SYNTHESIS OF SOME NEW PYRIMIDO[4,5-B][1,6]NAPHTHYRIDINE AND THEIR BIOLOGICAL EVALUATION AS ANTICANCER AND ANTIVIRAL AGENTS

Hassan M. Faidallah, Khalid M. A. Al-Shaikh, Tariq R. Sobahi
Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

The pyrimido[4,5-b][1,6]naphthyridin-4(3H)-ones 1-4 and their 2-methyl analogs 5-8 as well as the hexahydropyrimido[4,5-b][1,6]naphthyridine-2(1H)-thiones 9-12 and the targeted tetrahydropyrimido[4,5-b][1,6]naphthyridin-4-amines 13-16 was successfully achieved from the reaction of the 2 aminonaphthyridine derivatives with the appropriate reagent. The cytotoxicity and antiviral activity of some of the prepared derivatives was also investigated.

Keywords: Pyrimidonaphthyridine, Anticancer, Antiviral

1.Introduction

Curcumin which is a natural active ingredient separated from the rhizome of Curcuma longa [1]. Studies have proven its anti-cancer[2,3], anti-inflammatory[4], and anti-bacterial activities [5]. However, its use is limited because its low anticancer activity and poor bioabsorption,[6] Because of the low anticancer activity of Curcumin, researchers were looking for a new Curcumin analogs with better biological effects specially its cytotoxic activity. N -substituted-3,5-bis(arylidene)piperidin-4-one is a cyclic α, β-unsaturated ketones (chalcone) which is being structurally related to curcumin and its derivatives have been

[^0]proved for having antitumor, multidrugresistance-reverting, and antimycobacterial, and Antioxidant activities [7-11]. Based on the above-mentioned findings, the present study deals with the synthesis of a series of pyrimido[4,5-b][1,6]naphthyridine ring systems carrying some biologically active rings such as thienyl, 1,3-Benzodioxolyl and fluorinated aryl groups. The aim of the study was to evaluate their anticancer and/or antiviral activities .

2. Results and Discussion

2.1. Chemistry

Synthesis of the intermediate and target compounds was accomplished according to the steps depicted in Scheme 1. The key intermediate 2-aminonaphthyridine derivatives was prepared via reactions of N -benzyl-3,5-bis(arylidene)piperidin-4-one, malononitrile and ammonium acetate. 2-aminonaphthyridine derivatives which was utilized as a kay intermediate when 2aminonaphthyridine were heated with either formic acid or acetic anhydride, the targeted substituted pyrimido[4,5-b][1,6]naphthyridin-4(3H)-one 1-4 and their 2-methyl analogs 5-8, respectively, were successfully obtained. The IR spectra of the latter compounds showed the absence of the CN group absorption and the appearance of new sharp absorption bands at $1650-1661 \mathrm{~cm}^{-1}$ attributed to the newly formed $\mathrm{C}=\mathrm{O}$ groups at position 4 , beside the NH absorption bands at $3265-3279 \mathrm{~cm}^{-1}$. Meanwhile, the ${ }^{1}$ H-NMR spectra of compounds 5-8 showed new singlets at $\delta 2.50-2.67 \mathrm{ppm}$ due to the newly introduced CH3 group, whereas their ${ }^{13} \mathrm{C}$ NMR spectral data exhibited new singlets at $\delta 21.71-22.54 \mathrm{ppm}$ due to the new CH3 group and the CO signals at $\delta 164.85-165.60 \mathrm{ppm}$. Reacting compounds 2 aminonaphthyridine with the phenyl isothiocyanate in pyridine medium led to the formation of the substituted hexahydropyrimido $[4,5-\mathrm{b}][1,6]$ naphthyridine-2(1H)-thione $\mathbf{9 - 1 2}$. Their IR spectra showed new bands at $1619-1628 \mathrm{~cm}-1$ and at $1195-1233 \mathrm{~cm}^{-1}$ corresponding to the $\mathrm{C}=\mathrm{N}$ moiety and to the $\mathrm{C}=\mathrm{S}$ group, respectively. Their ${ }^{13} \mathrm{C}$ NMR spectral data were characterized by the presence of two signals at $\delta 175.12-176.60$ and $\delta 164.70-165.19 \mathrm{ppm}$ for the $\mathrm{C}=\mathrm{S}$ and $\mathrm{C}=\mathrm{NH}$ groups, respectively. Finally, the synthesis of the targeted substituted tetrahydropyrimido[4,5-b][1,6]naphthyridin-4-amine 13-16 was successfully achieved via reaction of 2-aminonaphthyridine with formamide. The IR spectra of these tetrahydropyrimido[4,5-b][1,6]naphthyridin-4-amine 13-16 derivatives were characterized by the disappearance of the CN group absorptions and the appearance of two broad absorption bands at 3354-3366 and 3415-3432 cm^{-1} due to the amino group.

$\mathrm{CH}_{2}(\mathrm{CN})_{2}$

Scheme 1

2.2 In vitro MTT cytotoxicity assay of the prepared compounds

Some synthesized compounds namely $\mathbf{1 , 4 , 5 , 8 , 9 , 1 0 , 1 2 , 1 3 , 1 5}$ and $\mathbf{1 6}$ were selected to be evaluated for their in vitro cytotoxic effect via the standard MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method [12,13] against a panel of three human tumor cell lines namely; Caucasian breast adenocarcinoma MCF7, hepatocellular carcinoma HePG2 and colon carcinoma HT29. The results are presented in Table 1 as $\mathrm{LC}_{50}(\mu \mathrm{~g} / \mathrm{mL})$ which is the lethal concentration of the compound which cause death of 50% of the cells in 24 h . The obtained data revealed that, the three tested human tumor cell lines exhibited variable degree of sensitivity profiles towards fourteen of the tested compounds namely; $\mathbf{9}, \mathbf{1 1}, \mathbf{1 2}, 13$ and 16.

Moreover, a remarkable cytotoxic potential was displayed by compounds $\mathbf{9}, \mathbf{1 1}$ and $\mathbf{1 2}$ against the human colon carcinoma HT29 cell line ($20.2,25.4$ and $22.3 \mu \mathrm{~g} / \mathrm{mL}$, respectively). Moreover, compounds $\mathbf{1 3}$ and $\mathbf{1 6}$ were able to exhibit moderate activity against the same cell line with LC_{50} values range of $44.5-55.8 \mu \mathrm{~g} / \mathrm{mL}$. Furthermore, the growth of the human hepatocellular carcinoma HePG2 cell line was found to be moderately inhibited by some of the active compounds namely; $\mathbf{9 , 1 1}$ and $\mathbf{1 2}$ with LC_{50} values range of $25.6-28.4 \mu \mathrm{~g} / \mathrm{mL}$. Among these, the highest cytotoxic activity was displayed by compound $11\left(\mathrm{LC}_{50}\right.$ values $25.6, \mu \mathrm{~g} / \mathrm{mL}$, respectively). On the other hand, human breast cancer MCF 7 was proved to be the least sensitive among the cell lines tested as it was affected by only some of the test compounds. However, an outstanding growth inhibition potential was shown by compound 9 as evidenced from their LC_{50} value ($8.5 \mu \mathrm{~g} / \mathrm{mL}$,). The rest active compounds namely $\mathbf{1 1}$ and $\mathbf{1 2}$ showed moderate to mild activity against the same cell line with LC_{50} values of 20.8 and $22.8 \mu \mathrm{~g} / \mathrm{mL}$, respectively (Table 1). Further interpretation of the results revealed that, compounds $\mathbf{9}$, 11 and $\mathbf{1 2}$ showed considerable broad spectrum of cytotoxic activity against the three tested human tumor cell lines. A close examination of the structure of the active compounds showed that the 4-bromophenyl, 4-fluorophenyl and 2-Theinyl counterpart at position-4 or -5 of the pyrimido-naphthyridine skeletons respectively are the most favourable substituents when compared with other analogs.

Table 1. Cytotoxic effects $\left(\mathrm{LC}_{50} ; \mu \mathrm{g} / \mathrm{mL}\right)^{\mathrm{a}}$ of the prepared compounds on some human tumor cell lines using the MTT assay

compound no.	Human colon carcinoma HT29	Human hepatocellular carcinoma HePG2	Human breast cancer MCF 7
$\mathbf{9}$	20.2	28.4	8.5
$\mathbf{1 1}$	25.4	25.6	20.8
$\mathbf{1 2}$	22.3	26.8	28.8
$\mathbf{1 3}$	44.5	$-^{\text {b }}$	$-^{-}$
$\mathbf{1 6}$	55.8	$-^{-}$	$-^{-}$
Doxorubicin $^{\text {c }}$	12.1	1.69	2.14

${ }^{\text {a }}$ LC50: Lethal concentration of the compound which causes death of 50% of cells in $24 \mathrm{~h}(\mu \mathrm{~g} / \mathrm{mL})$.
${ }^{\mathrm{b}}$ Totally inactive against this cell line.
${ }^{c}$: positive control cytotoxic agent.

2.3 In vitro effect on the replication of hepatitis-C virus in HCV-infected HepG2

hepatocellular carcinoma cell line

Eleven compounds were selected and tested by the Genetic Engineering and Biotechnology Research Institute (GEBRI), Mubarak City for Science and Technology Applications, Alexandria, Egypt.

Cell Culture and RNA Extraction

HepG2 cells were washed twice in EMEM media supplemented with $200 \square \mathrm{M} \mathrm{L} \mathrm{-}$ Glutamine, 100 U Penicillin, $100 \square \mathrm{~g}$ streptomycin and $25 \square \mathrm{M}$ HEPES buffer; N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] (Bio Whittaker, USA). The cells were suspended in EMEM Culture media and then were left to adhere on polystyrene 6well plates for 24 h in $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}, 95 \%$ humidity incubator. The cells were washed twice from debris and dead cells using EMEM media and then infected with 2% HCV-
infected serum in EMEM culture medium with 8\% FBS. Each of the tested compounds was added at concentrations of $10,25,50$, and $100 \mu \mathrm{~g} / \mathrm{mL}$. Positive and negative control cultures were included. After 96 h incubation another dose of the test compound was added and the cells were further incubated for another 96 h . The RNA was extracted following a method reported by El-Awady et al. [14]. The positive strand and its replicating form (negative strand) of HCV were detected by RT-PCR using specific primers to the 5^{\prime}-untranslated region of the virus.

Antiviral activity

Compounds $\mathbf{1 , 4 , 6 , 9 , 1 0}, \mathbf{1 2}, 13$ and 15 were investigated for their in vitro effect on the replication of hepatitis-C virus in HepG2 hepatocellular carcinoma cell line infected with the virus. Out of these compounds only two derivatives $\mathbf{1 0}$ and $\mathbf{1 2}$ were able to inhibit the hepatitis-C virus RNA (+) and (-) strands at $10-100 \mu \mathrm{~g} / \mathrm{mL}$ concentration range. The rest of the series were either inactive or exhibited insignificant activity.

3. Experimental

3.1. Chemistry.

Melting points were determined on a Gallenkamp melting point apparatus and are uncorrected. The infrared (IR) spectra were recorded on Shimadzu FT-IR 8400S infrared spectrophotometer using the KBr pellet technique. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker WM-600 FT NMR spectrometer using tetramethylsilane (TMS) as the internal standard and DMSO- d_{6} as a solvent (Chemical shifts in δ, ppm). Splitting patterns were designated as follows: s : singlet; d : doublet; m : multiplet; q : quartet. Elemental analyses were performed on a 2400 Perkin Elmer Series 2 analyzer and the found values were within $\pm 0.4 \%$ of the theoretical values. Follow up of the reactions and checking the homogeneity of the compounds were made by TLC on silica gel-protected aluminum sheets (Type 60 F254, Merck) and the spots were detected by exposure to UV-lamp at $\lambda 254$.

7-benzyl-9-(aryllidene)-5-(aryl)-6,7,8,9-tetrahydropvrimido[4,5-b][1,6]naphthyridin-4(3H)one 1-4

A solution of appropriate 2-aminonaphthyridines (10 mmol) in formic acid (10 ml) was heated under reflux for 3 h . The reaction mixture was poured on crushed ice (15 g) and the separated
solid product was filtered, washed with water, dried and recrystallized from the appropriate solvent.

7-benzyl-9-(4-fluorobenzylidene)-5-(4-fluorophenyl)-6,7,8,9-tetrahydropyrimido [4,5-b/[1,6]naphthyridin-4(3H)-one 1 :
Recrystallized from ethanol/ $\mathrm{H}_{2} \mathrm{O}(5: 1)$ as needles. (Yield 72%), m.p. $125-127^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}\right.$, KBr): $3359(\mathrm{NH}), 1662(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (δ / ppm, DMSO-d d_{6} : $3.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6}-H\right), 3.74(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{C}_{8}-H\right), 3.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.19-8.92\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}+\right.$ olefinic $\left.H+\mathrm{C}_{2}-H\right) 9.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR ($\delta /$ ppm, DMSO-d $)_{6}$) $49.74(\mathrm{C}-6), 60.31(\mathrm{C}-8), 75.44\left(\mathrm{CH}_{2}\right), 115.33,115.45,116.06$, $119.54,127.23,128.02,128.12,128.45,128.82,129.52,130.42,130.82,132.62,133.34$, 136.90, 145.72, 151.23, 157.21, 161.21, 162.12 (ArC), 163.12(CO). Anal.\% Calcdfor $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 73.16 ; \mathrm{H}, 4.50 ; \mathrm{N}, 11.38$. Found: C, $73.23 ; \mathrm{H}, 4.59 ; \mathrm{N}, 11.26$.

7-benzyl-9-(4-bromobenzylidene)-5-(4-bromophenyl)-6,7,8,9-tetrahydropyrimido [4,5-b][1,6]naphthyridin-4(3H)-one 2:
Recrystallized from ethanol (Yield 66%), m.p. $138-140^{\circ} \mathrm{C} . v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3411(\mathrm{NH})$, 1659(C=O). ${ }^{1} \mathrm{H}$ NMR (δ / ppm, DMSO-d ${ }_{6}$): 3.29 (s, 2H, $\left.\mathrm{C}_{6}-H\right), 3.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{8}-H\right), 3.79(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 7.37-8.86 (m,15H, Ar + olefinic $\left.H+\mathrm{C}_{2}-H\right) 9.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO- d_{6}): 48.32 (C-6), 59.58 (C-8), $76.11\left(\mathrm{CH}_{2}\right), 114.08,114.74,115.81,117.19,125.08$, $127.88,127.64,128.41,128.53,129.17,130.14,130.68,132.66,133.70,136.49,145.47$, 152.32, 157.29, 161.46, 162.60 (ArC), 164.23 (CO). Anal. \% Calcdfor $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}$, 58.65; H, 3.61; N,9.12. Found: C, 58.27; H, 4.11; N, 9.30.

7-benzyl-9-(benzo[d][1,3]dioxol-5-ylmethylene)-5-(benzo[d][1,3]dioxol-5-yl)-6,7,8,9tetrahydropyrimido [4,5-b][1,6]naphthyridin-4(3H)-one 3:

Recrystallized from methanol/DMF(3:2) as needles. (76\%), m.p. $211-213^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}\right.$, KBr): $3419(\mathrm{NH}), 1660(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($\delta / \mathrm{ppm}, \mathrm{DMSO}_{6}$): 3.36 (s, $\left.2 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 3.69(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{C}_{8}-H\right), 3.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.15\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.22-9.13\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}+\right.$ olefinic $\left.H+\mathrm{C}_{2}-H\right) 9.41$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{N} H$). ${ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO-d ${ }_{6}$): 48.11 (C-6), $60.01(\mathrm{C}-8), 76.29\left(\mathrm{CH}_{2}\right), 101.09$ $\left(\mathrm{CH}_{2}\right), 109.21,111.75,114.82,117.34,125.24,127.77,128.80,129.45,129.87,130.38$, $130.76,131.08,132.60,133.97,136.18,145.55,151.38,157.25,161.11,162.52$ (ArC), 164.50(CO). Anal.\% Calcdfor $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5}: \mathrm{C}, 70.58$; H, 4.44; N,10.29. Found: C, 70.18; H, 4.87; N, 10.96.

7-benzyl-9-(thiophen-2-ylmethylene)-5-(thiophen-2-yl)-6,7,8,9-tetrahydropyrimido b][1,6]naphthyridin-4(3H)-one 4:

Recrystallized from DMF. (Yield 70%), m.p. $>360^{\circ} \mathrm{C} . v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3372(\mathrm{NH})$, $1647(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (δ / ppm, DMSO- d_{6}): 3.30 (s, 2H, $\left.\mathrm{C}_{6}-H\right), 3.74$ (s, 2H, $\left.\mathrm{C}_{8}-H\right), 3.74(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 7.50-8.73 (m, 13H, $\mathrm{Ar}+$ olefinic $\left.H+\mathrm{C}_{2}-H\right) 9.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO-d ${ }_{6}$): $49.40(\mathrm{C}-6), 59.17(\mathrm{C}-8), 74.71\left(\mathrm{CH}_{2}\right), 111.41,118.30,120.52,123.43,127.08$, 128.91, 129.40, 130.37, 130.88, 131.17, 131.56, 132.73, 133.08, 136.13, 145.23, 151.92, 157.51, 161.42, 162.79 (ArC), 163.96(CO). Anal.\% Calcdfor $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}_{2}$: C, 66.64; H, 4.30; N,11.96. Found: C, 66.18; H, 4.78; N, 12.39.

7-benzyl-9-(aryllidene)-5-(aryl)-2-methyl-6,7,8,9-tetrahydropyrimido[4,5-b][1,6] naphthyridin-4(3H)-one (5-8)

A mixture of the start 2-aminonaphthyridines (10 mmol), acetic anhydride $(10 \mathrm{~mL})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$ was heated in a boiling water bath for 10 min . The reaction mixture was cooled, poured carefully onto icecold water, treated with $20 \% \mathrm{NaOH}$ solution till alkaline. The precipitated crude solid product was filtered, washed with water, dried and recrystallized from ethanol.

7-benzyl-9-(4-fluorobenzylidene)-5-(4-fluorophenyl)-2-methyl-6,7,8,9-tetrahydro pyrimido[4,5-b][1,6]naphthyridin-4(3H)-one 5:

(yield 72%), m.p. $258-260^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 2371(\mathrm{NH}), 1654(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (δ / ppm, DMSO-d d_{6} : $2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6}-H\right), 3.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{8}-H\right), 3.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.87-7.64 (m, 14H, Ar + olefinic H) 9.33 (s, $1 \mathrm{H}, \mathrm{N} H$). ${ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO-d d_{6}): 21.84 (CH3), $45.60(\mathrm{C}-6), 60.41(\mathrm{C}-8), 77.22\left(\mathrm{CH}_{2}\right), 111.41,114.74,115.64,117.08,121.43$, 124.81, 126.70, 127.16, 128.33, 129.21, 129.69, 130.22, 131.06, 132.48, 138.33, 145.81, 151.61, 157.73, 161.51, 162.47 (ArC), 164.96(CO). Anal.\% Calcdfor $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}$, 73.50; H, 4.78; N,11.06. Found: C, 73.21; H, 4.90; N, 10.77.

7-benzyl-9-(4-bromobenzylidene)-5-(4-bromophenyl)-2-methyl-6,7,8,9-tetrahydro pyrimido[4,5-b][1,6]naphthyridin-4(3H)-one 6:

(yield 75%), m.p. $264-266^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3265(\mathrm{NH}), 1650(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (δ / ppm, DMSO-d ${ }_{6}$) : 2.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 3.41 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{6}-H$), 3.59 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{8}-H$), $3.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$),
7.10-8.22 (m, 14H, Ar + olefinic H) 9.38 (s, $1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR ($8 / \mathrm{ppm}$, DMSO- d_{6}): 22.08 (CH3), 45.91 (C-6), $60.22(\mathrm{C}-8), 76.95\left(\mathrm{CH}_{2}\right), 117.63,119.11,121.63,121.97,125.46$, 125.80, 127.19, 127.35, 128.66, 129.28, 129.43, 130.05, 130.66, 131.86, 131.65, 131.81, 132.68, 149.70, 157.37, 161.95 (ArC), 165.35(CO). Anal.\% Calcdfor $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}$, 59.26; H, 3.85; N,8.92. Found: C, 58.76; H, 4.12; N, 9.25.

7-benzyl-9-(benzo[d][1,3]dioxol-5-ylmethylene)-5-(benzo[d][1,3]dioxol-5-yl)-2-methyl-6,7,8,9-tetrahydro pyrimido[4,5-b][1,6]naphthyridin-4(3H)-one 7:

(yield 67%), m.p. $>360^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3279(\mathrm{NH}), 1659(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (δ / ppm, DMSO-d d_{6}): $2.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6}-H\right), 3.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{8}-H\right), 3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.17$ (s, 2H, CH2), 7.21-8.33 (m,12H, Ar + olefinic H) 9.41 (s,1H,NH). ${ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO$\left.\mathrm{d}_{6}\right): 21.71(\mathrm{CH} 3), 49.74(\mathrm{C}-6), 60.31(\mathrm{C}-8), 75.44\left(\mathrm{CH}_{2}\right), 101.21(\mathrm{CH} 3), 115.33,115.45$, 116.06, 119.54, 127.23, 128.02, 128.12, 128.45, 128.82, 129.52, 130.42, 130.82, 132.62, 133.34, 136.90, 145.72, 151.23, 157.21 161.21, 162.12 (ArC), 163.12(CO). Anal.\% Calcdfor $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5}$: C, 70.96; H, 4.69; N,10.03. Found: C, 70.66; H, 4.97; N, 10.28.

7-benzyl-9-(thiophen-2-ylmethylene)-5-(thiophen-2-yl)-2-methyl-6,7,8,9-tetrahydro pyrimido[4,5-b][1,6]naphthyridin-4(3H)-one 8:

(yield 72%), m.p. $228-230^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3275(\mathrm{NH}), 1661(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($8 / \mathrm{ppm}$, DMSO-d d_{6} : $2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6}-H\right), 3.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{8}-H\right), 3.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.27-8.68 (m, 12H, Ar + olefinic H) $9.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO- d_{6}): 21.71 (CH3), 45.73 (C-6), 60.09 (C-8), $75.84\left(\mathrm{CH}_{2}\right), 114.31,115.63,119.10,125.38,128.39$, 128.67, 128.96, 129.30, 130.44, 130.88, 132.16, 133.47, 136.76, 145.16, 151.09, 157.35, 161.64, 162.56 (ArC), 164.85(CO). Anal.\% Calcdfor $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{OS}_{2}: \mathrm{C}, 67.20 ; \mathrm{H}, 4.59$; N,11.61. Found: C, 67.51; H, 4.81; N, 11.30.

7-benzyl-9-(aryllidene)-5-(aryl)-4-imino-3-phenyl-3,4,6,7,8,9-hexahydropvrimido [4,5-b][1,6]naphthyridine-2(1H)-thione (9-12)

A mixture of the start 2-aminonaphthyridines (10 mmol), phenyl isothiocyanate ($1.35 \mathrm{~g}, 10$ mmol) in pyridine (15 ml) was refluxed for 2-3 h . After cooling, the solid product was filtered off, washed thoroughly with water, dried and recrystallized from acetic acid.

7-benzyl-9-(4-fluorobenzylidene)-5-(4-fluorophenyl)-4-imino-3-phenyl-3,4,6,7,8,9-hexahydropyrimido[4,5-b][1,6]naphthyridine-2(1H)-thione 9:

(yield 78%), m.p. $135-137^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3192(\mathrm{NH}), 1619(\mathrm{C}=\mathrm{N}) 1195(\mathrm{C}=\mathrm{S}) .{ }^{1} \mathrm{H}$ NMR (δ / ppm, DMSO-d d_{6} : 3.49 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{6}-H$), 3.60 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{8}-H$), 3.79 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 4.90 (s,1H,NH), 6.85-8.13 (m,19H, Ar + olefinic H) $9.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO$\left.\mathrm{d}_{6}\right): 45.87(\mathrm{C}-6), 60.11(\mathrm{C}-8), 77.71\left(\mathrm{CH}_{2}\right), 111.41,112.73,116.07,117.18,121.78,122.19$, 125.00, 125.31, 125.71, 126.11, 126.51, 126.77, 127.25, 128.38, 128.50, 130.01, 130.38, 130.67, 131.55, 131.96, 132.40, 132.71, 135.92, 136.68, 139.34, 141.81, 145.77, 151.69, 157.20, 161.37, 163.68 (ArC), $164.70(\mathrm{C}=\mathrm{NH}), 175.82(\mathrm{CS})$. Anal. $\%$ Calcdfor $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{~S}$: C, 72.10; H, 4.54; N,11.68. Found: C, 71.73; H, 4.80; N, 11.99.

7-benzyl-9-(4-bromobenzylidene)-5-(4- bromophenyl)-4-imino-3-phenyl-3,4,6,7,8,9-hexahydropyrimido[4,5-b][1,6]naphthyridine-2(1H)-thione 10:
(yield 70\%), m.p. $128-130^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3180(\mathrm{NH}), 1628(\mathrm{C}=\mathrm{N}) 1219(\mathrm{C}=\mathrm{S}) .{ }^{1} \mathrm{H}$ NMR ($\delta / \mathrm{ppm}, \mathrm{DMSO}_{6}$): 3.43 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{6}-H$), 3.66 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{8}-H$), $3.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 5.22 (s,1H,NH), 6.71-8.20 (m,19H, Ar + olefinic H) $9.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO$\left.\mathrm{d}_{6}\right): 45.08(\mathrm{C}-6), 60.63(\mathrm{C}-8), 77.15\left(\mathrm{CH}_{2}\right), 110.10,111.36,115.37,115.91,119.22,120.38$, $123.40,124.76,125.19,125.65,126.46,126.91,127.20$, $128.68,129.59,130.20,130.65$, 131.44, 131.69, 131.96, 132.36, 133.50, 134.19, 135.32, 138.70, 141.99, 144.69, 151.56, 156.31, 162.19, 163.79 (ArC), $164.93(\mathrm{C}=\mathrm{NH}), 175.12$ (CS). Anal.\% Calcdfor $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{Br}_{2} \mathrm{~N}_{5} \mathrm{~S}: \mathrm{C}, 59.93 ; \mathrm{H}, 3.77$; N,9.71. Found: C, 59.66; H, 3.96; N, 9.64.

7-benzyl-9-(benzo[d][1,3]dioxol-5-ylmethylene)-5-(benzo[d][1,3]dioxol-5-yl)-4-imino-3-phenyl-3,4,6,7,8,9-hexahydropyrimido[4,5-b][1,6]naphthyridine-2(1H)-thione 11:

(yield 79\%), m.p. $132-134^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3266(\mathrm{NH}), 1620(\mathrm{C}=\mathrm{N}) 1228(\mathrm{C}=\mathrm{S}) .{ }^{1} \mathrm{H}$ NMR (δ / ppm, DMSO-d $_{6}$): 3.41 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{6}-H$), 3.63 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{8}-H$), 3.77 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 4.87 $(\mathrm{s}, 1 \mathrm{H}, \mathrm{N} H), 6.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.12-8.22(\mathrm{~m}, 17 \mathrm{H}, \mathrm{Ar}+$ olefinic $H) 9.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO- d_{6}): $44.21(\mathrm{C}-6), 60.84(\mathrm{C}-8), 78.09\left(\mathrm{CH}_{2}\right), 101.13\left(\mathrm{CH}_{2}\right), 114.21,115.98$, $116.10,116.27,118.70,119.39,124.53,125.31,125.86,126.00,126.43,126.86,127.21$, $128.66,128.84,130.16,130.53,130.70,131.48$, 131.65, 132.14, 132.66, 134.56, 135.47, $137.33,140.80,141.77,146.70,149.12,155.46,164.83(\mathrm{ArC}), 165.19(\mathrm{C}=\mathrm{NH}), 176.60(\mathrm{CS})$.

Anal.\% Calcdfor $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 70.03$; H, 4.49; N,10.75. Found: C, 69.86; H, 4.81; N, 10.57.

7-benzyl-9-(thiophen-2-ylmethylene)-5-(thiophen-2-yl)-4-imino-3-phenyl-3,4,6,7,8,9-hexahydropyrimido[4,5-b][1,6]naphthyridine-2(1H)-thione 12:

(yield 82%), m.p. $108-110^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3249(\mathrm{NH}), 1624(\mathrm{C}=\mathrm{N}) 1228(\mathrm{C}=\mathrm{S}) .{ }^{1} \mathrm{H}$ NMR (δ / ppm, DMSO-d d_{6}): 3.47 (s, 2H, $\mathrm{C}_{6}-H$), 3.59 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{8}-H$), 3.82 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 5.19 (s,1H,NH), 6.76-8.31 (m,17H, Ar + olefinic H) $9.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO$\left.\mathrm{d}_{6}\right): 44.54(\mathrm{C}-6), 60.30(\mathrm{C}-8), 78.27\left(\mathrm{CH}_{2}\right), 109.30,111.63,116.26,120.99,123.46,125.63$, $125.54,125.47,126.68,126.96,127.34,128.30,128.59,130.15,130.66,131.76,132.39$, 132.68, 135.88, 136.51, 139.27, 141.90, 145.49, 151.77, 157.10, 161.31, 163.53 (ArC), $165.11(\mathrm{C}=\mathrm{NH}), 176.44$ (CS). Anal.\% Calcdfor $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{~S}_{3}$: C, 66.75; H, 4.38; N,12.16. Found: C, 66.30; H, 4.69; N, 11.81.

7-benzyl-9-(aryllidene)-5-(aryl)-6,7,8,9-tetrahydropvrimido[4,5-b][1,6]naphthyridin-4amine (13-16)

A mixture of the start 2-aminonaphthyridines $(10 \mathrm{mmol})$ and formamide $(10 \mathrm{~mL})$ was heated under reflux for 2-3 h . The reaction mixture was allowed to cool and the precipitated solid product was collected, washed with cold ethanol and recrystallized from acetic acid containing few drops of water.

7-benzyl-9-(4-fluorobenzylidene)-5-(4-fluorophenyl)-6,7,8,9-tetrahydropyrimido [4,5-b][1,6]naphthyridin-4-amine 13:
(yield 63%), m.p. $179-181^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3354,3409\left(\mathrm{NH}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (δ / ppm, DMSO-d d_{6}) 3.42 (s, 2H, C $6-H$), 3.69 (s, 2H, $\mathrm{C}_{8}-H$), 3.77 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.37 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH} \mathrm{H}_{2}$), 7.14$8.31\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}+\right.$ olefinic $\left.H+\mathrm{C}_{2}-H\right) .{ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO-d d_{6}): $45.91(\mathrm{C}-6), 60.24$ (C8), $76.11\left(\mathrm{CH}_{2}\right), 119.14,120.73,120.15,123.41,127.90,128.09,128.36,128.77,129.28$, $129.67,130.47,130.88,131.65,132.04,136.61,145.16,151.50,157.38,161.21,162.23$ (ArC). Anal.\% Calcdfor $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{5}$: C, 73.31; H, 4.72; N, 7.73. Found: C, 73.04; H, 4.94; N, 7.44.

b][1,6]naphthyridin-4-amine 14:

(yield 59%), m.p. $246-248^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3366,3415\left(\mathrm{NH}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (δ / ppm, DMSO-d d_{6}) 3.39 (s, 2H, C $6-H$), 3.63 (s, 2H, $\mathrm{C}_{8}-H$), 3.79 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.22 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH} H_{2}$), 7.25$8.27\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}+\right.$ olefinic $\left.H+\mathrm{C}_{2}-H\right) .{ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO- d_{6}): $46.30(\mathrm{C}-6), 60.83(\mathrm{C}-$ $8), 76.28\left(\mathrm{CH}_{2}\right), 117.26,119.64,120.22,121.65,125.86,128.30,128.58,128.68,129.67$, $129.81,130.70,130.95,131.11,132.14,136.63,145.72,151.44,157.93,161.71,162.65$ (ArC). Anal.\% Calcdfor $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{~N}_{5}$: C, 58.75; H, 3.78; N, 11.42. Found: C, 58.53; H, 4.11; N, 11.64.

7-benzyl-9-(benzo[d][1,3]dioxol-5-ylmethylene)-5-(benzo[d][1,3]dioxol-5-yl)-6,7,8,9-

 tetrahydropyrimido [4,5-b][1,6]naphthyridin-4-amine 15:(yield 64%), m.p. $>360^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3358,3429\left(\mathrm{NH}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (δ / ppm, DMSOd_{6}): $3.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{6}-H\right), 3.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{8}-H\right), 3.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.19\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.49$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.84-8.22\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}+\right.$ olefinic $\left.H+\mathrm{C}_{2}-H\right) .{ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO- d_{6}): 46.49 (C-6), $61.34(\mathrm{C}-8), 75.17\left(\mathrm{CH}_{2}\right), 101.22\left(\mathrm{CH}_{2}\right), 118.30,119.36,120.05,120.56$, 125.90, 127.11, 128.27, 128.69, 129.35, 130.44, 130.71, 130.93, 131.37, 132.47, 136.60, 145.28, 151.61, 157.79, 161.77, 162.60 (ArC). Anal.\% Calcdfor $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}$: C, 70.71; H, 4.64; N, 12.88. Found: C, 70.38; H, 4.89; N, 13.19.

7-benzyl-9-(thiophen-2-ylmethylene)-5-(thiophen-2-yl)-6,7,8,9-tetrahydropyrimido [4,5-b][1,6]naphthyridin-4-amine 16:
(yield 55%), m.p. $231-233^{\circ} \mathrm{C} \cdot v_{\text {max. }}\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3360,3432\left(\mathrm{NH}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (δ / ppm, DMSO-d d_{6} : 3.40 (s, 2H, $\mathrm{C}_{6}-H$), 3.60 (s, 2H, $\mathrm{C}_{8}-H$), 3.73 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $6.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH} H_{2}\right), 7.13-$ $8.29\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}+\right.$ olefinic $\left.H+\mathrm{C}_{2}-H\right) .{ }^{13} \mathrm{C}$ NMR (δ / ppm, DMSO- d_{6}): $45.71(\mathrm{C}-6), 60.20(\mathrm{C}-$ 8), $75.61\left(\mathrm{CH}_{2}\right), 108.21,119.61,120.22,121.61,127.18,128.00,128.37,128.96,129.19$, $129.46,130.54,131.93,132.44,136.38$, 145.31, 151.39, 157.97, 161.24, 162.82 (ArC). Anal.\% Calcdfor $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{~S}_{2}$: C, 66.78; H, 4.53; N, 14.53. Found: C, 66.54; H, 4.83; N, 14.80.

3.2. In vitro MTT cytotoxicity assay

All the following procedures were done in a sterile area using a Laminar flow cabinet biosafety class II level (Baker, SG403INT, Stanford, ME, USA). Cells were batch cultured for 10 days, then seeded at concentration of 10×10^{3} cells/well in fresh complete
growth medium in 96 -well microtiter plastic plates at $37^{\circ} \mathrm{C}$ for 24 h under $5 \% \mathrm{CO}_{2}$ using a water jacketed carbon dioxide incubator (Sheldon, TC2323, Cornelius, OR, USA). Media was aspirated, fresh medium (without serum) was added and cells were incubated either alone (negative control) or with different concentrations of the test compounds to give a final concentration of ($100-50-25-12.5-6.25-3.125-1.56-0.78 \mu \mathrm{~g} / \mathrm{mL}$). DMSO was employed as a vehicle for dissolution of the tested compounds and its final concentration on the cells was less than 0.2%. Cells were suspended in RPMI 1640 medium (for HePG2 and HT29 cell lines) and DMEM (for MCF 7 cell line), 1\% antibiotic-antimycotic mixture $(10,000 \mathrm{IU} / \mathrm{mL}$ penicillin potassium, $10,000 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin sulphate and $25 \mu \mathrm{~g} / \mathrm{mL}$ amphotericin B), and 1% L-glutamine in 96-
well flat bottom microplate at $37^{\circ} \mathrm{C}$ under $5 \% \mathrm{CO}_{2}$.After 48 h of incubation, the medium was aspirated, $40 \mu \mathrm{~L}$ of MTT salt $(2.5 \mu \mathrm{~g} / \mathrm{mL})$ were added to each well and incubated for further 4 h at $37^{\circ} \mathrm{C}$ under $5 \% \mathrm{CO}_{2}$. To stop the reaction and dissolve the formed crystals, $200 \mu \mathrm{~L}$ of 10% sodium dodecyl sulphate (SDS) in deionized water was added to each well and incubated overnight at $37^{\circ} \mathrm{C}$. The absorbance was then measured using a microplate multi-well reader (Bio-Rad Laboratories Inc., model 3350, Hercules, California, USA) at 595 nm and a reference wavelength of 620 nm [12,13]. A statistical significance was tested between samples and negative control (cells with vehicle) using independent t-test by SPSS 11 program. The results are presented in Table 1 as $\mathrm{LC}_{50} \mu \mathrm{~g}$ which is the lethal concentration of the compound which causes death of 50% of the cells in 24 h .

4. Conclusion

The aim of the present investigation was to synthesize some naphthyridine and pyrimidonaphthyridin derivatives to be evaluated for their in vitro cytotoxic and antiviral activities. Such target was verified by obtaining fourteen compounds with variable degree of cytotoxic potential against a panel of three cancer cell lines namely; human colon carcinoma (HT29), hepatocellular carcinoma (Hep-G2) and Caucasian breast adenocarcinoma (MCF7), among which the analogs compounds $\mathbf{9}, \mathbf{1 1}$ and $\mathbf{1 2}$ showed considerable broad spectrum of cytotoxic activity against the three tested human tumor cell lines. Moreover concerning the antiviral activity, only two derivatives $\mathbf{1 0}$ and $\mathbf{1 2}$ were able to inhibit the hepatitis-C virus RNA (+) and (-) strands at $10-100 \mu \mathrm{~g} / \mathrm{mL}$ concentration range.

References

(1) Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao, Y.; Li, X.; Yang, S. Bioorganic \& medicinal chemistry 2009, 17 (6), 2623.
(2) Bill, M. A.; Bakan, C.; Benson, D. M.; Fuchs, J.; Young, G.; Lesinski, G. B. Molecular cancer therapeutics 2009, 8 (9), 2726.
(3) Ferguson, L. R.; Philpott, M. Current cancer drug targets 2007, 7 (5), 459.
(4) Jobin, C.; Bradham, C. A.; Russo, M. P.; Juma, B.; Narula, A. S.; Brenner, D. A.; Sartor, R. B. The Journal of Immunology 1999, 163 (6), 3474.
(5) Kumar, S.; Narain, U.; Tripathi, S.; Misra, K. Bioconjugate Chemistry 2001, 12 (4), 464.
(6) Kálai, T.; Kuppusamy, M. L.; Balog, M.; Selvendiran, K.; Rivera, B. K.; Kuppusamy, P.; Hideg, K. Journal of medicinal chemistry 2011, 54 (15), 5414.
(7) Sun, J.; Zhang, S.; Yu, C.; Hou, G.; Zhang, X.; Li, K.; Zhao, F. Chemical biology \& drug design 2014, 83 (4), 392.
(8) Zhou, D.-Y.; Zhang, K.; Conney, A. H.; Ding, N.; Cui, X.-X.; Wang, H.; Verano, M.; Zhao, S.-q.; Fan, Y.-X.; Zheng, X. Chemical and Pharmaceutical Bulletin 2013, 61 (11), 1149.
(9) Das, S.; Das, U.; Selvakumar, P.; Sharma, R. K.; Balzarini, J.; De Clercq, E.; Molnár, J.; Serly, J.; Baráth, Z.; Schatte, G. ChemMedChem 2009, 4 (11), 1831.
(10) Singaram, K.; Marimuthu, D.; Baskaran, S.; Ramaswamy, V. J. Serb. Chem. Soc. 2016, 81 (8), 859.
(11) Al-Omar, M. A.; Youssef, K. M.; El-Sherbeny, M. A.; Awadalla, S.; Albanat, A.; El-Subbagh, H. I. Archiv der Pharmazie 2005, 338 (4), 175.
(12) Mosmann, T. Journal of immunological methods 1983, 65 (1-2), 55.
(13) Denizot, F.; Lang, R. Journal of immunological methods 1986, 89 (2), 271.
(14) El-Awady M K, Ismail S, El-Sagheer M, Sabour Y A, Amr K S and Zaki E A (1999) Clinica Chimica Acta 2831

[^0]: © Associated Asia Research Foundation (AARF)
 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

