International Research Journal of Natural and Applied Sciences
ISSN: (2349-4077)
Impact Factor- 5.46, Volume 5, Issue 11, November 2018
Website- www.aarf.asia, Email : editor@aarf.asia, editoraarf@gmail.com

FUNDAMENTAL RESULTS ON DETERMINING MATRICES FOR A CLASS OF TRIPLE-DELAY LINEAR CONTROL SYSTEMS

Ukwu Chukwunenye \& Temuru, Peace Uche
Department of Mathematics, University of Jos, P.M.B. 2084, Jos, Plateau State, Nigeria.

Abstract

This research article obtainedrestricted functional forms of determining matrices for a class of triple-delay linear control systems for certain pertinent parameters, thus bridging the knowledge gap in this area of acute research need. The proofs were achieved by the exploitation of key facts about permutations, combinations of summation notations, change of variables techniques and the compositions of sigma and max functions.

Keywords: Delay, Determining, Functional, Leading, Permutation, System, Triple

1. INTRODUCTION

Controllability is a very important concept that is applied in aerospace engineering, optimal control theory, systems theory, quantum systems, power systems, industrial and

© Associated Asia Research Foundation (AARF)

chemical process controls etc. This concept was first introduced by Kalman in 1963 (Zmood, 1971) and a survey of controllability of dynamical systems was done by Klamka (2013). In addition, there have been intense research activities on qualitative approach to controllability of linear and nonlinear systems. Xianlong (2013) researched on approximate controllability of semi linear neutral retarded systems and Jackreece (2014) worked on the controllability of neutral integro-differential equations.

However, one is not aware of any other results that comprehensively interrogated the controllability of linear autonomous control systems of single-delay neutral and double-delay types via the structures of the determining matrices except (Ukwu, 2014a; 2016a). Thedetermination of the computational complexity and electronic implementations of determining matrices for double-delay linear autonomous control systems and single-delay linear autonomous neutral control systems by Ukwu (2016b) are novel contributions in this area.

In the study of Euclidean controllability of linear autonomous control systems, determining matrices are preferred veritable tools as they are the least computationally intensive, when compared to indices of control systems matrices or controllability Grammians.

Unfortunately there is no known published work that has attempted the extension of the great feats of(Ukwu, 2014a; 2016a)to delay control systems with triple time-delays in the state variables. This could be attributed to the severe difficulty in identifying recognizable mathematical patterns needed for any conjecture on functional forms of determining matrices and subsequent inductive proof. It is against this backdrop that this study makes a positive contribution to knowledge by correctly establishing relevant results on functional forms of determining matrices for the afore-mentioned triple-delay systems for certain pertinent parameters.

© Associated Asia Research Foundation (AARF)

2. THEORETICAL UNDERPINNING

Let r_{a}, r_{b}, r_{c} be nonnegative integers and let $P_{a\left(r_{a}\right), b\left(r_{b}\right), c\left(r_{c}\right)}$ denote the set of all permutations of $\underbrace{a, a, \ldots, a}_{r_{a} \text { times }} \underbrace{b, b, \ldots, b}_{r_{b} \text { times }} \underbrace{c, c, \ldots, c}_{r_{c} \text { times }}$: the permutations of the objects a, b, c, in which i appears r_{i} times, $i \in\{a, b, c\}$.

In particular, the following summarized results due toUkwu (2014b) on functional forms of determining matrices are quite relevant:

Consider the class of double-delay linear autonomous control systems of the form:

$$
\begin{align*}
& \dot{x}(t)=A_{0} x(t)+A_{1} x(t-h)+A_{2} x(t-2 h)+B u(t) ; t \geq 0 \tag{1}\\
& x(t)=\phi(t), t \in[-2 h, 0], h>0 \tag{2}
\end{align*}
$$

where A_{0}, A_{1}, A_{2} are $n \times n$ constant matrices with real entries, B is an $n \times m$ constant matrices with real entries.

2.1 Determining Equations: Uniqueness and Existence

Let $Q_{k}(s)$ be an $n \times n$ matrix function defined by

$$
Q_{k}(s)=A_{0} Q_{k-1}(s)+A_{1} Q_{k-1}(s-h)+A_{2} Q_{k-1}(s-2 h) \text { for } k=1,2,3, \ldots s>0,
$$

with intial conditions:

$$
Q_{0}(0)=I_{n} ; Q_{0}(s)=0 ; s \neq 0 .
$$

These initial conditions guarantee the unique solvability of the matrix function $Q_{k}(s)$ (Gabasov \& Kirillova, 1976; Chidume, 2007).

© Associated Asia Research Foundation (AARF)

2.2 Computable Expression of Determining Matrices (Ukwu, 2016b)

For $0 \leq j \leq k \neq 0, j, k$ integers,

$$
\begin{aligned}
& Q_{k}(j h)=\sum_{\substack{r=0 \\
\left(v_{1}, \ldots, v_{k}\right) \in P_{0(r+k-j), 1}(j-2 r), 2(r)}}^{\left[\begin{array}{c}
{\left[\frac{j}{2}\right]}
\end{array}\right.} A_{v_{1}}, \ldots, A_{v_{k}} . \\
& \text { For } j \geq k \geq 1, j, k \\
& \text { integers } \\
& Q_{k}(j h)=\left\{\begin{array}{l}
{\left[\frac{2 k-j}{2}\right]} \\
\left.\sum_{r=0}^{2}\right] \\
0, j \geq 2 k+1
\end{array} \sum_{\left(v_{1}, \ldots, v_{k}\right) \in P_{0(r), 1(2 k-j-2 r), 2(r+j-k)}} A_{v_{1}}, \ldots, A_{v_{k}} \quad 1 \leq j \leq 2 k\right.
\end{aligned}
$$

The proofs were established with the techniques of mathematical induction hypothesis, summation facts, greatest integer functions and change of variables.

Consider the class of single-delay linear neutral autonomous control systems of the form:

$$
\begin{align*}
& \frac{d}{d t}\left[x(t)-A_{-1} x(t-h)\right]=A_{0} x(t)+A_{1} x(t-h)+B u(t) ; t \geq 0 \tag{3}\\
& x(t)=\phi(t), t \in[-h, 0], h>0 \tag{4}
\end{align*}
$$

where A_{-1}, A_{0}, A_{1} are $n \times n$ constant matrices with real entries, B is an $n \times m$ constant matrix with real entries. The initial function ϕ is in $C\left([-h, 0], \mathbf{R}^{n}\right)$, the space of continuous functions from $[-h, 0]$ into the real n-dimension Euclidean space, \mathbf{R}^{n} with norm defined by $\|\phi\|=\sup _{t \in[-h, 0]}|\phi(t)|$, (the sup norm). The control u is in the space $L_{\infty}\left(\left[0, t_{1}\right], \mathbf{R}^{n}\right)$, the space of essentially bounded measurable functions taking $\left[0, t_{1}\right]$ into \mathbf{R}^{n} with norm $\|\phi\|=$ ess $\sup _{t \in\left[0, t_{1}\right]}|u(t)|$.

© Associated Asia Research Foundation (AARF)

2.2.1 Determining Equations: Uniqueness and Existence

Let $Q_{k}(s)$ be an $n \times n$ matrix function defined by

$$
Q_{k}(s)=A_{-1} Q_{k}(s-h)+A_{0} Q_{k-1}(s)+A_{1} Q_{k-1}(s-h) \text { for } k=1,2,3, \ldots s>0,
$$

with intial conditions :

$$
Q_{0}(0)=I_{n} ; Q_{k}(s)=0, \text { for } \min \{k, s\}<0 .
$$

These initial conditions guarantee the unique solvability of the matrix function $Q_{k}(s)$ (Gabasov \& Kirollova, 1976; Ukwu, 2016b).

2.3 Expressions and Structures of the Determining Matrices for Single-Delay Linear Neutral Autonomous Control Systems (Ukwu, 2016b)

If j, k are positive integers, then

$$
\begin{aligned}
& Q_{k}(j h)=\sum_{\left(v_{1} \ldots v_{j-k}\right) \in P_{-1(j), 0(k)}} A_{v_{1}} \ldots A_{v_{k}} \\
& +\left[\sum_{\left(v_{1} \ldots v_{j}\right) \in P_{-1}(j-k), 1(k)} A_{v_{1}} \ldots A_{v j}+\sum_{r=1}^{k-1} \sum_{\left(v_{1}, \ldots v_{j+r}\right) \in P_{-1}(r+j-k), 0(r),(k-r)} A_{v_{1}} \ldots A_{v_{j+r}}\right] \operatorname{sgn}(\max \{0, j+1-k\}) \\
& +\left[\sum_{\left(v_{1}, \ldots, v_{k}\right) \in P_{0(k-j), 1(j)}} A_{v_{1}}, \ldots A_{v_{k}}+\sum_{r=1}^{j-1} \sum_{(v, \ldots v) \in P_{-1(r), 0(r+k-j), 1(j-r)}} A_{v_{1}} \ldots A_{v_{k+r}}\right] \operatorname{sgn}(\max \{0, k-j\})
\end{aligned}
$$

3. MATERIAL AND METHODS

3.1 Identification of Work-Based Triple-Delay Linear Autonomous Control Systems

Consider the triple-delay linear autonomous control system.

$$
\begin{equation*}
\dot{x}(t)=A_{0} x(t)+A_{1} x(t-h)+A_{2} x(t-2 h)+A_{3} x(t-3 h)+B u(t) ; t \geq 0 \tag{5}
\end{equation*}
$$

© Associated Asia Research Foundation (AARF)

$$
\begin{equation*}
x(t)=\phi(t), t \in[-3 h, 0], h>0 \tag{6}
\end{equation*}
$$

where A_{0}, A_{1}, A_{2} and A_{3} are $n \times n$ constant matrices with real entries, B is an $n \times m$ constants matrix with real entries. The initial function ϕ is in $C\left([-3 h, 0], \mathbf{R}^{n}\right)$, the space of continuous functions from $[-3 h, 0]$ into the real n-dimensional Euclidean space, \mathbf{R}^{n} with norm defined by $\| \phi \mid=\sup _{t \in[-3 h, 0]}\{|\phi(t)|\}$, (the sup norm). The control u is in the space $L_{\infty}\left(\left[0, t_{1}\right], \mathbf{R}^{n}\right)$, the space of essentially bounded measureable functions taking $\left[0, t_{1}\right]$ into \mathbf{R}^{n} with norm $\|\phi\|=e s s \sup _{t \in\left[0, t_{1}\right]}\|u(t)\|$.

Any control $u \in L_{\infty}\left(\left[0, t_{1}\right], \mathbf{R}^{n}\right)$, will be referred to as an admissible control.
SeeChidume (2007) for further discussion on $L_{p}\left(\right.$ or $\left.L^{p}\right), p \in\{1,2, \cdots, \infty\}$.

3.1.1 Determining Equations: Uniqueness and Existence

Let $Q_{k}(s)$ be an $n \times n$ matrix function defined by

$$
Q_{k}(s)=A_{0} Q_{k-1}(s)+A_{1} Q_{k-1}(s-h)+A_{2} Q_{k-1}(s-2 h)+A_{3} Q_{k-1}(s-3 h) \text { for } k=1,2,3, \ldots s>0,
$$

with intial conditions :

$$
Q_{0}(0)=I_{n} ; Q_{0}(s)=0 ; s \neq 0 .
$$

These initial conditions guarantee the unique solvability of the matrix function $Q_{k}(s)$ The nextsection furnishes the functional form of the determining matrices of the system (5) on the j-interval $[3 k-3, \infty)$.

© Associated Asia Research Foundation (AARF)

4. RESULTS

4.1 Preliminary Result on Determining Matrices $Q_{k}(s), s \in \mathbf{R}$

(i) $\quad \mathrm{Q}_{k}(s)=0$ if $s<0$
(ii) $\quad \mathrm{Q}_{k}(0)=A_{0}^{k}$
(iii) $\mathrm{Q}_{k}(s)=0$ if $s \neq r h$ for any integer r
(iv)

$$
\mathrm{Q}_{k}(h)=\sum_{\left.\left(v_{1} \ldots v_{k}\right) \in P_{0(k-1)},(1)\right)} \prod_{j=1}^{k} A_{v_{j}} ; k \geq 1
$$

$$
\begin{equation*}
Q_{1}(j h)=A_{j} \operatorname{sgn}(\max \{4-j, 0\}) \tag{v}
\end{equation*}
$$

Proof
(i) Let $s<0$.

$$
k=1 \Rightarrow Q_{1}(s)=A_{0} Q_{0}(s)+A_{1} Q_{0}(s-h)+A_{2} Q_{0}(s-2 h)+A_{3} Q_{0}(s-3 h)=A_{0} 0+A_{1} 0+A_{2} 0+A_{3} 0=0
$$

So the assertion is true for $k=1$.
Assume that $\mathrm{Q}_{k}(s)=0$ for $s<0$ and for $k \in\{2, \ldots, p\}$ for some integer $p \geq 2$. Then
$Q_{p+1}(s)=A_{0} Q_{p}(s)+A_{1} Q_{p}(s-h)+A_{2} Q_{p}(s-2 h)+A_{3} Q_{p}(s-3 h)=A_{0} 0+A_{1} 0+A_{2} 0+A_{3} 0=0$
by the induction hypothesis, since $s<0 \Rightarrow s-h<0, s-2 h<0, s-3 h<0$. Therefore

$$
Q_{k}(s)=0 \quad \forall s<0, \text { as desired }
$$

(ii) $\mathrm{Q}_{1}(0)=A_{0} Q_{0}(0)+A_{1} Q_{0}(-h)+A_{2} Q_{0}(-2 h)+A_{3} Q_{0}(-3 h)=0$

So (ii) is true for $k=1$. Assume that
$Q_{k}(0)=A_{0}^{k}$ for $k \in\{2, \ldots, p\}$ for some integer $p \geq 2$. Then
$Q_{p+1}(0)=A_{0} Q_{p}(0)+A_{1} Q_{p}(-h)+A_{2} Q_{p}(-2 h)+A_{3} Q_{p}(-3 h)=A_{0} A_{0}^{p}=A_{0}^{p+1}$, by (i) and the induction hypothesis. Therefore (ii) is proved.
(iii) Let $k=1$ and $s \neq r h$ for any integer r; then

© Associated Asia Research Foundation (AARF)

$Q_{1}(s)=A_{0} Q_{0}(s)+A_{1} Q_{0}(s-h)+A_{2} Q_{0}(s-2 h)+A_{3} Q_{0}(s-3 h)=0$, since $s \notin\{0,1,2, \cdots\}$
Assume that $Q_{k}(s)=0$ for $k \in\{2, \ldots, p\}$, for some integer p. Then
$Q_{p+1}(s)=A_{0} Q_{p}(s)+A_{1} Q_{p}(s-h)+A_{2} Q_{p}(s-2 h)+A_{3} Q_{p}(s-3 h)=0$, (by the induction hypothesis) $\Rightarrow Q_{k}(s)=0 \forall s \neq r h$, for any integer r.
(iv) $Q_{1}(h)=A_{0} Q_{0}(h)+A_{1} Q_{0}(0)+A_{2} Q_{0}(-h)+A_{3} Q_{0}(-2 h)=A_{1}=\sum_{v_{1} \in p_{0}(1-1),(1), 2(0)(} \prod_{j=1}^{1} A_{v_{j}}$

Similarly,

$$
\begin{aligned}
Q_{2}(h) & =A_{0} Q_{1}(h)+A_{1} Q_{1}(0)+A_{2} Q_{1}(-h)+A_{3} Q_{1}(-2 h)=A_{0} A_{1}+A_{1} A_{0}+A_{2} 0+A_{3} 0=A_{0} A_{1}+A_{1} A_{0} \\
& =\sum_{v_{1}, v_{2} \in p_{0(1), 1(1)}} \prod_{j=1}^{2} A_{v_{j}} \Rightarrow \text { the lemma is true for } k=2
\end{aligned}
$$

Assume (iv) is true for $k \in\{3, \ldots, p\}$, for some integer $p \geq 3$. Then
$Q_{p+1}(h)=A_{0} Q_{p}(h)+A_{1} Q_{p}(0)+A_{2} Q_{p}(-h)+A_{3} Q_{p}(-2 h)$.
$Q_{p}(h)=\sum_{\left(v_{1} \ldots v_{p}\right) \in p_{0(p-1), 1(1)}} \prod_{j=1}^{p} A_{v_{j}}$ by the induction hypothesis
$Q_{p}(0)=A_{0}^{p}, Q_{p}(-h)=0=Q_{p}(-2 h)$ by (ii) and (i) respectively.
Therefore, $Q_{p+1}(h)=A_{0} \sum_{\left(v_{1} \ldots v_{p+1}\right) \in p_{0(p-1), 1(1)}} \prod_{j=1}^{p} A_{v_{j}}+A_{1} A_{0}^{p}=\sum_{\left(v_{1} \ldots v_{p+1}\right) \in p_{0(p+1),(1)}} \prod_{j=1}^{p+1} A_{v_{j}} \quad$ with leading A_{0}

$$
\begin{array}{r}
+\sum_{\left(v_{1} \ldots v_{p+1}\right) \in p_{0(p), 1}(1)} \prod_{j=1}^{p+1} A_{v_{j}} \text { with leading } A_{1} \\
=\sum_{\left(v_{1} \ldots v_{p+1}\right) \in p_{0(p), 1(1)}} \prod_{j=1}^{p+1} A_{v_{j}}+\sum_{\left(v_{1} \ldots v_{p+1}\right) \in p_{0(p+1-1), 1(1)}} \prod_{j=1}^{p+1} A_{v_{j}}
\end{array}
$$

So (iv) is true for $k=p+1$, hence true for $k \in\{1,2, \ldots\}$
(v) $Q_{1}(0)=A_{0}, Q_{1}(h)=A_{1}$ and $Q_{1}(2 h)=A_{2}$ by (ii) and (i) and the definition of Q_{0}.

© Associated Asia Research Foundation (AARF)

Also, $Q_{1}(3 h)=A_{0} Q_{0}(3 h)+A_{1} Q_{0}(2 h)+A_{2} Q_{0}(h)+A_{3} Q_{0}(0)=A_{3}$
Let $j=p \geq 4, p$ integer p; then
$Q_{1}(p h)=A_{0} Q_{0}[p h]+A_{1} Q_{0}([p-1] h)+A_{2} Q_{0}([p-2] h)+A_{3} Q_{0}([p-3] h)$
$\Rightarrow Q_{1}(p h)=A_{0} 0+A_{1} 0+A_{2} 0+A_{3} 0=0$ by the definition of Q_{0}.

4.2 Theorem on the Functional Form of $\quad Q_{k}(j h)$, for $j \geq 3 k-3$

$$
\begin{align*}
& Q_{k}(j h)=\left\{\begin{array}{clll}
0 & \text { if } \quad j \geq 3 k+1 \quad \text { (i) } \\
A_{3}^{k} & \text { if } \quad j=3 k \quad \text { (ii) } \\
\sum_{\left(v_{1} \ldots v_{k}\right) \in p_{2(1), 3(k-1)}} \prod_{j=1}^{k} A_{v_{j}}=\sum_{r=0}^{k-1} A_{3}^{r} A_{2} A_{3}^{k-1-r} & \text { if } \quad j=3 k-1 \quad \text { (iii) } \\
\sum_{\left(v_{1} \ldots, v_{k}\right) \in p_{1(3 k-1-j), 3(j+1-2 k)}} \prod_{j=1}^{k} A_{v_{j}}+\sum_{\left(v_{1} \ldots, v_{k}\right) \in p_{2(3 k-j), 3(j-2 k)}} \prod_{j=1}^{k} A_{v_{j}} \text { if } j=3 k-2
\end{array}\right. \tag{iv}\\
& \sum_{\left(v_{1} \ldots v_{k}\right) \in p_{1(1), 2(1), 3(k-2)}} \prod_{j=1}^{k} A_{v_{j}}+\sum_{\left(v_{1}, \ldots, v_{k}\right) \in p_{0(1), 3(k-1)}} \prod_{j=1}^{k} A_{v_{j}}+\sum_{\left(v_{1}, \ldots . v_{k}\right) \in p_{2(3), 3(k-3)}} \prod_{j=1}^{k} A_{v_{j}}, j=3 k-3 \tag{v}
\end{align*}
$$

Note :For $j=3 k-3$, (v) can be also be expressed as:

Proof

(i) $Q_{k}([3 k+1] h)=A_{0} Q_{k-1}([3 k+1] h)+A_{1} Q_{k-1}([3 k h])+A_{2} Q_{k-1}([3 k-1] h)+A_{3} Q_{k-1}([3 k-2] h)$

$$
\begin{aligned}
k=1 \Rightarrow Q_{1}(4 h) & =A_{0} Q_{0}(4 h)+A_{1} Q_{0}(3 h)+A_{2} Q_{0}(2 h)+A_{3} Q_{0}(h)=0 \\
& =A_{0} 0+A_{1} 0+A_{2} 0+A_{3} 0=0
\end{aligned}
$$

Therefore $Q_{1}(4 h)=0$, by (v) of theorem 4.1
$k=2 \Rightarrow Q_{2}(7 h)=A_{0} Q_{1}(7 h)+A_{1} Q_{1}(6 h)+A_{2} Q_{1}(5 h)+A_{3} Q_{1}(4 h)=0,($ by (v) of the theorem 4.1).
So (i) is true for $k=2$. Assume (i) is true for $k \in\{3, \ldots, p\}$, for some integer $p \geq 3$. Then,

© Associated Asia Research Foundation (AARF)

[^0]\[

$$
\begin{aligned}
Q_{p+1}((3[p+1]+1) h) & =A_{0} Q_{p}((3[p+1]+1) h)+A_{1} Q_{p}([3 p+3] h)+A_{2} Q_{p}([3 p+2] h)+A_{3} Q_{p}([3 p+1] h) \\
= & A_{0} Q_{p}((3[p+4]) h)+A_{1} Q_{p}([3 p+3] h)+A_{2} Q_{p}([3 p+2] h)+A_{3} Q_{p}([3 p+1] h)
\end{aligned}
$$
\]

Note that $3 n+4>3 n+1: 3 n+3>3 n+1$ and $3 n+2>3 n+1$. Therefore, by the induction hypothesis $Q_{p+1}((3[p+1]+1) h)=A_{0} 0+A_{1} 0+A_{2} 0+A_{3} 0=0$. So is (i) valid for $k=p+1$, hence valid for all k.
Therefore $Q_{k}(j h)=0$ for all $j \geq 3 k+1$ proving (i)
(ii) Consider $Q_{k}(3 k h)$, for $k=1$; this yields: $Q_{1}(3 h)=A_{3}$ by (v) of the theorem 4.1.

So (ii) is true for $k=1$.
Assume that (ii) is true for $k \in\{2, \ldots, p\}$, for some integer p. Then,

$$
Q_{p+1}(3[p+1] h)=A_{0} Q_{p}(3[p+1] h)+A_{1} Q_{p}([3 p+2] h)+A_{2} Q_{p}([3 p+1] h)+A_{3} Q_{p}(3 p h)
$$

Note that $Q_{p}(3 p h)=A_{3}^{p}$ by (i) of the theorem 4.1.
Also $Q_{p}(3[p+1] h)=0=Q_{p}([3 p+2] h)=Q_{p}([3 p+1] h)$ by (i) of the theorem 4.2.
Therefore, $Q_{p+1}(3[p+1] h)=A_{3} A_{3}^{p}=A_{3}^{p+1}$.
Hence $Q_{k}(3 k h)=A_{3}^{k}$ for every $k \in\{1, \ldots\}$, for some integer k proving (ii).
(iii) $Q_{k}([3 k-1] h)=A_{0} Q_{k-1}([3 k-1] h)+A_{1} Q_{k-1}([3 k-2] h)+A_{2} Q_{k-1}([3 k-3] h)+A_{3} Q_{k-1}([3 k-4] h)$
$k=1 \Rightarrow Q_{1}(2 h)=A_{0} Q_{0}(2 h)+A_{1} Q_{0}(h)+A_{2} Q_{0}(0)+A_{3} Q_{0}(-h)=A_{2}$
Assume that (iii) is true for $k \in\{2, \ldots, p\}$, for some integer p.
Then, $Q_{p+1}([3(p+1)-1] h)=Q_{p+1}([3 p+2] h)$

$$
=A_{0} Q_{p}([3 p+2] h)+A_{1} Q_{p}([3 p+1] h)+A_{2} Q_{p}([3 p h])+A_{3} Q_{p}([3 p-1] h)
$$

Note that $Q_{p}([3 p+2] h)=0=Q_{p}([3 p+1])$ by (i) and $Q_{p}(3 p h)=A_{3}^{p}$ by (ii).
By the induction hypothesis, $Q_{p}([3 p-1] h)=\sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{2(1),(p-1)}} \prod_{j=1}^{k} A_{v_{j}}$
But $A_{2}=Q_{1}(2 h)$ by (v) of the theorem 4.1.

© Associated Asia Research Foundation (AARF)

Now,

$$
\sum_{\left(v_{1}, \ldots, v_{k}\right) \in p_{2(1), 1(k-1)}} \prod_{j=1}^{k} A_{v_{j}}=\sum_{v_{2} \in p_{2(1)}} A_{2}=A_{2} \quad \text { for } k=1 . \text { So (iii) is true for } k=1 \text {. }
$$

Therefore, $Q_{p+1}([3(p+1)-1] h)=A_{2} A_{3}^{p}+A_{3} \sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{2(1), 1(p-1)}} \prod_{j=1}^{p} A_{v_{j}}=A_{2} A_{3}^{p}+\sum_{\left(v_{1}, \ldots v_{p}\right) \in p_{2(1), 1(p+1-1)}} \prod_{j=1}^{p+1} A_{v_{j}}$ with leading A_{3} in each permutation of $A_{v_{j^{\prime}, s}}, j \in\{1, \ldots, p+1\}$. Since A_{2} appears only once in each permutation it can only lead once in $A_{2} A_{3}^{p}$ and will take the positions $2, \ldots, p+1$ in other permutations. Therefore, $Q_{p+1}([3(p+1)-1] h)=\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{2(1), 1(p+1)}} \prod_{j=1}^{p+1} A_{v_{j}}$, proving the left-hand side of (iii), that is, $Q_{k}([3 k-1] h)=\sum_{\left(v_{1}, \ldots, v_{k}\right) \in p_{2(1), 1(k-1)}} \prod_{j=1}^{k} A_{v_{j}}$. To prove the right-hand side of (iii), notice that $\sum_{r=0}^{k-1} A_{3}^{r} A_{2} A_{3}^{k-1-r}$ is the sum of the permutations of A_{2} and A_{3}. When $r=0$, the permutation equals $\sum_{r=0}^{k-1} A_{2} A_{3}^{k-1}$, indicating A_{2} leads; similarly, when $r=0$ the permutation equals $\sum_{r=1}^{k-1} A_{3} A_{2} A_{3}^{k-2}$ indicating A_{2} takes the second position; continuning in this fashion, we deduce that for $r=k-1$, the right hand side of (iii) equals $\sum_{r=k-1}^{k-1} A_{3}^{k-1} A_{2}$, implying that A_{2} trails. Note that A_{2} occurs once in each permutation, while A_{3} occurs $k-1$ times. This completes the proof of (iii).
(iv) $\sum_{\left(v_{1} \ldots v_{k}\right) \in p_{1(1), 3(k-1)}} \prod_{j=1}^{k} A_{v_{j}}+\sum_{\left(v_{1} \ldots v_{k}\right) \in p_{2(2), 3(k-2)}} \prod_{j=1}^{k} A_{v_{j}}$

Let us consider the expression $Q_{k}([3 k-2] h)$, for $k=1$; this yields $Q_{1}(h)=A_{1} \quad$ by (v) of theorem 4.1. Following the mathematical convention of setting infeasible sums to zero, we deduce that for $k=1$ and $j=3 k-2$ (iv) yields

$$
\sum_{v_{1} \in p_{1(1), 3(0)}} \prod_{j=1}^{1} A_{v_{j}}+\sum_{v_{2}, v_{3} \in p_{2(2), 3(-1)}} \prod_{j=1}^{1} A_{v_{j}}=\sum_{v_{1} \in p_{1(1), 3(0)}} \prod_{j=1}^{1} A_{v_{j}}+0=A_{1}
$$

© Associated Asia Research Foundation (AARF)

Similarly, $k=2 \Rightarrow j=3(2)-2=4$
$\Rightarrow Q_{k}([3 k-1] h)=Q_{2}(4 h)=A_{1} A_{3}+A_{2}^{2}+A_{3} A_{1}$, the right hand side of (iv) yields

$$
\begin{aligned}
& \quad \sum_{\left(v_{1}, v_{3}\right) \in p_{1(1), 3(2-1)}} \prod_{j=1}^{2} A_{v_{j}}+\sum_{\left(v_{2}, v_{3}\right) \in p_{2(2), 3(2-2)}} \prod_{j=1}^{2} A_{v_{j}}=\sum_{\left(v_{1}, v_{3}\right) \in p_{1(1), 3(1)}} \prod_{j=1}^{2} A_{v_{j}}+\sum_{v_{2} \in p_{2(2),}} \prod_{j=1}^{2} A_{v_{j}} \\
& =A_{1} A_{3}+A_{2}^{2}+A_{3} A_{1}
\end{aligned}
$$

So (iv) is true for $k=2$. The rest of the proof is by mathematical induction on k.
Assume the validity of (iv) for $k \in\{3, \ldots, p\}$, for some integer $p \geq 3$. Then
$Q_{p+1}([3(p+1)-2] h)=Q_{p+1}([3 p+1] h)$. But
$Q_{p+1}([3 p+1] h)=A_{0} Q_{p}([3 p+1] h)+A_{1} Q_{p}(3 p h)+A_{2} Q_{p}([3 p-1] h)+A_{3} Q_{p}([3 p-2] h)$
Now

$$
Q_{p}([3 p+1] h)=0 \text { by }
$$

(i); $Q_{p}(3 p h)=A_{3}^{p}$,
by
(ii)
$Q_{p}([3 p-1] h)=\sum_{\left(v_{1}, \ldots v_{k}\right) \in p_{2(1), 3(k-1)}} \prod_{j=1}^{k} A_{v_{j}}=\sum_{r=0}^{k-1} A_{3}^{r} A_{2} A_{3}^{k-1-r}$ by (iii)
$Q_{p}([3 p-2] h)=\sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{1(1), 3(p-1)}} \prod_{j=1}^{p} A_{v_{j}}+\sum_{\left(v_{1}, \ldots v_{p}\right) \in p_{2(2), 3(p-2)}} \prod_{j=1}^{p} A_{v_{j}}$ (by the induction hypothesis).
Therefore

$$
\begin{aligned}
& \quad Q_{p+1}([3 p+1] h) \\
& =A_{0} 0+A_{1} A_{3}^{p}+A_{2} \sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{2}} \prod_{2(1), 3(p-1)}^{p} A_{v_{j}}+A_{3} \sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{1(1), 3(p-1)}} \prod_{j=1}^{p} A_{v_{j}}+A_{3} \sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{2(2), 3(p-2)}} \prod_{j=1}^{p} A_{v_{j}} \\
& A_{1} A_{3}^{p}=\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{1(1), 3(p)}} \prod_{j=1}^{p+1} A_{v_{j}}\left(\text { with leading } A_{1}\right) ; \\
& A_{3}^{p} A_{1}=\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{1(1), 3(p)}} \prod_{j=1}^{p+1} A_{v_{j}}\left(\text { with leading } A_{3}\right)
\end{aligned}
$$

© Associated Asia Research Foundation (AARF)

$A_{3} \sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{(1)},\{(p-1)} \prod_{j=1}^{p} A_{v_{j}}=\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{(1)}, x_{(0)}} \prod_{j=1}^{p+1} A_{v_{j}}, \quad$ (with leading $\quad A_{3}$) , $A_{2} \sum_{\left(v_{1}, \ldots v_{p}\right) \in p_{21},\{(p-1)} \prod_{j=1}^{p} A_{v_{j}}=\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{2(2),(p-1)}} \prod_{j=1}^{p+1} A_{v_{j}}$.
Therefore, $A_{1} A_{3}^{p}+A_{3} \sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{2(1)}, 3(p-1)} \prod_{j=1}^{p} A_{v_{j}}+A_{3}=\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{(10,3)}} \prod_{j=1}^{p+1} A_{v_{j}}$,
implying that $Q_{p+1}([3(p+1)-2] h)=\sum_{\left(v_{1}, \ldots, v_{p+1} \in p_{1(1), 3(p)}\right.} \prod_{j=1}^{p+1} A_{v_{j}}+\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{2(2),(\{p p+1-2)}} \prod_{j=1}^{p+1} A_{v_{j}}$
(v) For $k=1$ and $\mathrm{j}=3 \mathrm{k}-3$ the left hand side of the expression (v) gives $Q_{1}(0)=A_{0}$;
the right hand side equals $\sum_{v_{1} \in p_{1(1), 2(1), 3(1-2)}} \prod_{j=1}^{1} A_{v_{j}}+\sum_{v_{i} \in p_{0(1), 3(1)}} \prod_{j=1}^{1} A_{v_{j}}+\sum_{v_{i} \in P_{2(1), 3(1-3)}} \prod_{j=1}^{1} A_{v_{j}}$.
Notice that $\sum_{v_{1} \in p_{1(1), 2(1), 3(-1)}} \prod_{j=1}^{1} A_{v_{j}}$ and $\sum_{v_{1} \in p_{2(3), 3(2)}} \prod_{j=1}^{1} A_{v_{j}}$ are infeasible sums, and are therefore equal to
0. Hence, the right hand side of (v) yields $\sum_{v_{1} \in p_{0(1)}} \prod_{j=1}^{1} A_{v_{j}}=A_{0}$. So (v) is true for $k=1$.

Similarly, for $k=2$ the right hand side $Q_{k}([3 k-3] h)$ yields $Q_{2}(3 h)=A_{0} A_{3}+A_{1} A_{2}+A_{2} A_{1}+A_{3} A_{0}$ (from the determining equation for $Q_{k}(s)$).

The right hand side of (v) with $k=2 \Rightarrow j=3(2)-3=3$ gives

the last sum $\sum_{\left(v_{2}, v_{3}\right) \in p_{2(3), 3(2-3)}} \prod_{j=1}^{2} A_{v_{j}}$ is an infeasible sum

© Associated Asia Research Foundation (AARF)

[^1]Accordingly the right hand side of $Q_{2}(3 h)$ gives

$$
\sum_{\left(v_{1}, v_{2}\right) \in p_{1(1), 2(1)}} \prod_{j=1}^{2} A_{v_{j}}+\sum_{\left(v_{0}, v_{3}\right) \in p_{0(1), 3(1)}} \prod_{j=1}^{2} A_{v_{j}}=A_{0} A_{3}+A_{1} A_{2}+A_{2} A_{1}+A_{3} A_{0}
$$

which is consistent with the expression for $Q_{2}(3 h)$. So (v) is valid for $k=2$.
Assume the validity of (v) for $k \in\{3, \ldots, p\}$, for some integer $p \geq 3$.
Then, $Q_{p+1}([3(p+1)-3] h)=Q_{p+1}(3 p h)$. And $Q_{p+1}(3 p h)$
$=A_{0} Q_{p}(3 p h)+A_{1} Q_{p}([3 p-1] h)+A_{2} Q_{p}([3 p-2] h)+A_{3} Q_{p}([3 p-3] h)$.
$Q_{p+1}(3 p h)=A_{3}^{p}$, by (ii) of the theorem; $Q_{p}([3 p-1] h)=\sum_{\left(v_{1}, \ldots v_{p}\right) \in p_{2(1), 3(p-1)}} \prod_{j=1}^{p} A_{j}=\sum_{r=0}^{p-r} A_{3}^{r} A_{2} A_{3}^{p-1-r}$ by (iii)
of the theorem.
$Q_{p}([3 p-2] h)=\sum_{\left(v_{1}, \ldots v_{p}\right) \in p_{1(1), s(p-1)}} \prod_{j=1}^{p} A_{j}+\sum_{\left(v_{1}, \ldots v_{p}\right) \in p_{2(2), 3}(p-2)} \prod_{j=1}^{p} A_{j}$ by (iv) of the theorem
$Q_{p}([3 p-3] h)=\sum_{\left(v_{1}, \ldots v_{p}\right) \in p_{1(1), 2(1), 3(p-2)}} \prod_{j=1}^{p} A_{j}+\sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{0(1), 3(p-1)}} \prod_{j=1}^{p} A_{j}+\sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{2(3), 3(p-3)}} \prod_{j=1}^{p} A_{j}$
(by the induction hypothesis).
Therefore,

$$
\begin{aligned}
& Q_{p+1}(3 p h)=A_{0} A_{3}^{p}+A_{1} \sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{p}} \prod_{2(1), 3(p-1)}^{p} A_{j}+A_{2} \sum_{\left(v_{1}, \ldots v_{p}\right) \in p_{1(1), 3}} \prod_{j(p-1)}^{p} A_{j}
\end{aligned}
$$

© Associated Asia Research Foundation (AARF)

Now,

$$
\left.A_{0} A_{3}^{p}=\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{p(1), 3(p)}} \prod_{j=1}^{p+1} A_{v_{j}} \quad \text { (with } \quad \text { trailing } A_{3}\right), \quad \text { similarly }
$$

$$
A_{3} \sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{0(1), 3(p-1)}} \prod_{j=1}^{p} A_{v_{j}}=\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{0(1), 3(p)}} \prod_{j=1}^{p+1} A_{v_{j}} \quad \text { (with leading } A_{3} \text {). }
$$

Therefore, $\quad A_{0} A_{3}^{p}+A_{3} \sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{0(1), 3(p-1)}} \prod_{j=1}^{p} A_{v_{j}}=\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{0(1), 3(p)}} \prod_{j=1}^{p+1} A_{v_{j}}$.
Also $\quad A_{2} \sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{2(2), 3(p-2)}} \prod_{j=1}^{p} A_{v_{j}}=\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{2(3), 3(p-2)}} \prod_{j=1}^{p+1} A_{v_{j}} \quad$ (with leading A_{2}),

$$
\begin{aligned}
& A_{3} \sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{2(3), 3(p-3)}} \prod_{j=1}^{p} A_{v_{j}}=\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{2(3), 3(p-2)}} \prod_{j=1}^{p+1} A_{v_{j}}, \\
& \left.A_{1} \sum_{\left(v_{1}, \ldots, v_{p}\right) \in p_{2(1), 3(p-1)}} \prod_{j=1}^{p} A_{v_{j}}=\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{2(1), 3(p-1)}} \prod_{j=1}^{p+1} A_{v_{j}} \quad \text { (with leading } A_{1}\right) .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
Q_{p+1}(3 p h)= & \sum_{\left(v_{1}, \ldots v_{p+1}\right) \in p^{p+1}, ~} A_{j}+\sum_{\left(v_{1}, \ldots v_{p+1}\right) \in p_{2(1), 3(p-1)}} \prod_{j=1}^{p+1} A_{j}+\sum_{\left(v_{1}, \ldots v_{p+1}\right) \in p_{2(2), 3(p-2)}} \prod_{j=1}^{p+1} A_{j} \\
& +\sum_{\left(v_{1}, \ldots v_{p+1}\right) \in p_{2(2), 3(p-2)}} \prod_{j=1}^{p+1} A_{j}+\sum_{\left(v_{1}, \ldots v_{p+1}\right) \in p_{1(1), 3(p-1)}}^{p+1} A_{j=1}+\sum_{\left(v_{1}, \ldots v_{p+1}\right) \in p_{1(1), 2(2), 3(p-1)}} \prod_{j=1}^{p+1} A_{j}
\end{aligned}
$$

Therefore,

© Associated Asia Research Foundation (AARF)

$$
\begin{align*}
& +\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{2(2), 3(p-2)}} \prod_{j=1}^{p+1} A_{j}, \\
& \left.+\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{2(1), 3(p-1)}} \prod_{j=1}^{p+1} A_{j} \quad \text { (with leading } A_{3}\right) \\
& \left.+\sum_{\left(v_{1}, \ldots, v_{p+1}\right) \in p_{1(1), 3(p-1)} \prod_{j=1}^{p+1} A_{j}} \quad \text { (with leading leading } A_{1}\right) \\
& \left.+\sum_{\left.\left(v_{1}, \ldots, v_{p+1}\right) \in p_{1(1), 2(2), 3(p-1)}\right)}^{\prod_{j=1}^{p+1} A_{j}} \quad \text { (with leading } A_{3}\right) \tag{4.1}
\end{align*}
$$

5. SUMMARY

This research article has successfully carried out two tasks. First, it investigated and established functional expressions and structure of determining matrices $Q_{k}(s), s \in \mathbf{R}$, of tripledelay systems for $s=j h, \min \{j, k\}=1, j, k$ integers and for $s \in\{r h\} \cup \mathbf{R}, r \notin\{\cdots,-2,-1,1,2, \cdots\}$. The article proceeded to obtain thefunctional expressions and structure of the determining matrices $Q_{k}(j h)$ on the j-interval $[3 k-3, \infty)$. The formulation and proof of the expressions for the determining matrices of the system of interest were achieved by the exploitation of key facts about permutations, the interrogation of the feasibility dispositions of $Q_{k}(j h)$ and the application of the principle of mathematical induction. The work has added to the body of knowledge and has provided much needed impetus for further work on determining matrices of system (5). A sequel to this article will investigate more general results.

© Associated Asia Research Foundation (AARF)

REFERENCES

Chidume, C. (2007). Applicable Functional Analysis, the Abdus Salam, International Centre for Theoretical Physics, Trieste, Italy.

Gabasov, R. \&Kirillova, F. (1976).The qualitative theory of optimal processes.Marcel Dekker Inc., New York.

Jackreece, P.C. (2014). Controllability of Neutral Integro-differential equation with Infinite Delay. International Journal of Mathematics and Statistics Inventions (IJMSI), 2(4), 5866.

Klamka, J. (2013). Controllability of Dynamical Systems: A survey. Bulletin of the Polish Academy of Sciences: Technical Science.doi:10.2478/bpasts-2013-0031

Ukwu, C. (2014a). The Structure of Determining Matrices for a Class of Double-Delay Control Systems.International Journal of Mathematics and Statistics Inventions (IJMSI), 2(2), 14-30.

Ukwu, C. (2014b). Necessary and Sufficient Conditions for Controllability of Single-Delay Autonomous Neutral Control Systems and Application. International Journal of Mathematics and Statistics Inventions (IJMSI), 2 (5), 30-35.

Ukwu, C. (2016a). Necessary and Sufficient Conditions for Controllability of Double-Delay Autonomous Linear Control Systems. Journal of Scientific Research and Reports, 10(3), 1-9. doi:10.9734/JSRR/2016/24348.

Ukwu, C. (2016b). Functional Differential Systems: Structures, Cores and Controllability. Lap Lambert Academic Publishing.

© Associated Asia Research Foundation (AARF)

Xianlong, F. (2013). Approximate Controllability of Neutral Semi- linear Retarded Systems. IMA Journal of Mathematical Control and Information, doi: 10, 1093/imamci/dnt019

Zmood, R. B. (1971). On Euclidean Space and Function Space Controllability of Control Systems with Delay.Technical Report, the University of Michigan, USA.

© Associated Asia Research Foundation (AARF)

[^0]: A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

[^1]: A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

