International Research Journal of Natural and Applied Sciences
ISSN: (2349-4077)
Impact Factor- 5.46, Volume 5, Issue 03, March 2018
Website- www.aarf.asia, Email : editor@aarf.asia , editoraarf@gmail.com

MINIMIZATION IN GENERATING SPACE AND FIXED POINT

Gourish Parashar
Department of Mathematics, TIT \& Science Bhopal and Research Scholar M.G.C.G.V. Chitrakoot (M.P.), India
Anil Agrawal
Department of Mathematics M.G.C.G.V. Chitrakoot (M.P.), India
Manoj Kumar Shukla
Department of Mathematics, Institute for Excellence in Higher Education, Bhopal, (M.P.) India

Abstract

A non-convex minimization theorem has been established for generating space of quasi 2-metric family for sequence of mappings with non commuting weak compatible condition. Also supported by an example.

KEY WORDS: Generating space of quasi 2-metric family, weak compatible mapping, Minimization theorem, common fixed point.

Mathematics Subject Classification: 47H10, 54H25.

[^0]
1. INTRODUCTION

An important area of fixed point theory is the generating space of quasi 2-metric family, because of its involvement and application to fuzzy and probabilistic 2-metric space and a minimization theorem [1], [3] is to obtain fixed point theorem. In 2008 V. B. Dhagat and V. S. Thakur [2] proved non convex minimization theorem for generating space of quasi 2-metric family. In this paper we prove a minimization theorem for sequence of mappings T^{a} for $a \in N$ and further we prove fixed point theorem as an application of minimization theorem with non commuting condition known as weak compatible.

2. PRELIMINARIES

2.1 Generating space of quasi 2-metric family:-

Generating space of quasi 2-metric family already defined[1] and [2] as follows:-

Let X be a non empty set and $\left\{D_{\alpha}: \alpha \in(0,1]\right\}$ be family of mapping D_{α} from $X \times X \times X$ into R^{+}. $\left\{X, D_{\alpha}\right\}$ is called generating space of quasi 2-metric family if it satisfy following axioms:
(GM 1) - For any two distinct points x and y there exit z in X such that

$$
D_{\alpha}(x, y, z) \neq \alpha \in(0,1]
$$

(GM 2) $-D_{\alpha}(x, y, z)=0$ if at least two x, y, z are equal and $\alpha \in(0,1]$
(GM 3) $-D_{\alpha}(x, y, z)=D_{\alpha}(x, z, y) D_{\alpha}(z, y, x)=\cdots \ldots \ldots$ for all x, y, z in X and $\alpha \in(0,1]$
(GM 4) - for any $\alpha \in(0,1]$ there exists $\alpha_{1}, \alpha_{2}, \alpha_{3}, \in(0, \alpha]$ such that $\alpha_{1}+\alpha_{2}+\alpha_{3}, \leq(0, \alpha]$ and so $D_{\alpha}(x, y, z) \leq D_{\alpha_{1}}(x, y, u)+D_{\alpha_{2}}(x, u, z)+D_{\alpha_{3}}(u, y, z)$
(GM 5) - $\quad D_{\alpha}(x, y, z)$ is non increasing and left continuous in α and $\forall x, y, z$ in X. Throught this paper, we assume that $k:(0,1] \rightarrow(0, \infty)$ is non decreasing function satisfying the condition

$$
K=\operatorname{Sup} k(\alpha)
$$

Let E and F be mappings from generating space of quasi 2-metric family $\left\{X, D_{\alpha}\right\}$ into itself. The mapping E and F are said to be weak compatible if it commute at convergent point. i.e. for sequence x_{n} in X such that
$\lim _{n \rightarrow \infty} E x_{n}=\lim _{n \rightarrow \infty} F x_{n}=t$ for some t in X then $E F t=F E t$.

3. MAIN RESULT

Theorem 3.1. Let $\left\{X, D_{\alpha}: \alpha \in(0,1]\right\}$ and $\left\{Y, D_{\alpha}^{\prime}: \alpha \in(0,1]\right\}$ be two complete generating space of quasi 2-metric family. $f: X \rightarrow Y$ be a closed and $T^{a}: X \rightarrow X$ be continuous mapping satisfying for all $a \in N$
(i) $\quad D_{\alpha}\left(T^{a} x, T^{a} y, z\right) \leq \max \left\{D_{\alpha}\left(T^{a} x, y, z\right) \cdot\left(x, T^{a} y, z\right) \cdot\left(x, y, T^{a} z\right)\right\}$ and
(ii) $\quad D_{\alpha}^{\prime}\left(f\left(T^{a} x\right) \cdot f\left(T^{a} y\right) \cdot f(z)\right)$
$\leq \max \left\{D_{\alpha}^{\prime}\left(f\left(T^{a} x\right) \cdot f(y) \cdot f(z)\right), D_{\alpha}^{\prime}\left(f(x) \cdot f\left(T^{a} y\right) \cdot f(z)\right), D_{\alpha}^{\prime}\left(f(x) \cdot f(y) \cdot f\left(T^{a} z\right)\right)\right\}$,

$$
\forall x, y, z \in X \text { and } \alpha \in(0,1]
$$

(iii) $\quad \Psi: \Re \rightarrow \Re$ be non decreasing continuous and bounded below function,
(iv) $\varnothing: f(x) \rightarrow \Re$ be a lower semi continuous and bounded below function,
(v) for any $p \in X$ with $\inf \Psi(\varnothing(\mathrm{f}(x)))<\Psi(\emptyset(\mathrm{f}(p)))$ there exists q with $p \neq T q$ and
$\max \left[\max \left\{D_{\alpha}\left(T^{a}, q, p, z\right), D_{\alpha}\left(q, T^{a} p, z\right), D_{\alpha}\left(q, p, T^{a} z\right)\right\}\right]$,
c. $\max \left\{D^{\prime}{ }_{\alpha}\left(f\left(T^{a} q\right) \cdot f(p) \cdot f(z)\right), D_{\alpha}^{\prime}\left(f(q) \cdot f\left(T^{a} p\right) \cdot f(z)\right), D_{\alpha}^{\prime}\left(f(q) \cdot f(p) \cdot f\left(T^{a} z\right)\right)\right\}$
$\leq K(\alpha)[\Psi(\emptyset(\mathrm{f}(p)))-\Psi(\emptyset(\mathrm{f}(q)))] \forall x, y, z \in X$ and $\alpha \in(0,1]$

And c is any constant.

Then there exists an x_{0} in X such that with $\inf \Psi(\varnothing(\mathrm{f}(x)))=\Psi(\phi(\mathrm{f}(p)))$.
Proof: Let us suppose $\inf \Psi(\emptyset(\mathrm{f}(x)))<\Psi(\emptyset(\mathrm{f}(p)))$ for every y in X and choose $r \in X$
For which $\inf \Psi(\varnothing(\mathrm{f}(r)))$ is defined then inductively we define a sequence $\left\{r_{n}\right\} \subset X$ with $r_{1}=r$. suppose r_{n} is know is consider

© Associated Asia Research Foundation (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.
$W_{n}=$
$\{[w \in$
X.maximaxDaTaw,
$r n, z, D \alpha w$,
Tarn,z,Daw,
rn,Taz,c.maxD'afTaw.frn.fz,D'afw.fTarn.fz,D'afw.frn.fTaz
$\leq K(\alpha)\left[\Psi\left(\emptyset\left(\mathrm{f}\left(r_{n}\right)\right)\right)-\Psi(\emptyset(\mathrm{f}(w)))\right] \forall x, y, z \in X$ and $\alpha \in(0,1]$
W_{n} is non empty set and there exists $w \in W_{n}$ such that $r_{n} \neq T w$. We can choose $r_{n+1} \in W_{n}$ such that
$r_{n} \neq T\left(r_{n+1}\right)$ and
$\Psi\left(\phi\left(\mathrm{f}\left(r_{n}\right)\right)\right) \leq \inf \Psi(\emptyset(\mathrm{f}(x)))+1 / 3\left[\Psi\left(\varnothing\left(\mathrm{f}\left(r_{n}\right)\right)\right)-\inf \Psi(\phi(\mathrm{f}(x)))\right]$.

Clearly $\Psi\left(\varnothing\left(\mathrm{f}\left(r_{n+1}\right)\right)\right)$ is a non increasing lower bounded sequence. Hence it is a convergent sequence.

Now we prove $\left\{r_{n}\right\}$ and $\left\{\left(r_{n}\right)\right\}$ are Cauchy sequences:

$$
\begin{aligned}
& \max \left\{D_{\alpha}\left(T^{a} r_{n}, T^{a} r_{n+1}, w\right), D_{\alpha}^{\prime}\left(f\left(T^{a} r_{n}\right) \cdot f\left(r_{n+1}\right) \cdot f(w)\right)\right\} \\
& \leq \\
& \max \left[\begin{array}{c}
\max \left\{D_{\alpha}\left(f\left(T^{a} r_{n}\right), r_{n+1}, w\right), D_{\alpha}\left(r_{n}, T^{a} r_{n+1}, w\right), D_{\alpha}\left(r_{n}, r_{n+1}, T^{a} w\right)\right\}, \\
c \cdot \max \left\{D_{\alpha}^{\prime}\left(f\left(T^{a} r_{n}\right) \cdot f\left(r_{n+1}\right) \cdot f(w)\right), D_{\alpha}^{\prime}\left(f\left(r_{n}\right) \cdot f\left(T^{a} r_{n+1}\right) \cdot f(w)\right), D_{\alpha}^{\prime}\left(f\left(r_{n}\right) \cdot f\left(r_{n+1}\right) \cdot f\left(T^{a} w\right)\right)\right\}
\end{array}\right] \\
& \leq K(\alpha)\left[\Psi\left(\emptyset\left(\mathrm{f}\left(r_{n}\right)\right)\right) \leq \inf \Psi\left(\emptyset\left(\mathrm{f}\left(r_{n+1}\right)\right)\right)\right]
\end{aligned}
$$

$\forall n, m \in N, n<m \Rightarrow$ there exists $\alpha_{j}=\alpha_{j}(n, m) ; \sum \alpha_{j} \leq \alpha$, such that
$\max \left\{\begin{array}{c}\max \left\{D_{\alpha_{j}}\left(T^{a} r_{n}, r_{m}, w\right), D_{\alpha_{j}}\left(r_{n}, T^{a} r_{m}, w\right), D_{\alpha_{j}}\left(r_{n}, r_{m}, T^{a} w\right)\right\}, \\ c \cdot \max \left\{D_{\alpha_{j}}^{\prime}\left(f\left(T^{a} r_{n}\right) \cdot f\left(r_{m}\right) \cdot f(w)\right), D_{\alpha_{j}}^{\prime}\left(f\left(r_{n}\right) \cdot f\left(T^{a} r_{m}\right) \cdot f(w)\right), D_{\alpha_{j}}^{\prime}\left(f\left(r_{n}\right) \cdot f\left(r_{m}\right) \cdot f\left(T^{a} w\right)\right)\right\}\end{array}\right\}$

© Associated Asia Research Foundation (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.
\leq
$\sum_{j=n} \max \left\{\begin{array}{r}\max \left\{D_{\alpha_{j}}\left(T^{a} r_{n}, r_{m}, w\right), D_{\alpha_{j}}\left(r_{j}, T^{a} r_{j+1}, w\right), D_{\alpha_{j}}\left(r_{j}, r_{j+1}, T^{a} w\right)\right\}, \\ c . \max \left\{D_{\alpha_{j}}^{\prime}\left(f\left(T^{a} r_{j}\right) \cdot f\left(r_{j+1}\right) . f(w)\right), D^{\prime} \alpha_{j}\left(f\left(r_{j}\right) . f\left(T^{a} r_{j+1}\right) . f(w)\right), D_{\alpha_{j}}^{\prime}\left(f\left(r_{j}\right) .\right.\right.\end{array}\right.$
). $f\left(r_{j+1}\right) \cdot f\left(T^{a} u\right.$

Hence, $\forall n, m \in N, n<m$;

$$
\begin{aligned}
& \leq \\
& \max \left[\begin{array}{c}
\max \left\{D_{\alpha}\left(T^{a} r_{n}, r_{m}, w\right), D_{\alpha}\left(r_{n}, T^{a} r_{m}, w\right), D_{\alpha}\left(r_{n}, r_{m}, T^{a} w\right)\right\}, \\
c \cdot \max \left\{D_{\alpha}^{\prime}\left(f\left(T^{a} r_{n}\right) \cdot f\left(r_{m}\right) \cdot f(w)\right), D_{\alpha}^{\prime}\left(f\left(r_{n}\right) \cdot f\left(T^{a} r_{m}\right) \cdot f(w)\right), D_{\alpha}^{\prime}\left(f\left(r_{n}\right) \cdot f\left(r_{m}\right) \cdot f\left(T^{a} w\right)\right)\right\}
\end{array}\right] \\
& \leq K(\mu) \sum_{j=n}^{m-1}\left[\Psi\left(\emptyset\left(\mathrm{f}\left(r_{j}\right)\right)\right)-\inf \Psi\left(\emptyset\left(\mathrm{f}\left(r_{j+1}\right)\right)\right)\right] \\
& \leq K(\alpha) \sum_{j=n}^{m-1}\left[\Psi\left(\emptyset\left(\mathrm{f}\left(r_{n}\right)\right)\right)-\inf \Psi\left(\emptyset\left(\mathrm{f}\left(r_{m}\right)\right)\right)\right]
\end{aligned}
$$

For some α_{j} with $0<\alpha_{j+1}<\alpha_{k} \leq \alpha j=n \ldots \ldots \ldots \ldots . m-1$

$$
\begin{aligned}
& D_{\alpha}\left(r_{n}, r_{n+1}, w\right) \leq D_{\alpha_{1}}\left(r_{n}, r_{n+1}, T^{a} r_{n+1}\right)+D_{\alpha_{2}}\left(r_{n}, T^{a} r_{n+1}, w\right)+D_{\alpha_{3}}\left(T^{a} r_{n+1}, r_{n+1}, w\right) \\
& \leq \\
& D_{\alpha_{1}}\left(r_{n}, r_{n+1}, T^{a} r_{n+1}\right)+D_{\alpha_{2}}\left(r_{n}, T^{a} r_{n+1}, w\right)+D_{\alpha_{3}}\left(T^{a} r_{n+1}, r_{n+1}, T^{a} r_{n}\right)+ \\
& D_{\alpha_{4}}\left(T^{a} r_{n+1}, T^{a} r_{n}, w\right)+D_{\alpha_{5}}\left(T^{a} r_{n+1}, r_{n+1}, w\right)
\end{aligned}
$$

$$
\text { For } \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5} \leq \alpha
$$

$$
\leq
$$

$$
3\left[\begin{array}{c}
\max \left\{D_{\alpha}\left(\left(T^{a} r_{n}\right), r_{n+1}, w\right), D_{\alpha}\left(r_{n}, T^{a} r_{n+1}, w\right), D_{\alpha}\left(r_{n}, r_{n+1}, T^{a} w\right)\right\}, \\
c \cdot \max \left\{D_{\alpha}^{\prime}\left(\left(T^{a} r_{n}\right) \cdot f\left(r_{n+1}\right) \cdot f(w)\right), D_{\alpha}^{\prime}\left(f\left(r_{n}\right) \cdot f\left(T^{a} r_{n+1}\right) \cdot f(w)\right), D_{\alpha}^{\prime}\left(f\left(r_{n}\right) \cdot f\left(r_{n+1}\right) \cdot f\left(T^{a} w\right)\right)\right\}
\end{array}\right]
$$

$$
\leq 3 K(\alpha)\left[\Psi\left(\emptyset\left(\mathrm{f}\left(r_{n}\right)\right)\right)-\inf \Psi\left(\emptyset\left(\mathrm{f}\left(r_{n+1}\right)\right)\right)\right]
$$

Then also we get
$D_{\alpha}\left(r_{n}, r_{n+1}, w\right) \leq 3 K(\alpha)\left[\Psi\left(\phi\left(\mathrm{f}\left(r_{n}\right)\right)\right)-\inf \Psi\left(\phi\left(\mathrm{f}\left(r_{m}\right)\right)\right)\right]$

© Associated Asia Research Foundation (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

Where $n<m$

In the manner we obtain
${D^{\prime}}_{\alpha}\left(f\left(r_{n}\right) \cdot f\left(r_{n+1}\right) \cdot f(w)\right) \leq 3 K(\alpha)\left[\Psi\left(\emptyset\left(\mathrm{f}\left(r_{n}\right)\right)\right)-\inf \Psi\left(\varnothing\left(\mathrm{f}\left(r_{m}\right)\right)\right)\right]$

Where $n<m$

Hence $\left\{r_{n}\right\}$ and $\left\{f\left(r_{n}\right)\right\}$ are Cauchy sequences.

Assume that $\lim _{n \rightarrow \infty} r_{n}=A$ and $\lim _{n \rightarrow \infty} f\left(r_{n}\right)=B$.

Since f is closed therefore $f(A)=B$.

By the continuity of Ψ and lower semi continuity of \emptyset we have
$\Psi(\phi(\mathrm{f}(b))) \leq \lim _{n \rightarrow \infty} \Psi\left(\phi\left(\mathrm{f}\left(r_{n}\right)\right)\right)=\lim _{n \rightarrow \infty} \Psi\left(\phi\left(\mathrm{f}\left(r_{n+1}\right)\right)\right)$
Let $\delta=\inf \Psi(\varnothing(\mathrm{f}(x))) \in \mathrm{R}$
$\Psi\left(\varnothing\left(\mathrm{f}\left(r_{n+1}\right)\right)\right) \leq \inf \Psi(\varnothing(\mathrm{f}(x)))+1 / 3\left[\Psi\left(\varnothing\left(\mathrm{f}\left(r_{n}\right)\right)\right)-\inf \Psi(\phi(\mathrm{f}(x)))\right]$, we have
$\lim _{n \rightarrow \infty} \Psi\left(\emptyset\left(\mathrm{f}\left(r_{n+1}\right)\right)\right) \leq(2 / 3) \delta+\frac{1}{3 \lim _{n \rightarrow \infty} \Psi\left(\varnothing\left(\mathrm{f}\left(r_{n}\right)\right)\right)}=$
$(2 / 3) \delta+1 / 3 \lim _{n \rightarrow \infty} \Psi\left(\emptyset\left(\mathrm{f}\left(r_{n+1}\right)\right)\right)$
Which is contraction, therefore there exists x_{0} in X such that
$\inf \Psi(\phi(\mathrm{f}(x)))=\emptyset\left(\mathrm{f}\left(x_{0}\right)\right)$
Now we give a fixed point theorem as an application of the above theorem under non commuting condition known as weak compatible.

Theorem 3.2 Let $\left\{X, D_{\alpha}: \alpha \in(0,1]\right\}$ and $\left\{Y, D_{\alpha}^{\prime}: \alpha \in(0,1]\right\}$ be two complete generating space of quasi 2-metric family. $f: X \rightarrow Y$ be a closed and $T^{a}, S^{a}: X \rightarrow X$ be continuous mapping satisfying

© Associated Asia Research Foundation (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

$$
\begin{equation*}
D_{\alpha}\left(T^{a} x, T^{a} y, z\right) \leq \max \left\{D_{\alpha}\left(T^{a} x, y, z\right) \cdot\left(x, T^{a} y, z\right) \cdot\left(x, y, T^{a} z\right)\right\} \text { and } \tag{i}
\end{equation*}
$$

$$
\begin{align*}
& D_{\alpha}^{\prime}\left(f\left(T^{a} x\right) \cdot f\left(T^{a} y\right), f(z)\right) \tag{ii}\\
\leq & \max \left\{D_{\alpha}^{\prime}\left(f\left(T^{a} x\right) \cdot f(y) \cdot f(z)\right), D_{\alpha}^{\prime}\left(f(x) \cdot f\left(T^{a} y\right) \cdot f(z)\right), D_{\alpha}^{\prime}\left(f(x) \cdot f(y) \cdot f\left(T^{a} z\right)\right)\right\},
\end{align*}
$$

(iii) $\quad \Psi: \Re \rightarrow \Re$ be non decreasing continuous and bounded below function,
(iv) $\emptyset: f(x) \rightarrow \Re$ be a lower semi continuous and bounded below function,
(v) $\quad S^{a}$ and T^{a} are weak compatible and

$$
\begin{aligned}
& \quad \max \left[\max \left\{D_{\alpha}\left(T^{a}, T^{a} S^{a} x, z\right), D_{\alpha}\left(x, T^{a} S^{a} x, z\right), D_{\alpha}\left(x, S^{a} x, T^{a} z\right)\right\}\right], \\
& \text { c. } \max \left\{D_{\alpha}^{\prime}\left(f\left(T^{a} x\right) . f\left(T^{a} S^{a} x\right) \cdot f(z)\right), D_{\alpha}^{\prime}\left(f(x) \cdot f\left(T^{a} S^{a} x\right) \cdot f(z)\right), D_{\alpha}^{\prime}\left(f(x) \cdot f\left(S^{a} x\right) \cdot f\left(T^{a} z\right)\right)\right\} \\
& \leq K(\alpha)\left[\Psi(\varnothing(\mathrm{f}(x)))-\Psi\left(\varnothing\left(\mathrm{f}\left(S^{a} x\right)\right)\right)\right] \forall x, y, z \in X \text { and } \alpha \in(0,1]
\end{aligned}
$$

And c is any constant. Then there exists unique common fixed point x_{0} in X.
Proof: If $x_{0} \in X$ such that $\inf \Psi(\emptyset(\mathrm{f}(x)))=\Psi\left(\varnothing\left(\mathrm{f}\left(x_{0}\right)\right)\right)$
then $x_{0}=T^{a} S^{a} x_{0} . S^{a} x_{0}=T^{a} x_{0}$ therefore some $\alpha \in(0,1]$

$$
\begin{aligned}
& 0<\max \left\{D_{\alpha}\left(T^{a}, T^{a} S^{a} x, z\right), D_{\alpha}\left(x, T^{a} S^{a} x, z\right), D_{\alpha}\left(x, S^{a} x, T^{a} z\right)\right\} \\
& \leq K(\alpha)\left[\Psi\left(\varnothing\left(\mathrm{f}\left(x_{0}\right)\right)\right)=\Psi\left(\varnothing\left(\mathrm{f}\left(S^{a} x_{0}\right)\right)\right)\right] \leq 0
\end{aligned}
$$

which is contraction. then $S x_{0}=T x_{0}$.

Now by weak compatible of T^{a} and S^{a}
$S^{a} x_{0}=T^{a} S^{a} x_{0}=S^{a} T^{a} x_{0}=T^{a} x_{0}$.
Also for some $\alpha_{1}, \alpha_{2}, \alpha_{3} \in(0,1]$ such that $\alpha_{1}+\alpha_{2}+\alpha_{3} \leq \alpha$

$$
\begin{aligned}
& D_{\alpha}\left(x_{0}, T^{a} x_{0}, z\right) \leq D_{\alpha_{1}}\left(x_{0}, T^{a} x_{0}, T^{a} S^{a} x_{0}\right)+D_{\alpha_{2}}\left(x_{0}, T^{a} S^{a} x_{0}, z\right)+D_{\alpha_{3}}\left(T^{a} S^{a} x_{0}, T^{a} x_{0}, T^{a} x_{0}, z\right) \\
& \quad \leq D_{\alpha_{3}}\left(T^{a} S^{a} x_{0}, T^{a} x_{0}, T^{a} x_{0}, z\right)=0 . \text { hence } T^{a} x_{0}=S^{a} x_{0}=x_{0}
\end{aligned}
$$

© Associated Asia Research Foundation (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.
uniqueness: Let us assume there exists another fixed point y_{0} such that
$S^{a} y_{0}=T^{a} y_{0}=y_{0}$ and by theorem 3.1 we have $\inf \Psi(\phi(\mathrm{f}(x)))=\emptyset\left(\mathrm{f}\left(y_{0}\right)\right)$.
But $\inf \Psi(\varnothing(\mathrm{f}(x)))=\varnothing\left(\mathrm{f}\left(x_{0}\right)\right)$ hence by uniqueness of infima we get $x_{0}=y_{0}$
Remark: Theorem 3.1 and 3.2 can be proved easily for convergent sequence of mappings.

Corollary: Let $\left\{X, D_{\alpha}: \alpha \in(0,1]\right\}$ and $\left\{Y, D_{\alpha}^{\prime}: \alpha \in(0,1]\right\}$ be two complete generating space of quasi 2-metric family. $f: X \rightarrow Y$ be a closed, $\varnothing: f(X) \rightarrow \Re$ be a lower semi continuous and bounded below function. Let $S^{a}: X \rightarrow X$ be a mapping such that $\forall x, y, z \in X$ and c is any continuous mapping satisfying
$\max \left\{D_{\alpha}\left(S^{a} x, x, z\right) \cdot D_{\alpha}^{\prime}\left(f\left(S^{a} x\right), f(x), f(z)\right)\right\}$
$\leq K(\alpha)\left[\varnothing(\mathrm{x})=\emptyset\left(S^{a} x\right)\right]$

Proof: Consider $T=1$ and $\Psi=1$ we get required result.

Example:

Let $X=[0,1] Y=[0, \infty], D_{\alpha}=D^{\prime}{ }_{\alpha}=D_{1}$ defined by $D_{1}(x, y, z)=\frac{D(x, y, z)}{1+D(x, y, z)}$

And $D(x, y, z)=\max \{|x-y|+|y-z|+|z-x|\}$,

The mapping defined as follows:
$T^{a}: X \rightarrow X$ as $T^{a} x=x^{2 a} f: X \rightarrow X$ as $f x=x, \varnothing: f(x) \rightarrow R$ as $\emptyset(x)=1 /(1-x)$
and $\Psi: \mathrm{R} \rightarrow \mathrm{R} \Psi(\mathrm{x})=x^{2} / 2$ and $K(\alpha)=3$ satisfy the all conditions of theorem 3.1.
also $S^{a}: X \rightarrow X$ is defined $S^{a} x=\frac{x^{2 a}}{2 a}$, then (S, T) is weak compatible which satisfying the condition of theorem 3.2, hence 0 is a unique fixed point.

© Associated Asia Research Foundation (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

REFERENCES

[1] D. Downing and W.A. Kirk, A generalization of Cariti's theorem with applicatioins in nonlinear mapping theory, Pacific j. Math.69(1977),339-346.
[2] V. B. Dhagat and V. S. Thakur, Non convex minimization in generating space, Tamkang Journal of Math,Taiwan vol.39, No 3,13-218, Autumn 2008.
[3] J. S. Jung, Y.J. Cho and J. K. Kim, Minimization theorems for fixed point theorems in fuzzy metric space and application, Fuzzy sets and system 61(1994),199-270.

[^0]: © Associated Asia Research Foundation (AARF)
 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

