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ABSTRACT 

In this paper, we prove a common fixed point theorem for six mappings which satisfying 

compatible of type (A) under an implicit relation and rational expression. 
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1 INTRODUCTION AND PRELIMINARIES 

Several authors proved common fixed point theorems using the concept of compatible 

maps as compatible of type (A) [1] and compatible of type (B) [3].  In 1998, H.K. Pathak, Y.J. 
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Cho, S.M. Kang , B. Madharia [2] introduced another extension of compatible mapping of  type 

(A) in normed spaces , called compatible mappings of type (C) and with some examples they 

compared these mappings with compatible maps , compatible maps of type (A) and compatible 

maps of type (B) . Further Popa [4], did lot of work for compatible mappings satisfying an 

implicit relation. In the continuation of this context we are proving a common fixed point 

theorem with six mappings which satisfying the compatible mappings of type (A) and implicit 

function in (R
+
)

8
 . 

IMPLICIT RELATION  

As in [4], we denote by 𝐹 the set of all real continuous functions 𝐹: (𝑅+)8 𝑅 

(F1): 𝐹 is non – increasing in the variable 𝑡4  

(F2): there exists ℎ ∈ (0,1) such that for every 𝑢, 𝑣 ≥  0 with  

(F3): 𝐹( 𝑢, 0, 𝑢,𝑢, 𝑢, 0,0,0)  >  0 

(F4): 𝐹( 𝑢, 0,0,0,𝑢, 0,𝑢, 0 )  > 0 

(F5): 𝐹( 0,𝑢, 0,𝑢, 0,0,0,𝑢 )  > 0 

(F6): 𝐹( 0,𝑢, 0,𝑢,𝑢, 𝑢, 0,0 )  > 0 

(F*): 𝐹(0,𝑢, 𝑣, 𝑢 + 𝑣, 0,0,𝑣, 𝑢 )  ≤ 0. 

Then we have 𝑢 ≤ ℎ𝑣  

Definition1.1. Let  𝑆  𝑎𝑛𝑑  𝑇 be mappings from a metric space  𝑋, 𝑑  into itself. The 

mapping  𝑆  𝑎𝑛𝑑  𝑇 are said to be compatible, if  

                                                        lim𝑛→∞ 𝑑 𝑆𝑇𝑥𝑛 ,𝑇𝑆𝑥𝑛 = 0 

Definition1.2. The mappings 𝑆 𝑎𝑛𝑑 𝑇 from metric space (𝑋, 𝑑) into itself are said to be 

compatible of type (A) if  

                              lim𝑛→∞ 𝑑 𝑆𝑇𝑥𝑛 ,𝑇𝑇𝑥𝑛 = 0 and   lim
𝑛→∞

𝑑 𝑇𝑆𝑥𝑛 ,𝑆𝑆𝑥𝑛 = 0  
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Proposition 1. Let 𝑆 𝑎𝑛𝑑 𝑇 be continuous mappings from a metric space itself. Then the 

following are equivalent: 

(i) 𝑆 𝑎𝑛𝑑 𝑇 are compatible 

(ii) 𝑆 𝑎𝑛𝑑 𝑇 are compatible of type (A) 

Proposition 2. Let 𝑆 𝑎𝑛𝑑 𝑇 be mappings from a metric space  𝑋, 𝑑  into itself. If 𝑆 𝑎𝑛𝑑 𝑇 are 

compatible of type (A) in 𝑋 such that   lim𝑛→∞ 𝑆 𝑥𝑛=  lim𝑛→∞ 𝑇 𝑥𝑛 = 𝑧  for some 𝑧 ∈ 𝑋, then 

(i)  lim𝑛→∞ 𝑇𝑆 𝑥𝑛 = 𝑇𝑧 if T is continuous at 𝑧, 

(ii) 𝑆𝑇𝑧 = 𝑇𝑆𝑧 and 𝑆𝑧 = 𝑇𝑧, if  𝑆 𝑎𝑛𝑑 𝑇 are continuous at 𝑧, 

 

2. Main results 

Theorem 2.1: Let 𝐴,𝐵, 𝑆,𝑇, 𝐼 & 𝐽 be mappings from a Normed linear space (𝑋,  ) into itself 

satisfying the conditions 

(a) 𝐼 𝑋 ⊂ 𝐴𝐵 𝑋 , 𝐽 𝑋 ⊂ 𝑆𝑇(𝑋) 

(b) One of 𝐴,𝐵,𝑆,𝑇, 𝐼, 𝐽 is continuous 

(c) The pair  𝐼,𝐴𝐵 , (𝐽, 𝑆𝑇) are compatible of type (A) 

(d) 𝐹  
𝑆𝑇y − 𝐼𝑥 , 𝑆𝑇y − 𝐽y , 𝐵𝑥 − 𝑆𝑇y , 𝐵x − 𝐽y , 𝐵y − 𝐼𝑥 , 𝑆𝑇y − 𝐴𝐵y ,

𝐴𝐵𝑥 − 𝐼𝑥 , 𝐴𝐵y − 𝐽y 
  ≤ 0   

for all 𝑥, 𝑦 𝑖𝑛 𝑋,  

𝑡ℎ𝑒𝑛 𝐴,𝐵,𝑆,𝑇, 𝐼 & 𝐽 have a unique common fixed point.  

 Proof: By (a)   𝐼 𝑋 ⊂ 𝐴𝐵(𝑋), for any 𝑥0 ∈ 𝑋 there exist a point  𝑥1 ∈ 𝑋 such that          

 𝐼𝑥0 = 𝐴𝐵𝑥1 . Since  𝐽 𝑋 ⊂ 𝑆𝑇(𝑋), for this point  𝑥1  we choose a point   𝑥2   ∈ 𝑋 such that  

𝐼𝑥1 = 𝑆𝑇𝑥2 .Inductively we can find a sequence   

                                                        𝑦2𝑛 = 𝐼𝑥2𝑛 = 𝐴𝐵𝑥2𝑛+1 

                                                    𝑦2𝑛+1 = 𝐽𝑥2𝑛+1 = ST𝑥2𝑛+2  

Using inequality (d), we have successively 
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𝐹  

𝑆𝑇𝑥2𝑛+2 − 𝐼𝑥2𝑛+1 , 𝑆𝑇𝑥2𝑛+2 − 𝐽𝑥2𝑛+2 , 𝐴𝐵𝑥2𝑛+1 − 𝑆𝑇𝑥2𝑛+2  ,
𝐴𝐵𝑥2𝑛+1 − 𝐽𝑥2𝑛+2  , 𝐴𝐵𝑥2𝑛+2 − 𝐼𝑥2𝑛+1  , 𝑆𝑇𝑥2𝑛+2 − 𝐴𝐵𝑥2𝑛+2 ,

𝐴𝐵𝑥2𝑛+1 − 𝐼𝑥2𝑛+1 , 𝐴𝐵𝑥2𝑛+2 − 𝐽𝑥2𝑛+2  
  ≤ 0   

=  𝐹  
𝑦2𝑛+1 − 𝑦2𝑛+1  , 𝑦2𝑛+1 − 𝑦2𝑛+2  , 𝑦2𝑛 − 𝑦2𝑛+1  , 𝑦2𝑛 − 𝑦2𝑛+2 ,
𝑦2𝑛+1 − 𝑦2𝑛+1  , 𝑦2𝑛+1 − 𝑦2𝑛+1  , 𝑦2𝑛 − 𝑦2𝑛+1  , 𝑦2𝑛+1 − 𝑦2𝑛+2  

  ≤ 0 

By condition (F1), we have  

𝐹  
0, 𝑦2𝑛+1 − 𝑦2𝑛+2  , 𝑦2𝑛 − 𝑦2𝑛+1  , 𝑦2𝑛 − 𝑦2𝑛+1  + 𝑦2𝑛+1 − 𝑦2𝑛+2 , 0,0,

𝑦2𝑛 − 𝑦2𝑛+1  , 𝑦2𝑛+1 − 𝑦2𝑛+2 
  ≤ 0  

So we obtain by (F
*
), 

𝑦2𝑛+1 − 𝑦2𝑛+2   ≤ h𝑦2𝑛 − 𝑦2𝑛+1   

Similarly, we get 

𝑦2𝑛 − 𝑦2𝑛+1   ≤ h𝑦2𝑛+1 − 𝑦2𝑛   

Proceeding in the same way, we get 

𝑦2𝑛+1 − 𝑦2𝑛+2  ≤ h2n−1𝑦0 − 𝑦1   

It follows that {𝑦𝑛 } is a cauchy sequence in 𝑋 is complete, {𝑦𝑛 } is convergent to a point 𝑧 𝑖𝑛 𝑋. 

Since 𝐼𝑥2𝑛 , 𝐽𝑥2𝑛+1 ,𝐴𝐵𝑥2𝑛+1,𝑆𝑇𝑥2𝑛+2 are subsequences of  {𝑦𝑛 } , they also converge to a point 𝑧, 

that is as → ∞ , 𝐼𝑥2𝑛 , 𝐽𝑥2𝑛+1, 𝑆𝑇𝑥2𝑛+1 → 𝑧. 

Suppose 𝐴𝐵 is continuous and the pair  𝐼,𝐴𝐵  is compatible of type (A), by proposition (2) 

𝐼(𝐴𝐵)𝑥2𝑛+1 → 𝐴𝐵𝑧 , (𝐴𝐵2)𝑥2𝑛+1 → 𝐴𝐵𝑧 

Put  𝑥 = 𝐴𝐵𝑥2𝑛+1 and 𝑦 = 𝑥2𝑛+2  in (d) 

𝐹  

𝑆𝑇𝑥2𝑛+2 − 𝐼𝐴𝐵𝑥2𝑛+1  , 𝑆𝑇𝑥2𝑛+2 − 𝐽𝑥2𝑛+2 ,  𝐴𝐵 2𝑥2𝑛+1 − 𝑆𝑇𝑥2𝑛+2  ,

 𝐴𝐵 2𝑥2𝑛+1 − 𝐽𝑥2𝑛+2  , 𝐴𝐵𝑥2𝑛+2 − 𝐼𝐴𝐵𝑥2𝑛+1  , 𝑆𝑇𝑥2𝑛+2 − 𝐴𝐵𝑥2𝑛+2 ,

(𝐴𝐵)2𝑥2𝑛+1 − 𝐼𝐴𝐵𝑥2𝑛+1  , 𝐴𝐵𝑥2𝑛+2 − 𝐽𝑥2𝑛+2  

  ≤ 0   

Which implies that, as   𝑛 → ∞ 

𝐹 𝑧 − 𝐴𝐵𝑧 , 0, 𝐴𝐵𝑧 − 𝑧 , 𝐴𝐵𝑧 − 𝑧 , 𝑧 − 𝐴𝐵𝑧 , 0,0,0  ≤ 0   

Which is contradiction of (F3), if  𝑧 − 𝐴𝐵𝑧  ≠ 0. Thus = 𝑧 . 

Put 𝑥 = 𝐼𝑥2𝑛  and  𝑦 = 𝑥2𝑛+1 in (d) 
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𝐹  
𝑆𝑇𝑥2𝑛+1 − 𝐼 𝐼𝑥2𝑛 , 𝑆𝑇𝑥2𝑛+1 − 𝐽𝑥2𝑛+1  , 𝐴𝐵 𝐼𝑥2𝑛 − 𝑆𝑇𝑥2𝑛+1  ,
𝐴𝐵(𝐼𝑥2𝑛) − 𝐽𝑥2𝑛+1  , 𝐴𝐵𝑥2𝑛+1 − 𝐼(𝐼𝑥2𝑛) , 𝐴𝐵𝑥2𝑛+1 − 𝐽𝑥2𝑛+1  ,

𝑆𝑇𝑥2𝑛+1 − 𝐴𝐵𝑥2𝑛+1  , 𝐴𝐵(𝐼𝑥2𝑛) − (𝐼𝑥2𝑛) 
  ≤ 0   

Which implies that, as 𝑛 → ∞  

𝐹 𝑧 − 𝐼𝑧 , 0, 𝐴𝐵𝑧 − 𝑧 , 𝐴𝐵𝑧 − 𝑧 , 𝑧 − 𝐼𝑧 , 0,0, 𝐴𝐵𝑧 − 𝐼z   ≤ 0   

Which implies that 𝐼𝑧 = 𝑧 = 𝐴𝐵𝑧 

Now we show that  𝐵𝑧 = 𝑧 . By putting  𝑥 = 𝐵𝑧  𝑎𝑛𝑑  𝑦 = 𝑥2𝑛+1  in (d)  

𝐹  

𝑆𝑇𝑥2𝑛+1 − 𝐼𝐵z , 𝑆𝑇𝑥2𝑛+1 − 𝐽𝑥2𝑛+1  , 𝐴𝐵 𝐵z − 𝑆𝑇𝑥2𝑛+1  ,

𝐴𝐵 𝐵𝑥 − 𝐽𝑥2𝑛+1 , 𝐴𝐵𝑥2𝑛+1 − 𝐼𝐵z , 𝑆𝑇𝑥2𝑛+1 − 𝐴𝐵𝑥2𝑛+1  ,
𝐴𝐵(𝐵x) − 𝐼𝐵𝑧 , 𝐴𝐵𝑥2𝑛+1 − 𝐽𝑥2𝑛+1) 

  ≤ 0   

Which implies that, as 𝑛 → ∞ 

𝐹 𝑧 − 𝐵𝑧 , 0,0,0, 𝑧 − 𝐵𝑧 , 0, 𝑧 − 𝐵𝑧  , 0  ≤ 0   

Which implies that 𝐵𝑧 = 𝑧, 𝑠𝑖𝑛𝑐𝑒  𝐴𝐵𝑧 = 𝑧 ,𝐴𝑧 = 𝑧   

Now the pair {𝐽, 𝑆𝑇} is compatible of type (A) therefore by proposition 2 

Now by putting  𝑥 = 𝑧 𝑎𝑛𝑑 𝑦 = 𝑆𝑇𝑥2𝑛+2 in (d)  

𝐹  

 𝑆𝑇 2𝑥2𝑛+2 − 𝐼z ,  𝑆𝑇 2𝑥2𝑛+2 − 𝐽 𝑆𝑇 𝑥2𝑛+2  , 𝐴𝐵z −  𝑆𝑇 2𝑥2𝑛+2  ,

𝐴𝐵z − 𝐽 𝑆𝑇 𝑥2𝑛+2  , 𝐴𝐵 𝑆𝑇 𝑥2𝑛+2 − 𝐼z ,  𝑆𝑇 2𝑥2𝑛+2 − 𝐴𝐵 𝑆𝑇 𝑥2𝑛+2 ,
𝐴𝐵z − 𝐼z, 𝐴𝐵(𝑆𝑇)𝑥2𝑛+2 − 𝐽(𝑆𝑇)𝑥2𝑛+2  

  ≤ 0   

Which implies that, as 𝑛 → ∞ 

𝐹 0, z − 𝑆𝑇𝑧 , 0, z − 𝑆𝑇z , 0,0,0, z − 𝑆𝑇z   ≤ 0 

Which implies that 𝑆𝑇𝑧 = 𝑧 

Now by putting  𝑥 = 𝑧 𝑎𝑛𝑑 𝑦 = 𝐽𝑥2𝑛+1 in (d)  

𝐹  

𝑆𝑇(𝐽𝑥2𝑛+1) − 𝐼z , 𝑆𝑇(𝐽𝑥2𝑛+1) − 𝐽(𝐽𝑥2𝑛+1) , 𝐴𝐵z − 𝑆𝑇(𝐽𝑥2𝑛+1) ,

𝐴𝐵𝑧 − 𝐽 𝐽𝑥2𝑛+1 , 𝐴𝐵 𝐽𝑥2𝑛+1 − 𝐼z , 𝑆𝑇 𝐽𝑥2𝑛+1 − 𝐴𝐵 𝐽𝑥2𝑛+1 , 𝐴𝐵z − 𝐼𝑧 ,
𝐴𝐵(𝐽𝑥2𝑛+1) − 𝐽(𝐽𝑥2𝑛+1) 

  ≤ 0  

Which implies that, as 𝑛 → ∞ 

𝐹 0, z − 𝐽𝑧 , 0, z − 𝐽z , 0,0,0, z − 𝐽z   ≤ 0 
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Which implies that 𝐽𝑧 = 𝑧 and hence 𝑆𝑇𝑧 = 𝑧 = 𝐽𝑧  

Finally we show that  𝑇𝑧 = 𝑧 .Put  𝑥 = 𝑧 and  𝑦 = 𝑇𝑧  in (d) 

𝐹  
𝑆𝑇 Tz − 𝐼z , 𝑆𝑇 𝑇𝑧 − 𝐽 𝑇𝑧 , 𝐴𝐵z − 𝑆𝑇 𝑇𝑧 , 𝐴𝐵z − 𝐽 𝑇𝑧 ,
𝐴𝐵(𝑇𝑧) − 𝐼z , 𝑆𝑇(𝑇𝑧) − 𝐴𝐵(𝑇𝑧) , 𝐴𝐵z − 𝐼z , 𝐴𝐵(𝑇𝑧) − 𝐽(𝑇𝑧) 

  ≤ 0 

as 𝑛 → ∞  

𝐹 0, z − 𝑇𝑧 , 0, z − 𝑇𝑧 , 𝑇𝑧 − z , z − 𝑇𝑧 , 0,0  ≤ 0  

Which implies that 𝑇𝑧 = 𝑧 since  𝑆𝑇𝑧 = 𝑧,𝑤𝑒 ℎ𝑎𝑣𝑒 𝑆𝑧 = 𝑧  

Therefore by combining the above results, we have 

𝐴𝑧 = 𝐵𝑧 = 𝑆𝑧 = 𝑇𝑧 = 𝐼𝑧 = 𝐽𝑧 = 𝑧  

That is  𝑧 is common fixed point of  𝐴,𝐵, 𝑆,𝑇, 𝐼 𝑎𝑛𝑑 𝐽. 

𝐹  
𝑆𝑇𝑤 − 𝐼𝑧 , 𝑆𝑇𝑤 − 𝐽z , 𝐴𝐵z − 𝑆𝑇𝑤 , 𝐴𝐵z − 𝐽𝑤 , 𝐴𝐵𝑤 − 𝐼𝑧 ,

𝑆𝑇𝑤 − 𝐴𝐵𝑤 , 𝐴𝐵z − 𝐼𝑧, 𝐴𝐵𝑤 − 𝐽𝑤 
  ≤ 0  

𝐹 𝑤 − 𝑧 , 𝑤 − 𝑧 , 𝑧 − 𝑤 , 𝑧 − 𝑤 , 𝑤 − 𝑧  , 0,0,0  ≤ 0   

Therefore we have  𝑤 = 𝑧 This complete the proof.  

Theorem 2.2: Let 𝐴,𝐵, 𝑆,𝑇, 𝐼 & 𝐽 be mappings from a Hilbert space (𝑋,  ) into itself satisfying  

the conditions 

(a) 𝐼 𝑋 ⊂ 𝐴𝐵(𝑋) , 𝐽 𝑋 ⊂ 𝑆𝑇(𝑋) 

(b) One of 𝐴,𝐵,𝑆,𝑇, 𝐼, 𝐽 is continuous 

(c) The pair  𝐼,𝐴𝐵 , (𝐽, 𝑆𝑇) are compatible of type (A) 

(d) 𝐹  
𝑆𝑇y − 𝐼𝑥 2, 𝑆𝑇y − 𝐽y 2 , 𝐵𝑥 − 𝑆𝑇y 2 , 𝐵𝑥 − 𝐽y 2 , 𝐵y − 𝐼𝑥 2

𝑆𝑇y − 𝐴By 2𝐴𝐵𝑥 − 𝐼𝑥 2 , 𝐴𝐵y − 𝐽y 2
  ≤

0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥,𝑦 𝑖𝑛 𝑋, 

𝑡ℎ𝑒𝑛 𝐴,𝐵,𝑆,𝑇, 𝐼 & 𝐽 have a unique common fixed point. 

Proof: Same as Theorem 2.1 with parallelogram law.  

Corollary 2.2.1: Let 𝐴,𝐵, 𝑆,𝑇, 𝐼 & 𝐽 be mappings from a Hilbert space (𝑋,  ) into itself 

satisfying  the conditions 

(a) 𝐼 𝑋 ⊂ 𝐴(𝑋) , 𝐽 𝑋 ⊂ 𝑆(𝑋) 
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(b) One of 𝐴, 𝑆, 𝐼, 𝐽 is continuous 

(c) The pair  𝐼,𝐴 , (𝐽,𝑆) are compatible of type (A) 

(d) 𝐹  
𝑆y − 𝐼𝑥 2 , 𝑆y − 𝐽y 2, 𝑥 − 𝑆y 2 , 𝑥 − 𝐽y 2, y − 𝐼𝑥 2

𝑆y − 𝐴y 2A𝑥 − 𝐼𝑥 2 , 𝐴y − 𝐽y 2
  ≤ 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 𝑖𝑛 𝑋, 

𝑡ℎ𝑒𝑛 𝐴, 𝑆, 𝐼 & 𝐽 have a unique common fixed point.  

Proof: Consider   𝐵 𝑎𝑛𝑑 𝑇  identity mappings in theorem 2.2. 
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