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ABSTRACT

This research article obtainedrestricted functional forms of determining matrices for a class of
triple-delay linear control systems for certain pertinent parameters, thus bridging the knowledge
gap in this area of acute research need. The proofs were achieved by the exploitation of key facts
about permutations, combinations of summation notations, change of variables techniques and

the compositions of sigma and max functions.
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1. INTRODUCTION
Controllability is a very important concept that is applied in aerospace engineering,

optimal control theory, systems theory, quantum systems, power systems, industrial and
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chemical process controls etc. This concept was first introduced by Kalman in 1963 (Zmood,
1971) and a survey of controllability of dynamical systems was done by Klamka (2013). In
addition, there have been intense research activities on qualitative approach to controllability of
linear and nonlinear systems. Xianlong (2013) researched on approximate controllability of semi
linear neutral retarded systems and Jackreece (2014) worked on the controllability of neutral
integro-differential equations.

However, one is not aware of any other results that comprehensively interrogated the
controllability of linear autonomous control systems of single-delay neutral and double-delay
types via the structures of the determining matrices except (Ukwu, 2014a; 2016a).
Thedetermination of the computational complexity and electronic implementations of
determining matrices for double-delay linear autonomous control systems and single-delay linear
autonomous neutral control systems by Ukwu (2016b) are novel contributions in this area.

In the study of Euclidean controllability of linear autonomous control systems,
determining matrices are preferred veritable tools as they are the least computationally intensive,
when compared to indices of control systems matrices or controllability Grammians.

Unfortunately there is no known published work that has attempted the extension of the
great feats of(Ukwu, 2014a; 2016a)to delay control systems with triple time-delays in the state
variables. This could be attributed to the severe difficulty in identifying recognizable
mathematical patterns needed for any conjecture on functional forms of determining matrices
and subsequent inductive proof. It is against this backdrop that this study makes a positive
contribution to knowledge by correctly establishing relevant results on functional forms of
determining matrices for the afore-mentioned triple-delay systems for certain pertinent

parameters.
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2. THEORETICAL UNDERPINNING

Let r,r,r. be nonnegative integers and let P

()bt e () denote the

set of all permutations of

a,a,...,a b,b,...,b c,c,...,cthe permutations of the objects a, b, ¢, inwhich i appearsr, times, i{a,b,c}.
%/_/
r, times 1, times ro times

In particular, the following summarized results due toUkwu (2014b) on functional forms of
determining matrices are quite relevant:

Consider the class of double-delay linear autonomous control systems of the form:

x(t)=A x(t)+ A x(t-h)+A x(t-2h)+Bu(t);t>0 (1)

x(t) =¢(t),te[-2n,0],h>0 (2)

where Ay, A, A, arenxn constant matrices with real entries, B is an nxm constant matrices with

real entries.

2.1  Determining Equations: Uniqueness and Existence

Let Q (s) be an nx n matrix function defined by

Q. (s)=AQ_(s)+AQ ,(s-h)+AQ _ (s—2h)for k=123,...5>0,

with intial conditions :
Q,(0)=1:Q,(s)=0;s=0.
These initial conditions guarantee the unique solvability of the matrix function Q, (s)

(Gabasov & Kirillova, 1976; Chidume, 2007).
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2.2  Computable Expression of Determining Matrices (Ukwu, 2016b)

For0< j<k =0, jk integers,

2l

Q(ih)= Z A AL
r=0
(Vl""'vk)epo(r+k—j),]{j—2r), 2(r) For j=k =1, j,k
integers
%] 5
. 'N"""AM 1< <2k
Qk ( Jh) - r=0 (Vl""’vk )E PO(I'),1(2k*j*2r),2(r+j*k)

0, j>2k+1

The proofs were established with the techniques of mathematical induction hypothesis,

summation facts, greatest integer functions and change of variables.

Consider the class of single-delay linear neutral autonomous control systems of the form:

%[x(t)— A X(t—h)] = Ax(t)+ Ax(t-h)+ Bu(t);t=0 ®
x(t)=¢(t),te[-h,0],h>0 (4)

where A, A, A, are nxn constant matrices with real entries, B isan nxm constant matrix with

real entries. The initial functiongis inC([—h,O], R”), the space of continuous functions from

[-h,0] into the real n-dimension Euclidean space, R" with norm defined by ||#|= sup |¢(t)|,
te[—h,O]

(the sup norm). The control u is in the space Lx([o,tl], R”), the space of essentially bounded

measurable functions taking [0,t,] into R" with norm|¢] = esssup|u(t)| .
te[0,4]
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2.2.1 Determining Equations: Uniqueness and Existence

Let Q,(s) be an nx n matrix function defined by
Q. (s)=AQ (s-h)+AQ,(s)+AQ (s—h)for k=12,3,...s>0,
with intial conditions :
Q,(0)=1; Q(s)=0, formin{k,s} <0.
These initial conditions guarantee the unique solvability of the matrix functionQ, (s)
(Gabasov & Kirollova, 1976; Ukwu, 2016b).

2.3  Expressions and Structures of the Determining Matrices for Single-Delay Linear

Neutral Autonomous Control Systems (Ukwu, 2016b)

If j,k are positive integers, then

Q (ih)= 2 AA,
(Vl"'vjfk)e P—l(j)‘ o[K)
k-1
+ >, A, A+ > A, ---A,, [sgn(max{0, j+1-k})
_(vl...vj )e Pfl(j—k),l(k) r—1 (\/1,_.,vj+Ir )Ep—l(r+j—k),0(r),1(k-r)
j-1
+ > A, A+ > A,...A, |sgn(max {0,k j})
_(vl,...,vk Je PO(k—j),l(j) r=1 (V""V)ep—l(r),o(r+k—j),1(j—r)

3. MATERIAL AND METHODS
3.1 Identification of Work-Based Triple-Delay Linear Autonomous Control Systems

Consider the triple-delay linear autonomous control system.

x(t) = Ax(t)+Ax(t—-h)+Ax(t-2h)+Ax(t-3h)+Bu(t);t>0 (5)
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x(t) =¢(t),t €[-3n,0],h>0 (6)
where A, A, A,and Ajare nxn constant matrices with real entries, B is an nxm constants

matrix with real entries. The initial function 4 is inC([-3h,0],R"), the space of continuous

functions from [—3h,0] into the real n -dimensional Euclidean space, R"with norm defined by

H¢H:3Upt€[,3h,0] {‘(/5('[)‘} (the sup norm). The controlu is in the space L, ([0,t,],R"), the space
of essentially bounded measureable functions taking [0,t,] into R" with norm
g = esssup, .., Jlu(®)]-

Any controlue L, ([0,t;,],R"), will be referred to as an admissible control.

SeeChidume (2007) for further discussion on L (orL"), p e {12, 00},

3.1.1 Determining Equations: Uniqueness and Existence

Let Q (s) be an nx n matrix function defined by
Q. (s)=AQ_(s)+AQ. ,(s-h)+AQ_ (s-2h)+AQ_ (s-3h)for k=123...5>0,
with intial conditions :
Q,(0)=1:Q,(s)=0;s=0.
These initial conditions guarantee the unique solvability of the matrix function Q, (S)

The nextsection furnishes the functional form of the determining matrices of the system (5) on

the j —interval [3k —3,0).
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4. RESULTS
4.1 Preliminary Result on Determining Matrices Q, (S),S eR
i)  Qc(s)=0ifs<0
(i Q(0)=A
(i) Q, (S) =0 if s#rh forany integer r
k

v Qu(h)= > JIA;: k=1

(V1~'-Vk )Gpo(k—l) 10) j=1
V) Q(jh)=A sgn(max{4-j,0})

Proof
(i) Let s<O.

k=1=Q (s)=AQ(s)+AQ (s—h)+ AQ, (s—2h)+ AQ, (s —3h)= A0+ A0+A,0+A0=0
So the assertion is true for k =1.

Assume that Q, (s)=0fors<0andfork e{2,..., p} for some integer p > 2. Then

Q,..(s)=AQ, (s)+AQ,(s—h)+AQ,(s-2h)+AQ, (s-3h)=A0+A0+A0+A0=0
by the induction hypothesis, since s <0=s—h<0,s—2h<0,s—3h<0. Therefore

Q,(s)=0 V¥s<O0, asdesired.
(i) Q(0)=AQ,(0)+AQ,(~h)+AQ,(~2h)+AQ,(-3n)=0

So (ii) is true for k =1. Assume that

Q (0)=A fork e{2,..., p} for some integer p > 2. Then

Q,.(0)=AQ,(0)+AQ, (-h)+AQ, (-2n)+AQ, (-3n) = AAT = A™",

by (i) and the induction hypothesis. Therefore (ii) is proved.

(ili) Let k =1and s = rh for any integer r; then
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Q(s)=AQ,(s)+AQ (s-h)+AQ,(s—2h)+AQ,(s-3n)=0, sinces ¢ {0,1,2,--}

Assume that Q, (s)=0fork e{2,..., p}, for some integer p. Then
Q1 (8)=AQ,(s)+AQ,(s—h)+AQ,(s—2h)+AQ, (s—3h) =0, (by the induction hypothesis)
= Q,(s)=0 Vs =rh, for any integer r.

iv) Q(h)=AQ,(h)+AQ (0)+AQ,(-h)+AQ,(-2n)=A= > ﬁ/&i

VI€Po (1-1)1(1),20) J=L

Similarly,
Q,(h)=AQ (h)+AQ (0)+AQ (~h)+AQ (-2h)= AA +AA +A0+AD0=AA +AA

= Z H'AVJ — the lemma is true for k = 2

V2<Po 1 1=
Assume (iv) is true for k € {3,..., p} , for some integer p >3. Then

Qp+1(h) =AQ, (h)+ AQ, (O)+ AQ, (_h)+ AQ, (_Zh)'

p
Q,(h)= > HA,J, by the induction hypothesis

(vl...vp)e Po (p-1).11 j=1

Q,(0)=A7.,Q,(~h)=0=Q, (-2h) by (ii) and (i) respectively.
Therefore,, Q,,,(h) = A, > ﬁ A +AA= > ﬁ A, with leading A,
(Vl“'vp+1)€po(p—1),1(1) 1= (Vl"'vp+1)e Po(p+1).1(1) =

p+1

+ > [TA, with leading A
(vl...vpﬂ)epo(p)yl(l) j=t
p+l p+1
= z 1,_! A, T Z H A,
1w

(Vi Vpar )< Po (p). (Vo Vpar ) Po (psa1),10) 17

So (iv) is true for k = p+1, hence true fork € {1,2,...}

(v) Q(0)=A ,Q(h)=A andQ (2h)= A by (ii) and (i) and the definition of Q,.
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Also, Q, (3h) = AQ, (3) + AQ, (2h) + AQ, (h) + AQ, (0) = A,
Let j= p >4, pinteger p; then
Q (ph)=AQ,[pn]+AQ, ([p-1]h)+ AQ, ([p-2]h)+AQ, ([p-3]h)

=Q,(ph)=A0+A0+AO0+AO0=0 by the definition of Q,

42 Theorem on the Functional Form  of Qk( jh), for j=3k-3
0 it j>3k+1l (i)
A it j=3k (i)
k k-1
>, [TA, =2 AAA™ if j=3k-1 (iii)
(v... %) e P23 (k) j=1 r=0
N k k
Q(ih)= D [1A, + 3 [TA, if j=3k-2 @)
(VoW ) e P (sk-j), 3 (j+1-2k) = (Vl-“'Vk)Epz(Bk—j),3(j—2k) =
S K S
> H'AVJ-”L > H'AVHL > HAVJ_,j=3k—3 (v)
(Vo v e P10 20) 3k-2) 172 (Vi) Po@), sk 172 (Vo vic) € P23 sk 7T

Note :For j =3k —3, (V) can be also be expressed as:

LY

+ k

Qk(jh):i Z HA\IJ

=01, =0 (v;.-- N
n=0(v Vk)epo(’o)1(’1)'2(3’3%’2’1)'3(kfwro”l)J

5

P

Proof

M Q ([3k+1]h)=AQ._, ([3k+1]h)+AQ,, ([3kh])+AQ,, ([3k -1]h)+ AQ,, ([3k —2]h)
k=1 =0Q (4h)=AQ,(4h)+AQ,(3h)+AQ,(2h)+AQ,(h)=0
=A0+A0+A0+A0=0
Therefore Q1(4h): 0, by (v) of theorem 4.1
k=2=0Q,(7h)=AQ (7h)+AQ (6h)+ AQ, (5h)+ AQ, (4h) =0, (by (v) of the theorem 4.1).

So (i) is true for k = 2. Assume (i) is true for k {3 ..... p}, for some integer p > 3. Then,
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Q,..((8[p+1]+1)h) = AQ, ((8[p+1]+1)h)+ AQ, ([38p+3]h)+ AQ, ([3p+2]n)+ AQ, ([3p +1]h)

=AQ, ((3[p+4])h)+AQ, ([3p+3]h)+AQ, ([3p+2]n)+ AQ, ([3p+1]h)
Notethat 3n+4>3n+1:3n+3>3n+1and 3n+ 2 > 3n+1. Therefore, by the induction hypothesis
Q,.((3[p+1]+1)h)=A0+A0+A0+A0=0. Sois (i) valid for k = p+1, hence valid for all k.
Therefore Q,( jh) =0 for all j > 3k +1 proving (i)

(i) Consider Q, (3kh), fork =1; this yields: Q (3h)= A by (v) of the theorem 4.1.
So (ii) is true fork =1.

Assume that (ii) is true fork e {2 ..... p} , for some integer p. Then,
Q,.(3[p +1]n) = AQ, (3o +1]n)+ AQ, ([39 + 2Jn)+ AQ, ([3p +1]h) + A, (3p1)
Note that Q (3ph) = A’ by (i) of the theorem 4.1.
AlsoQ (3[p+1]h)=0=Q, ([3p+2]h)=Q, ([3p+1]h) by (i) of the theorem 4.2.
Therefore, Q,,(3[p+1]h)=AA"=A""
Hence Q, (3kh) = A for everyk e {1,...}, for some integer k proving (ii).
(i) Q ([3k -1]h) = AQ,, ([3k -1]h)+ AQ ., ([3k —2]h) + AQ, , ([3k —3]h) + AQ,, ([3k - 4]h)
k=1=Q,(2h)=AQ,(2h)+AQ, (h)+AQ,(0)+AQ,(-h)=A
Assume that (iii) is true fork € {2,..., p} , for some integer p.
Then, Q , ([3(p+1)-1]h)=Q,, ([3p+2]h)
=AQ, ([8p+2]h)+AQ, ([3p+1]h)+ AQ, ([3ph])+ AQ, ([3p-1]h)

Note that Q, ([3p+2]h)=0=Q, ([3p+1]) by (i)andQ, (3ph)=A’ by (ii).
k

By the induction hypothesis, Q, ([3p-1]h) = 2 1 K
(Vyree¥p) = Papagpy 17

But A, = Q (2h) by (v) of the theorem 4.1.
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Now,

k
HA/j: > A=A, fork=1.Soiii)is true for k = 1.

(V- )e P2y J=1 V2€P 20
p p+1
Therefore, Q , ([3(p+1)-1]h) = A A’ + A > [1A =AA+ > [1A,
ViV )EP 2 @) 1(p) j=1 Vi Vp )€ Py 1 (pay) j=1
with leading A, in each permutation of /-\J,S Jje {1 p +1} . Since A, appears only once in each
permutation it can only lead once in A/A’ and will take the positions 2,..., p +1in other
p+1
permutations. Therefore, Q,, ([3(p+1)-1]h) = > [T A, . proving the left-hand side
- J
Vi Vpi J€P 2 1y 1 (pea) 17T
[
of (iii), thatis, Q, ([3k —1]h)= > 11 A, - To prove the right-hand side of (iii), notice

(vl,.A.,Vk)E P2 )1 (k) =1

k-1
that » Al A A" is the sum of the permutations of A, and A, .
r=0

k-1
When r =0, the permutation equals Z AZ/{’l, indicating A, leads; similarly, when r = 0 the permutation equals

r=0

k-1
Z A A A indicating A, takes the second position; continuning in this fashion, we deduce that for r = k -1,

r=1

k-1
the right hand side of (iii) equals Z A\:’lAZ, implying that A, trails. Note that A, occurs once in each permutation,

r=k-1

while A, occurs k —1 times. This completes the proof of (iii).

™ Y IIA+ X TIA

(Vi Vi )€ Py 1y aicry J=1 (V- Y )EP o2 362 i1
Let us consider the expressionQ, ([3k —2]h), fork =1; this yields Q (h)=A by (v) of theorem
4.1. Following the mathematical convention of setting infeasible sums to zero, we deduce that
for k=1and j=3k-2 (iv) yields
1

> IIA+ X ljlﬁv,: > le\/j+0=A1

Vi€ pl(l),s(o) =1 V, V3€P 2(2).3(-1) j Vi€ pl(l),s(o] J
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Similarly, k=2= j=3(2)-2=4

= Q([3k—1] h) =Q,(4h)=AA + A’ + A/A, the right hand side of (iv) yields

> A+ ¥ A= ¥ Tla+ X 1A

(W V)P ) gy 71 (V23)<P 500 3(2.2) (W 3)< Py )y I V2P0,
=AA+A +AA

So (iv) is true fork = 2. The rest of the proof is by mathematical induction onk .

Assume the validity of (iv) fork €{3,...,p}, for some integer p >3.Then

Q,.([3(p+1)-2]n)=Q, ([3p+1]h). But

Q,..([3p+1]h) = AQ, ([3p+1]h)+AQ, (3ph)+ AQ, ([3p-1]h)+ AQ, ([3p-2]h)

Now Q,([3p+1]h)=0by (i);Q, (3pn) = A7, by (ii) :
Qp([3p—1]h):( )Z H'% Z%AzAf“ by (iii)

Vir-Vk )€ P 2@1)3 (k1) 12
Q,([3p-2]h) = > IIAa+ > [TA (by the induction hypothesis).

(Vo Vp)e P a3 (py 12 (Vi Vp)e P2 a) a(pgy 11
Therefore

Qp+l([3p+l]h)
—A0eAR A, Y T]A, +A3 > 1A +Aa Z [1A,
(Yo P o) apyy I (Voo )& Py gpy) 151 (Ver¥p)E P 2 2) a(po) 171
p+l

AA’ = Y. [IA, with leading A

(Vi V) Py a(p 17

p+l

AA = > TIA, (with leading a)

(Vi V) Py a(p 17
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A D)) ]%[AM: DI I (with leading A) ,

(WrVp)e Py qpyy §=2 (WrVpa)e P ag) ap) I
p p+1
Ay H'AVJ - Z _ AVi '
(Vi ¥p )€ P oty apy 171 (Vo Vpia)€ P o) apy 172
p p+1
p _
Therefore, AA) + A, > H'AM thA= 2 H'AVi !
(vl,, Vp)€ P o) 3(py) 1T (Vll-“'vp+1 €P1w) 3(p) =1
p+l p+1
implying that Qp+1<[3( p+1)—2Jh)= Z H'A\/,- + Z H'A\q
(W)€ Py ap) i1 (Vo Vpaa)& Poga) (gpayo) 11

(v) For k=1andj=3k-3 the left hand side of the expression (v) givesQ, (0)=A;

the right hand side equals 3" HAV+ > H'AV“L > HA»

Vi€ P y(y) 21).30-2) =L Vi€ P ow), 3@y J=1 Vi€ P 5(3) 303 1L

1
Notice that Z H'AV and Z 1_[,6V are infeasible sums, and are therefore equal to

VL€ P 1) 2(1) 3(-1) VE P 53 3(2) J=1

0. Hence, the right hand side of (V) yields z li['“». =A,.So (v) is true fork =1.

Vi€ P oy =L

Similarly,  for k=2 the right hand  side Q ([3k—3]h) yields

Q,(3n)=AA +AA +AA +AA (from the determining equation for Q, (s)).
The right hand side of (v) with k =2 = j=3(2)-3=3 gives
2
> IA+ Y TIa+ X TIA
(MV2)€ Py 20 322) 1=1 (Yo ¥3)e P o), 3y 1=1 (V2 V3)€ P o) 32g) J=1

the last sum Z H A, isan infeasible sum
L i
(V2.V3)€ P 5(5) 3(25) J=1
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Accordingly the right hand side of Q, (3h) gives

> JIA+ X HA» AA+AA + AN +AA,

(W 2)e Py oy J-L (Vo Vs)< P oy, s =1
which is consistent with the expression forQ,(3h). So (v) is valid fork = 2.
Assume the validity of (v) fork € {3,..., p}, for some integer p > 3.

Then, Q,.,([3(p+1)-3]h)=Q,.(3ph). And Q,,(3ph)

= AQ, (3ph) +AQ, ([3p-1]h)+ AQ, ([3p-2]h)+AQ, ([3p-3]h).

Q,..(3ph) = A’, by (ii) of the theorem; Q, ([3p-1]h)= 2 HA ZAaAAp“ by (iii)

(v V)“’z()(m) -

of the theorem.

Q,([3p-2]h)= > f[Aj + > f[Aj by (iv) of the theorem

(%Y )& Prgyspy =1 (%) Poys(pa) 1=
Q, ([3p-3]h)= Z HA+ > [Ia+ Y 1A
(W -Vp)e Py, 20 (e Vo)e Pogy 3py 11 (rVp)e P o apg) 1

(by the induction hypothesis).

Therefore,
Qu(3)=AA+A Y T]A +Az Z HA
(W Vp)e P o apy 1= Vp)€ Py, apyy 171
+A D HA A Y I
(W Vp)e P oz apz) 1L Ve Vp )€ Py, 20 552 171
p
A Y 1A +As > 1A
(Vl )E Powa(py 171 -V )Epz(s a(pg) 171
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Now, AN = > [TA, (with  trailingp)),  similarly

A > H'Avj = > H'ij (with leading A, ).

(vl,.,.,Vp)E Pog)a(p H

p+1
Therefore, AA +A Z H A = Z H A, .
(Vo Vo )€ P oy 3 pyy 17 (e Vpa)e P o s
p+1
Also A Z HAV > [TA, (with leading o),
Ve Vp)EP o (2) 5 (pg) 17 (Vo) € P o9 3 () I
p p+1
A > H A, = > [1A
(WrVp)eP oy a(pg) I (WreVpa)e P oy a(p) 171
p p+l
A Y TIA= > [TA, (with leading a).
(vl,.,.,vp)e P a(ey 171 (vl,..,,vpﬂ)e Powa(ey 17
Consequently,
p+1 p+1 p+l
Q,..(3ph)= 2 HAJ+ 2 HAJ+ 2 HAJ
(Vv Vpua)ep 0a(p) I (e Vpua)e Py @, 3(py 171 (Var-Vpua)e p 22)3(p-2) 171
p+1 p+1 p+1
+ )y [1A~+ 2 H A+ )y H A,
(Vv Vpir)e Paga) 3 (pa) 171 (Ve Vpia)e Py a(py 1L (r-Ypia)e P 10 2(2)5(p) 17
Therefore,
p+1 p+1
Qp+l (Bph): Z HAJ + Z HA] 7(With Ieading AZ)
(Vll“'vp+1)e P o ).a(p) =1 (Vl ""Vp+1)e P 2(2) 3(p-2) i=1
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+ > H A, (with leading A )

p+1
+ A (with leading A )

(Ve Vpa)e P oy a(py 11

p+1

+ ) HA,- (with leading A, )

p+1

+ > TTA (with leading )  (4.1)

(Vo) P 19 2(2), 3050 171

5. SUMMARY
This research article has successfully carried out two tasks. First, it investigated and

established functional expressions and structure of determining matrices Q, (s),seR, of triple-

delay systems for s=jh, min{j.k} =1 jk integersand for s c {rh} UR ,r ¢{---,—2,-1,1,2,---}.
The article proceeded to obtain thefunctional expressions and structure of the determining
matrices Q,(jh)on the j-interval[3k —3,0). The formulation and proof of the expressions for
the determining matrices of the system of interest were achieved by the exploitation of key facts
about permutations, the interrogation of the feasibility dispositions of Q, (jh)and the application

of the principle of mathematical induction. The work has added to the body of knowledge and
has provided much needed impetus for further work on determining matrices of system (5). A

sequel to this article will investigate more general results.
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