence of heat absorption effects caused reductions in the fluid temperature, 

which results in decreasing the fluid velocity, in both PST and PHF cases. 

 The effect of thermal radiation parameter Nr produces a significant increase in the 

thickness of the thermal boundary layer of the fluid and so as the temperature increases in 

presence/ absence of thermal conductivity parameter, in both PST and PHF cases.An 

increase in biot number Bi results in increase in rate of heat transfer in thermal boundary 

layer region, resulting in increase of  thickness of thermal boundary layer 

 An increase in Eckert number results in increase of temperature profile, in thermal 

boundary layer region.. 

 



 

© Associated   Asia   Research   Foundation (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 82  

 

                                                                                      

 

        Figure 1: Plot of axial   f   velocity  versus   for  different values of Chandrasekhar 

number Q  with K1 = 0.2.  

 

 

 

 

 

Figure 2: Plot of axial velocity versus   for different values of viscoelastic parameter K1  with Q =1 
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                         .                   

 

                                                                                         

       Figure 3:Variation of the non-dimensional temperature  with   the transformat co-ordinate 

normal to the surface for different values of Prandtl number Pr for the cases  PST and PHF. 

                                                       

 

                                                                                                                

    Figure 4:Variation of the non-dimensional temperature  with   the transformation co-

ordinate normal to the surface for different values of Chandrasekhar number Q for the cases  PST 

and PHF. 
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Figure 5:Variation of the non-dimensional temperature  with   the transformation co-ordinate 

normal to the surface for different values of viscoelastic parameter K1 for the cases  PST and 

PHF. 

 

 

                           

 Figure 6:Variation of the non-dimensional temperature  with   the transformation  co-ordinate 

normal to the surface  for different values of radiation parameter Nr for the  cases  PST and PHF 
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Figure 7:Variation of the non-dimensional temperature  with   the transformation  co-ordinate 

normal to the surface for different values of wall temperature parameter s for the  cases  PST and 

PHF 

   

 

      

                                                                                                                          

                                                                                                                   

Figure 8:Variation of the non-dimensional temperature  with   the transformation  co-ordinate 

normal to the surface for different values of heat source parameter NI for the  cases  PST and 

PHF. 
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Figure 9:Variation of the non-dimensional temperature  with   the transformation  co-ordinate 

normal to the surface for different values of Biot number Bi for the  case  PST  
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Fig 10.Variation of the non-dimensional temperature  with   the transformation  co-ordinate 

normal to the surface for different values of radiation parameter Ec for the  cases  PST and PHF. 
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