
 

© Associated   Asia   Research   Foundation (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 1  

 

 

A REVIEW ON BRAIN COMPUTER INTERFACE 

 

Pragyesh Kumar Agrawal 

Department of Physics 

Atal Bihari Vajpayee Hindi Vishwavidyalaya 

Bhopal-462016,  M.P., INDIA 

 

 

ABSTRACT 

 

A brain-computer interface (BCI) establishes a link between the human brain and the external 

devices. BCIs measure the brain activity for fetching the user’s intent and subsequently provide 

the control signals to the supporting hardware. This technology has varied uses ranging from 

assistive devices for disabled individuals to advanced simulator control. The main use of BCI is 

as an assistive technology for individuals suffering from loss of motor control caused by spinal 

cord injury, amyotrophic lateral sclerosis or any other possible incidence. BCIs take advantage 

of the brain’s electrochemical signals. There are billions of neurons in human brain with trillions 

of interconnections known as synapses. These devices also make use of neuroplasticity which is 

the brain’s ability to change physically and functionally over time. Author has discussed the 

basics of BCI in this paper and has presented details regarding brain waves, control centers of 

various organs in brain, invasive and non-invasive sensors. This paper also presents a summary 

of the research work going on in this area.  
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1. Introduction 

Brain-computer interface (BCI) is an interface established between a brain and a device 

that receives signals from the brain to command some external activity with the help of a 

computer or any other electro-mechanical device. It translates neuronal information into 

command signals which are capable of controlling external software or hardware. This interface 

facilitates a direct communication pathway between the brain and the target object. BCI 

intercepts signals from neurons and uses proper combination of hardware and software to 

translate the signals into commands, thereby enabling a disabled person to perform desired tasks 

or control a mechanized wheelchair or prosthetic limb through thoughts alone. At present brain-

interface devices need deliberate conscious thoughts; but efforts are going on to develop future 

applications such as prosthetic control which would be able to work effortlessly. Development of 

electrodes or sensors for fetching the brain signals is one of the biggest challenges in developing 

BCI technology.  It is also expected to make surgical methods for implanting these electrodes 

minimally invasive. Traditionally the brain accepts an implanted mechanical device in BCI and 

controls the device by producing desired signals. Current research in this area is focused on the 

development of non-invasive BCI.   Brain is practically "disconnected" from its target (such as a 

limb or the facial musculature) in spinal cord injury, brainstem stroke, and a host of 

neuromuscular disorders, thereby preventing mobility and movements. BCIs are often used as 

assisted living devices for persons with sensory or motor impairments (Wolpaw et al, 2002; 

Daly et al, 2008). This is particularly a helpful aid for individuals who suffer from severe 

motor disabilities. Researchers have been working with BCIs based on electroencephalography 

(EEG) with the goal of helping persons with motor impairments such as spinal-cord injury 

(SCI), amyotrophic lateral sclerosis or stroke survivors (Daly et al, 2008). 

            BCIs, in general involve four components:  

(1) Sensors or electrodes for measuring brain activity 

  (2) Automated software for converting brain activity into commands 

  (3) Interface to control an output device in real-time 

 (4) An operating environment to control the interaction between these components and 

the user 
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A BCI device basically consists of sensors (often in the form of ‘electrodes’) that receive brain 

signals, an amplifier to boost the weak signals, and a proper hardware that translates these 

signals into commands to control devices or computer programs. The constituent components of 

BCIs can be made portable and/or wearable. BCI controlled devices can offer assistive 

technology for people with disabilities, internet devices for healthy people and computer games 

or toys. Figure 1 presents a self explanatory schematic diagram of basic BCI system. 

 

Figure 1: Functional block diagram of Brain computer Interface 

2. Components of BCI 

 

2.1 Brain signals 

A BCI records and interprets or decodes brain activity to generate useful command 

signals. Neurons (brain cells) transmit electrical signals to communicate with each other. It is 

possible to intercept these signals or ‘brain activity’ with advanced electrical sensors. These 

brain signals play vital role in day-to-day life of all living creatures. Movements of healthy 

creatures are possible because the brain sends signals via the central nervous system to the 

muscles of the body. Precise communication between the brain and muscles make all kinds of 

actions of body possible.  This communication between the brain and body muscles disrupts or 

breaks due to medical conditions such as stroke or neuromuscular diseases and subsequently 

leads to paralysis or cerebral palsy. In many such cases the brain is still able to generate the 

activity signals for intended movements and a BCI can use the brain signals to control assistive 

devices. 

BCIs are designed to read the signals produced from the brain at different locations in the 

human head, translate these signals into commands that can control the hardware/computer. 
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Brainwaves which are detected using sensors placed on the scalp are divided into bandwidths to 

describe their functions, but are best thought of as a continuous spectrum of consciousness. 

Human brainwaves change according to our actions and feelings. We can feel tired, retarded, 

lethargic, or dreamy when lower frequency brainwaves are dominant. On the other hand, the 

higher frequencies are dominant when we feel energetic, or hyper-alert. 

Table 1: Various brain waves and their functions 

Type of Brain wave Frequency 

Region 

Function 

Infra-low  

(Slow Cortical Potentials) 

 

(<.5HZ) Higher brain functions 

Brain timing and network function 

Delta Waves  

Deep Sleep Wave, slow, loud 

brainwaves (generated in 

deepest meditation and 

dreamless sleep) 

(.5 to 3 HZ) 

 

Suspend external awareness, source of 

empathy. Healing and regeneration 

Theta Waves  (3 to 8 HZ) 

 

Learning, memory, and intuition 

Alpha Waves  

Deep Relaxation Wave 

(8 to 12 HZ) 

 

Overall mental coordination, 

calmness, alertness, mind/body 

integration and learning 

Beta Waves  (12 to 38 HZ) 

Fast activity, present when we are 

alert, attentive, engaged in problem 

solving, judgment, decision making 

Gamma Waves  

 

(38 to 42 HZ) 

Pass information rapidly and quietly, 

expanded consciousness and spiritual 

emergence,  insight and peak focus 

Generated when the brain is learning 

new information, sharply 

concentrating, or storing memories. 
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2.2 Brain function 

Every part of body has a tiny part in the brain through which it performs its activities. In 

general each part of the body has its own ‘control center’ in the brain that is responsible for its 

movements. It is possible to detect the activities of various active centers with the help of various 

techniques. This helps BCIs to detect the movement of body parts from the brain activity. A 

special quality of the brain is that these control centers are also active when we simply think 

about making a movement without actually moving. 

Table 2: Control centers in brain 

Brain Part Action 

Motor Cortex Movements 

Sensory Cortex Pain, Sensations 

Parietal Lobe Language Comprehension 

Temporal Lobe Hearing, Intellectual and Emotional functions 

Occipital Lobe Primary Visual Area 

Wernicke’s Area Speech Comprehension 

Frontal Lobe Judgment, Foresight, voluntary movement, Smell 

Broca’s Area Speech 

Brainstem Swallowing, breathing, Heartbeat, Wakefulness center and 

involuntary functions 

Cerebellum Coordination 

Persons who suffer from locked-in syndrome (LIS) still have fully functioning control centers in 

their brains. They are able to activate distinct areas in their brain by the ways of thinking about a 

particular movement, or attempting to make movements even if they are not able to move the 

part of the body which is controlled by that particular area of their brain. Various brain functions, 

in addition to movements of body parts, can be detected. Brain  areas are involved in different 

aspects of numerical calculations, understanding language and speaking. When these areas are 

active a BCI can detect if a person is doing calculations in their head, or is talking. In brief we 

can say that there are many distinct areas in the brain that a person can intentionally turn on 

and/or off by performing different physical tasks. BCI can be used as a realistic and promising 
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assistive technology for persons suffering from paralysis by detecting, interpreting and utilizing 

mental tasks performed by them.  

2.3 What can a BCI do with the brain signals? 

Brain signals can be obtained by placing the electrodes exactly on brain areas can be controlled 

by the person. After detecting a signal it can be converted to a command to operate a device or 

software. A pre-programmed computer can use this information to perform specific tasks. This 

way a BCI can be used to make a computer mouse ‘click’ every time the person counts 

backwards in his/her head and select from a menu in a computer program. Such controls are 

already commonly used by people suffering from paralysis with special ‘buttons’ that can be 

activated by whatever type of movement they are still able to make, such as lifting their 

eyebrows or with a little movement of their fingers.  Thus, a BCI device can also be used as a 

‘button’ to control many types of devices designed for button press control. 

Usage of sensorimotor rhythms (SMRs) is also being utilized in one particular type of 

BCIs. SMRs are electrical oscillations (i.e., mu [8–12 Hz] and beta [18–30 Hz]) in 

electroencephalographic (EEG) activity recorded over sensorimotor cortices. Amplitudes of 

these signals change with movements, imagined movements, or preparation for movements. 

Needy persons can learn through a training protocol to alter the SMR amplitude. They can use 

this control to move a computer cursor or operate another device (Pfurtscheller et al, 2012;  

Perdikis  et al, 2014; Leeb et al, 2015).  

It is important to distinguish that there are various neurological as well as engineering 

challenges between building BCIs for the peripheral nervous system (PNS) and central nervous 

system (CNS). In particular, miniaturization of processing units, isolation of targeted structures, 

replacement of failed probes, and delivery of nonmaterial, etc. are the major aspects to be looked 

upon. Understanding the information transfer and processing of the nervous system are amongst 

the most urgent challenges faced by the biomedical community, with a plethora of academic and 

clinical applications. It includes better understanding of aging, neurodegenerative diseases and 

interfaces for prosthetics and implants. For example, recent advances in chronic neural recording 

devices have facilitated the willful control of robotic prosthetic limbs for the treatment of 
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paralysis and improved seizure prevention with chronic telemetry in refractory epilepsy (Cook et 

al, 2013; Morrell, 2011). There are many different kinds of potential BCIs that will each serve 

independent functions. However, all systems must tackle three fundamental problems: accurate 

recording of information from relevant neural systems, decoding such information, and 

stimulating and manipulating neuronal dynamics in appropriate as well as meaningful ways. 

Further, BCIs must present real-time feedback to the user. It is essential for the BCI system to act 

as per user’s intent so that the user can recognize whether he/she successfully conveyed the 

desired command or not. 

3. Present Status 

In a research paper authors (Winda et al, 2017) have proposed system adopted Linear Predictive 

Coding (LPC) coefficients as the feature of the person’s mind and Support Vector Machines to 

develop the brain signal recognition system. In their work, brain signal was processed and 

provided as input to the recognition system. Right-Left sign lamp based on the brain signal 

recognition system could potentially replace the button or switch of the specific device in order 

to make the lamp work. The system then would decide whether the signal is ‘Right’ or ‘Left’. 

The decision of the Right-Left side of brain signal recognition would be sent to a processing 

board in order to activate the automotive relay, which would be used to activate the sign lamp. In 

another research (Jalal Karam et al, 2016) a Radial Basis Functions (RBF) Artificial Neural 

Network (ANN) was constructed and a BCI was implemented using NeuroSkyS EEG biosensor 

for the recognition of brain signals. The analysis was presented through the consideration of a 

noisy environment to simulate a BCI in real world applications. The data were transmitted via 

Bluetooth for MATLAB documentation and recognition rates in the highest 70 percent were 

recorded.   

An EEG Based Emotion Recognition System has been proposed in a study (Lahane et al, 

2014). They have presented a model for making a system which is able to detect human emotion 

through brain signals. In another study (Hiwaki et al, 2018) authors have presented a study on 

noninvasive measurement of dynamic brain signals using light penetrating the brain. They 

verified that diffused near-infrared light penetrating through the upper jaw and into the skull, 
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which they termed as opt encephalography (OEG), led to the detection of dynamic brain signals 

that varied concurrently with the electrophysiological neural activity.  

Superconducting Quantum Interference Devices (SQUIDs) are widely used to detect the 

extremely weak magnetic field of brain. In order to measure brain activity in normal 

environment, a group of researchers (Wang et al, 2017) have constructed and proposed 

a measurement system based on highly sensitive Magneto-Impedance (MI) sensor. They have 

reported the study of measuring Auditory Evoked Field (AEF) brain waves. The system was 

improved in this study, and the sensor signals could be processed in real-time to 

monitor brain activity. In this study, they measured the alpha rhythm and the P300 brain activity 

in the frontal, the parietal and both the temporal regions using a real-time measuring and 

processing system based on highly sensitive MI sensor.  

 

4. Measurement of brain signals 

 

It is essential to measure the brain signals in order to make proper devices for their 

interpretation. Various techniques are available for measuring these signals. These techniques 

offer certain advantages as well as disadvantages. Fundamentally there are three types of BCI 

systems; invasive; partially invasive, and non-invasive.  

Noninvasive and invasive methods both benefit from improved recording techniques. 

Invasive methods being used at present do not adequately deal with the expectation for long-term 

stability of their results. The brain’s complex reaction to an implant is still inadequately 

understood and might hamper long term performance. Skills of the person placing noninvasive 

EEG electrodes play vital role in their performance. These electrodes need periodic maintenance 

to ensure sufficiently good contact with the skin. Improvement in methods for extracting key 

features from EEG signals and fetching device control signals from them would also help in 

improving the BCI performance. 

Conventional techniques for noninvasive measurement of brain signals such as functional 

magnetic resonance imaging (fMRI), near-infrared spectroscopy (NIRS), magneto 

encephalography (MEG), and electroencephalography (EEG), suffer from critical limitations in 

spatial or temporal resolution. A commonly used technique, electroencephalograph (EEG) uses 
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electrical sensors (electrodes) that are placed on the scalp. These electrodes can also be placed 

under the scalp directly on or in the brain tissue. This requires a surgical procedure to place such 

electrodes. This method provides better signals as compared to signals recorded from the scalp. It 

is possible to place the electrodes on the brain without causing any damages. This has 

accelerated use of implantable BCIs for paralyzed people. Near-infrared spectroscopy (NIRS) 

can be used to measure brain activity by exposing the skull through near-infrared light. As such 

NIRS does not require any surgery.  

A variety of sensors for monitoring brain activity exists, and could in principle provide 

the basis for a BCI. These include electroencephalography (EEG), electrocorticography (ECoG),  

magnetoencephalography (MEG), positron emission tomography (PET), functional magnetic 

resonance imaging (fMRI), and optical imaging (i.e., functional Near InfraRed (fNIR)) (Kübler 

et al, 2005).  

EEG is a least invasive alternative which is recorded from the scalp. These BCIs support 

much higher performance than previously assumed, including two- and three dimensional cursor 

movements. Extensive user training is required for the acquisition of such high levels of control. 

Furthermore, EEG has low spatial resolution, which will eventually limit the amount of 

information that can be extracted, and it is also susceptible to artifacts from other sources 

(McFarland et al, 2008).  

The second alternative uses ECoG, which is recorded from the cortical surface (Wilson et 

al, 2006). It has higher spatial resolution compared to EEG (i.e., tenths of millimeters vs. 

centimeters), broader bandwidth (i.e., 0–500 Hz vs. 0–50 Hz), higher signal strength (i.e., 50–

100 µV vs. 10–20 µV), and far less vulnerability to artifacts such as EMG (Ball et al, 2009) or 

ambient noise. While this method is invasive, the use of these electrodes that do not penetrate the 

cortex may combine excellent signal fidelity with good long-term stability. 

The third and most invasive alternative uses microelectrodes to measure local activity 

(i.e., action or field potentials) from multiple neurons within the brain (Taylor et al, 2002). 

Cortex provides signals having higher fidelity and can support BCI systems that require lesser 

training than EEG-based systems. However, clinical implementations of intracortical BCIs are 

currently impeded mainly by the difficulties in maintaining stable long-term recordings, by the 
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substantial technical requirements of single-neuron recordings, and by the need for continued 

intensive expert oversight. For these reasons, practically all BCI demonstrations in humans to 

date have been achieved with, and the examples in this book are using or meant for, EEG or 

ECoG recordings. 

A study reported in 2012 (Chi et al, 2012) compares wet electrodes to dry and through 

hair, noncontact electrodes within a steady state visual evoked potential (SSVEP) BCI paradigm. 

They have also presented the construction of a dry contact electrode, featuring fingered contact 

posts and active buffering circuitry. In addition to this they have also introduced the development 

of a new, noncontact, capacitive electrode that utilizes a custom integrated, high-impedance 

analog front-end.  

Brain-computer interface (BCI) technology is utilized in paired associative stimulation 

(PAS) to evaluate movement imagery in real-time. Pas uses this information to control feedback 

presented to the patient. Another group (Sabathie et al, 2016) introduced this approach and the 

RecoveriX system, a hardware and software platform for PAS. They have also presented initial 

results from two stroke patients who used RecoveriX, followed by future directions. 

Stroke is a major cause of acquired disability which results in distal upper extremity 

functional motor impairment. Ongoing research to evaluate the effectiveness of BCI-based stroke 

rehabilitation for hand therapy is currently in progress. A review of the progression and future 

implications of brain-computer interface therapies for restoration of distal upper extremity motor 

function after stroke has been proposed (Remsik et al, 2016). Further, researchers (Almajidi et al, 

2014) have presented the design and characterization of novel, differential functional NIRS 

sensors, intended to record hemodynamic changes of the human motor cortex in the hand-area 

during motor imagery tasks. They have reported on the spatial characterization of a portable, 

multi-channel NIRS system with one module consisting of two central light emitting diodes 

(LED) (770 nm and 850 nm) alongwith four symmetric pairs of photodiodes (PD). These diodes 

resemble a plus symbol. The other sensor module includes four similar and differential light 

paths crossing in the center of a star. Apart from the literature presenting technological 

developments of BCI there are some papers where the ethical challenges of BCI have been 

discussed (Burwell et al, 2017). The intent of medically ailing users regarding control of their 
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life saving equipments may be questionable at times (Glannon, 2014). The impulsive responses 

of BCI users may cause irreparable losses to them.  

4. Conclusions 

 

Brain-computer interfaces provide a new communication-and-control option for individuals 

for whom conventional methods are ineffective. Brain-Computer Interface (BCI) is a fast-

growing emergent technology in which researchers aims to build a direct channel between the 

human brain and the computer. A BCI derives its outputs from brain activity which is directly 

consciously controlled by the user, independently from external events, for controlling an 

application. It is a collaboration in which a brain accepts and controls a mechanical device as a 

natural part of its representation of the body. The BCI can lead to many applications especially 

for disabled persons. A brain-computer interface (BCI) systems permit encephalic activity to 

solely control computers or external devices. Accordingly, people suffering from neuromuscular 

diseases can highly benefit from these technologies, since a computer could allow them to 

perform multiple tasks. Further development of applications is also needed, particularly 

applications of BCI technology to rehabilitation. The design of rehabilitation applications hinges 

on the nature of BCI control and how it might be used to induce and guide beneficial plasticity in 

the brain. As the rise in the BCI, the user would be haunting with the privacy issue; it means that 

attackers would be able to hack targets brain. Undoubtedly there is great potential in BCI devices 

but there are certain possible ethical implications as well. The benefits of BCIs can introduce 

moral and societal challenges. It is, therefore, important to consider the impact of this technology 

on legal and moral responsibilities of both user as well as producer.  

 

References 

 

Almajidy R. A., Kirch R. D.,  Christ O. & Hofmann U. G. (2014). Estimating the spatial 

resolution of fNIRS sensors for BCI purposes. Proc. SPIE 8945, Design and Performance 

Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue VI, 

894504. doi: 10.1117/12.2037351;https://doi.org/10.1117/12.2037351. 

https://www.sciencedirect.com/topics/materials-science/plasticity


 

© Associated   Asia   Research   Foundation (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 12  

 

Ball T., Kern M., Mutschler I., Aertsen A. & Schulze-Bonhage, A. (2009). Signal quality of 

simultaneously recorded invasive and non-invasive EEG. NeuroImage, 46(3), 708–716. 

DOI:10.1016/j.neuroimage.2009.02.028.  

 

Chi Y. M.,  Wang Y. T. ,  Wang Y., Maier C., Jung T. P. &  Cauwenberghs G. (2012). Dry and 

Noncontact EEG Sensors for Mobile Brain–Computer Interfaces. EE Transactions on Neural 

Systems and Rehabilitation Engineering, 20(2). DOI:  10.1109/TNSRE.2011.2174652.  

 

Cook M. J., O'Brien T. J., Berkovic S. F., Murphy M., Morokoff A,. Fabinyi G., D'Souza 

W., Yerra R., Archer J., Litewka L., Hosking S., Lightfoot P., Ruedebusch V., Sheffield W. 

D., Snyder D., Leyde K., Himes D. (2013). Prediction of seizure likelihood with a long-term, 

implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man 

study. Lancet Neurol., 12(6), 563–71.  

Daly J. J. & Wolpaw J. R. (2008). Brain–computer interfaces in neurological rehabilitation. 

Lancet Neurol. 7, 1032–1043.  

Glannon W. (2014).  Ethical issues with brain-computer interfaces. Front Syst Neurosci.,  8, 

136. DOI: 10.3389/fnsys.2014.00136. 

Hiwaki O. & Miyaguchi H. (2018). Noninvasive measurement of dynamic brain signals using 

light penetrating the brain. PLoS One, e0192095. Published online 2018 Jan 

31. DOI:  10.1371/journal.pone.0192095, 13(1).  

Karam J., Majeed S. A., Christofer N. Y. & Mirtskhulava L. (2016). Neural  Network for 

Recognition of Brain Wave Signals.  Int. J. of Enhanced Research in Science, Technology & 

Engineering.  5(10), 36-42.  

Kübler, A., Nijboer F., Mellinger J., Vaughan T. M., Pawelzik H., Schalk G., McFarland D. J., 

Birbaumer N. & Wolpaw J. R. (2005). Patients with ALS can use sensorimotor rhythms to 

operate a brain–computer interface. Neurol. 64(10), 1775–1777. DOI:10.1212/ 

01.WNL.0000158616.43002.6D. 

 



 

© Associated   Asia   Research   Foundation (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 13  

 

Lahane P., Lokannavar S., Gangurde A., Bhosale P. & Chidre P. (2014). EEG Based Emotion 

Recognition System. Int. J. of Computer Science and Information Technologies, 5(6), 7656-

7658.  

Leeb R., Tonin L., Rohm M., Desideri L., Carlson T. & Millan J. d. R. (2015). Towards 

independence: a BCI telepresence robot for people with severe motor disabilities. Proc IEEE; 

103, 969–982. 

McFarland D. J., Krusienski D. J., Sarnacki W. A. & Wolpaw J. R. (2008). Emulation of 

computer mouse control with a noninvasive brain–computer interface. J. Neural Eng., 5(2), 

101–110. DOI:10.1088/1741-2560/5/2/001.  

 

Morrell M. J. (2011). RNS System in Epilepsy Study Group: Responsive cortical stimulation for  

the treatment of medically intractable partial epilepsy. Neurology,  77(13), 1295–304.   

Pfurtscheller G. & McFarland D. J. (2012). BCIs that use sensorimotor rhythms. In Wolpaw JR 

Wolpaw EW Brain–Computer Interfaces: Principles and Practice. New York, NY: Oxford 

University Press, 227–240. 

Perdikis S., Leeb R., Williamson J., Ramsay A., Tavella M., Desideri L., Hoogerwerf E. J., Al-

Khodairy A., Murray-Smith R. & Millán J. D. (2014). Clinical evaluation of BrainTree, a 

motor imagery hybrid BCI speller. J Neural Eng., 11: 036003. pmid:24737114. 

Remsik A.,  Young B.,  Vermilyea R.,  Kiekoefer L.,  Abrams J.,  Elmore S. E.,  Schultz P., Nair 

V.,  Edwards D.,  Williams J. & Prabhakaran V. (2016). A review of the progression and 

future implications of brain-computer interface therapies for restoration of distal upper 

extremity motor function after stroke. Expert Rev Med Devices. 13(5), 445–454. 

DOI: 10.1080/17434440.2016.1174572. 

Sabathiel N., Irimia D. C., Allison B. Z., Guger C. & Edlinger G. (2016).  Paired Associative 

Stimulation with Brain-Computer Interfaces: A New Paradigm for Stroke Rehabilitation. 

In: Schmorrow D., Fidopiastis C. (eds) Foundations of Augmented Cognition: 



 

© Associated   Asia   Research   Foundation (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 14  

 

Neuroergonomics and Operational Neuroscience. AC 2016, Lecture Notes in Computer 

Science, Springer, 9743. DOI: https://doi.org/10.1007/978-3-319-39955-3_25,  

Sasha Burwell S., Sample M. & Racine E. (2017). Ethical aspects of brain computer interfaces: a 

scoping review. BMC Medical Ethics 18:60. DOI: 10.1186/s12910-017-0220-y. 

Taylor D. M., Tillery S. I. & Schwartz A. B. (2002). Direct cortical control of 3D 

neuroprosthetic devices. Science, 296, 1829–1832. 

Wang K., Cai C., Yamamoto M. &  Uchiyama T. (2017). Real-time brain activity measurement 

and signal processing system using highly sensitive MI sensor. AIP Advances, 7(5), 056635. 

https://doi.org/10.1063/1.4974528. 

Wilson J., Felton E., Garell P., Schalk G. & Williams J. (2006). ECoG factors underlying 

multimodal control of a brain–computer interface. IEEE Trans. Neural Syst. Rehabil. Eng., 

14, 246–250.  

Winda A., Sofyan, Sthevany & Vincent R. S. (2017). Intelligent automatic right-left sign lamp 

based on brain signal recognition system. IOP Conf. Series: Earth and Environmental 

Science, 109, 012019. 

Wolpaw J. R., Birbaumer N., McFarland D. J., Pfurtscheller G. & Vaughan T. M. (2002). 

Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–

791.  

 

 


