

FIXED POINT RESULTS IN NORMED LINEAR SPACE

Archana Agrawal

Department of Mathematics, St. Aloysius College (auto), Jabalpur, and Research Scholar, Department of Mathematics and Computer Science, U.T.D, R. D. University Jabalpur (M. P.), India

Manoj Kumar Shukla

Department of Mathematics, Institute for Excellence in Higher Education, Bhopal, (M.P.) India

ABSTRACT

In this paper, we prove a common fixed point theorem for six mappings which satisfying compatible of type (A) under an implicit relation and rational expression.

MATHEMATICAL SUBJECT CLASSIFICATION (2000) - 54H25, 47H10

KEY WORDS AND PHRASES: Normed linear space, Compatible mappings of type (A),

Common fixed point.

1 INTRODUCTION AND PRELIMINARIES

Several authors proved common fixed point theorems using the concept of compatible maps as compatible of type (A) [1] and compatible of type (B) [3]. In 1998, H.K. Pathak, Y.J.

© Associated Asia Research Foundation (AARF)

Cho, S.M. Kang , B. Madharia [2] introduced another extension of compatible mapping of type (A) in normed spaces , called compatible mappings of type (C) and with some examples they compared these mappings with compatible maps , compatible maps of type (A) and compatible maps of type (B) . Further Popa [4], did lot of work for compatible mappings satisfying an implicit relation. In the continuation of this context we are proving a common fixed point theorem with six mappings which satisfying the compatible mappings of type (A) and implicit function in $(R^+)^8$.

IMPLICIT RELATION

As in [4], we denote by F the set of all real continuous functions $F: (R+)^8 \rightarrow R$

- (F1): *F* is non increasing in the variable t_4
- (F2): there exists $h \in (0,1)$ such that for every $u, v \ge 0$ with

(F3): F(u, 0, u, u, u, 0, 0, 0) > 0

(F4): F(u, 0, 0, 0, u, 0, u, 0) > 0

(F5): F(0, u, 0, u, 0, 0, 0, u) > 0

(F6): F(0, u, 0, u, u, u, 0, 0) > 0

 $(F^*): F(0, u, v, u + v, 0, 0, v, u) \leq 0.$

Then we have $u \leq hv$

Definition 1.1. Let *S* and *T* be mappings from a metric space (X, d) into itself. The mapping *S* and *T* are said to be compatible, if

$$\lim_{n\to\infty} d(STx_n, TSx_n) = 0$$

Definition 1.2. The mappings S and T from metric space (X, d) into itself are said to be compatible of type (A) if

$$\lim_{n \to \infty} d(STx_n, TTx_n) = 0 \text{ and } \lim_{n \to \infty} d(TSx_n, SSx_n) = 0$$

© Associated Asia Research Foundation (AARF)

Proposition 1. Let *S* and *T* be continuous mappings from a metric space itself. Then the following are equivalent:

- (i) *S and T* are compatible
- (ii) *S* and *T* are compatible of type (A)

Proposition 2. Let *S* and *T* be mappings from a metric space (*X*, *d*) into itself. If *S* and *T* are compatible of type (A) in *X* such that $\lim_{n\to\infty} S x_n = \lim_{n\to\infty} T x_n = z$ for some $z \in X$, then

- (i) $\lim_{n\to\infty} TS x_n = Tz$ if T is continuous at z,
- (ii) STz = TSz and Sz = Tz, if S and T are continuous at z,

2. Main results

Theorem 2.1: Let *A*, *B*, *S*, *T*, *I* & *J* be mappings from a Normed linear space (X, || ||) into itself satisfying the conditions

- (a) $I(X) \subset AB(X), J(X) \subset ST(X)$
- (b) One of A, B, S, T, I, J is continuous
- (c) The pair (I, AB), (J, ST) are compatible of type (A)

(d)
$$F \left\{ \begin{array}{c} \|STy - Ix\|, \|STy - Jy\|, \|Bx - STy\|, \|Bx - Jy\|, \|By - Ix\|, \|STy - ABy\|, \\ \|ABx - Ix\|, \|ABy - Jy\| \end{array} \right\} \le 0$$

for all *x*, *y* in *X*,

then A, B, S, T, I & J have a unique common fixed point.

Proof: By (a) $I(X) \subset AB(X)$, for any $x_0 \in X$ there exist a point $x_1 \in X$ such that $Ix_0 = ABx_1$. Since $J(X) \subset ST(X)$, for this point x_1 we choose a point $x_2 \in X$ such that $Ix_1 = STx_2$. Inductively we can find a sequence

$$y_{2n} = Ix_{2n} = ABx_{2n+1}$$

 $y_{2n+1} = Jx_{2n+1} = STx_{2n+2}$

Using inequality (d), we have successively

© Associated Asia Research Foundation (AARF)

$$F\left\{ \begin{array}{l} \|STx_{2n+2} - Ix_{2n+1}\|, \|STx_{2n+2} - Jx_{2n+2}\|, \|ABx_{2n+1} - STx_{2n+2}\|, \\ \|ABx_{2n+1} - Jx_{2n+2}\|, \|ABx_{2n+2} - Ix_{2n+1}\|, \|STx_{2n+2} - ABx_{2n+2}\|, \\ \|ABx_{2n+1} - Ix_{2n+1}\|, \|ABx_{2n+2} - Jx_{2n+2}\| \\ \end{array} \right\} \le 0$$

$$= F \left\{ \begin{array}{c} \|y_{2n+1} - y_{2n+1}\|, \|y_{2n+1} - y_{2n+2}\|, \|y_{2n} - y_{2n+1}\|, \|y_{2n} - y_{2n+2}\|, \\ \|y_{2n+1} - y_{2n+1}\|, \|y_{2n+1} - y_{2n+1}\|, \|y_{2n} - y_{2n+1}\|, \|y_{2n+1} - y_{2n+2}\| \end{array} \right\} \le 0$$

By condition (F_1) , we have

$$F\left\{\begin{matrix} 0, \|y_{2n+1} - y_{2n+2}\|, \|y_{2n} - y_{2n+1}\|, \|y_{2n} - y_{2n+1}\| + \|y_{2n+1} - y_{2n+2}\|, 0, 0, \\ \|y_{2n} - y_{2n+1}\|, \|y_{2n+1} - y_{2n+2}\| \end{matrix}\right\} \le 0$$

So we obtain by (F^*) ,

$$||y_{2n+1} - y_{2n+2}|| \le h||y_{2n} - y_{2n+1}||$$

Similarly, we get

$$||y_{2n} - y_{2n+1}|| \le h ||y_{2n+1} - y_{2n}||$$

Proceeding in the same way, we get

$$||y_{2n+1} - y_{2n+2}|| \le h^{2n-1} ||y_0 - y_1||$$

It follows that $\{y_n\}$ is a cauchy sequence in X is complete, $\{y_n\}$ is convergent to a point z in X. Since $Ix_{2n}, Jx_{2n+1}, ABx_{2n+1}, STx_{2n+2}$ are subsequences of $\{y_n\}$, they also converge to a point z, that is as $\rightarrow \infty$, $Ix_{2n}, Jx_{2n+1}, STx_{2n+1} \rightarrow z$.

Suppose AB is continuous and the pair $\{I, AB\}$ is *compatible* of type (A), by proposition (2)

$$I(AB)x_{2n+1} \rightarrow ABz$$
, $(AB^2)x_{2n+1} \rightarrow ABz$

Put $x = ABx_{2n+1}$ and $y = x_{2n+2}$ in (d)

$$F \begin{cases} \|STx_{2n+2} - IABx_{2n+1} \|, \|STx_{2n+2} - Jx_{2n+2} \|, \|(AB)^2x_{2n+1} - STx_{2n+2} \|, \\ \|(AB)^2x_{2n+1} - Jx_{2n+2} \|, \|ABx_{2n+2} - IABx_{2n+1} \|, \|STx_{2n+2} - ABx_{2n+2} \|, \\ \|(AB)^2x_{2n+1} - IABx_{2n+1} \|, \|ABx_{2n+2} - Jx_{2n+2} \| \end{cases} \le 0$$

Which implies that, as $n \to \infty$

$$F\{||z - ABz||, 0, ||ABz - z||, ||ABz - z||, ||z - ABz||, 0, 0, 0\} \le 0$$

Which is contradiction of (F₃), if $||z - ABz|| \neq 0$. Thus = z.

Put $x = Ix_{2n}$ and $y = x_{2n+1}$ in (d)

© Associated Asia Research Foundation (AARF)

$$F \begin{cases} \|STx_{2n+1} - I(Ix_{2n})\|, \|STx_{2n+1} - Jx_{2n+1}\|, \|AB(Ix_{2n}) - STx_{2n+1}\|, \|AB(Ix_{2n}) - Jx_{2n+1}\|, \|ABx_{2n+1} - I(Ix_{2n})\|, \|ABx_{2n+1} - Jx_{2n+1}\|, \|STx_{2n+1} - ABx_{2n+1}\|, \|AB(Ix_{2n}) - (Ix_{2n})\| \end{cases} \le 0$$

Which implies that, as $n \to \infty$

$$F\{||z - Iz||, 0, ||ABz - z||, ||ABz - z||, ||z - Iz||, 0, 0, ||ABz - Iz||\} \le 0$$

Which implies that Iz = z = ABz

Now we show that Bz = z. By putting x = Bz and $y = x_{2n+1}$ in (d)

$$F \left\{ \begin{array}{l} \|STx_{2n+1} - IBz\|, \|STx_{2n+1} - Jx_{2n+1}\|, \|AB(Bz) - STx_{2n+1}\|, \\ \|AB(Bx) - Jx_{2n+1}\|, \|ABx_{2n+1} - IBz\|, \|STx_{2n+1} - ABx_{2n+1}\|, \\ \|AB(Bx) - IBz\|, \|ABx_{2n+1} - Jx_{2n+1})\| \end{array} \right\} \le 0$$

Which implies that, as $n \to \infty$

$$F\{||z - Bz||, 0, 0, 0, ||z - Bz||, 0, ||z - Bz||, 0\} \le 0$$

Which implies that Bz = z, since ABz = z, Az = z

Now the pair $\{J, ST\}$ is compatible of type (A) therefore by proposition 2

Now by putting x = z and $y = ST x_{2n+2}$ in (d)

$$F \left\{ \begin{array}{l} \|(ST)^{2}x_{2n+2} - Iz \|, \|(ST)^{2}x_{2n+2} - J(ST)x_{2n+2} \|, \|ABz - (ST)^{2}x_{2n+2} \|, \\ \|ABz - J(ST)x_{2n+2} \|, \|AB(ST)x_{2n+2} - Iz \|, \|(ST)^{2}x_{2n+2} - AB(ST)x_{2n+2} \|, \\ \|ABz - Iz \|, \|AB(ST)x_{2n+2} - J(ST)x_{2n+2} \| \end{array} \right\} \leq 0$$

Which implies that, as $n \to \infty$

$$F\{0, ||z - STz||, 0, ||z - STz||, 0, 0, 0, ||z - STz||\} \le 0$$

Which implies that STz = z

Now by putting x = z and $y = Jx_{2n+1}$ in (d)

$$F \left\{ \begin{array}{l} \|ST(Jx_{2n+1}) - Iz\|, \|ST(Jx_{2n+1}) - J(Jx_{2n+1})\|, \|ABz - ST(Jx_{2n+1})\|, \\ \|ABz - J(Jx_{2n+1})\|, \|AB(Jx_{2n+1}) - Iz\|, \|ST(Jx_{2n+1}) - AB(Jx_{2n+1})\|, \|ABz - Iz\|, \\ \|AB(Jx_{2n+1}) - J(Jx_{2n+1})\| \\ \end{array} \right\} \le 0$$

Which implies that, as $n \to \infty$

$$F\{0, ||z - Jz||, 0, ||z - Jz||, 0, 0, 0, ||z - Jz||\} \le 0$$

© Associated Asia Research Foundation (AARF)

Which implies that Jz = z and hence STz = z = Jz

Finally we show that Tz = z. Put x = z and y = Tz in (d)

$$F\left\{ \begin{array}{l} \|ST(Tz) - Iz\|, \|ST(Tz) - J(Tz)\|, \|ABz - ST(Tz)\|, \|ABz - J(Tz)\|, \\ \|AB(Tz) - Iz\|, \|ST(Tz) - AB(Tz)\|, \|ABz - Iz\|, \|AB(Tz) - J(Tz)\| \end{array} \right\} \le 0$$

as $n \to \infty$

 $F\{0, ||z - Tz||, 0, ||z - Tz||, ||Tz - z||, ||z - Tz||, 0, 0\} \le 0$

Which implies that Tz = z since STz = z, we have Sz = z

Therefore by combining the above results, we have

Az = Bz = Sz = Tz = Iz = Jz = z

That is z is common fixed point of A, B, S, T, I and J.

$$F\left\{ \begin{array}{c} \|STw - Iz\|, \|STw - Jz\|, \|ABz - STw\|, \|ABz - Jw\|, \|ABw - Iz\|, \\ \|STw - ABw\|, \|ABz - Iz\|, \|ABw - Jw\| \end{array} \right\} \leq 0$$

 $F\{||w - z||, ||w - z||, ||z - w||, ||z - w||, ||w - z||, 0, 0, 0\} \le 0$

Therefore we have w = z This complete the proof.

Theorem 2.2: Let A, B, S, T, I & J be mappings from a Hilbert space (X, || ||) into itself satisfying the conditions

- (a) $I(X) \subset AB(X), J(X) \subset ST(X)$
- (b) One of A, B, S, T, I, J is continuous
- (c) The pair (I, AB), (J, ST) are compatible of type (A)

(d)
$$F \begin{cases} ||STy - Ix||^2, ||STy - Jy||^2, ||Bx - STy||^2, ||Bx - Jy||^2, ||By - Ix||^2 \\ ||STy - ABy||^2 ||ABx - Ix||^2, ||ABy - Jy||^2 \end{cases} \le 0 \text{ for all } x, y \text{ in } X, \text{ then } A, B, S, T, I \& J \text{ have a unique common fixed point.} \end{cases}$$

Proof: Same as Theorem 2.1 with parallelogram law.

Corollary 2.2.1: Let *A*, *B*, *S*, *T*, *I* & *J* be mappings from a Hilbert space (X, || ||) into itself satisfying the conditions

(a) $I(X) \subset A(X), J(X) \subset S(X)$

© Associated Asia Research Foundation (AARF)

- (b) One of A, S, I, J is continuous
- (c) The pair (I, A), (J, S) are compatible of type (A)

(d)
$$F \begin{cases} ||Sy - Ix||^2, ||Sy - Jy||^2, ||x - Sy||^2, ||x - Jy||^2, ||y - Ix||^2 \\ ||Sy - Ay||^2 ||Ax - Ix||^2, ||Ay - Jy||^2 \end{cases} \le 0 \text{ for all } x, y \text{ in } X,$$

then A, S, I & J have a unique common fixed point.

Proof: Consider *B* and *T* identity mappings in theorem 2.2.

References

- [1] Jungck G., Murthy P.P. and Cho Y.J. compatible mappings of type (A) and common fixed point, Math. Japon., 38 (1993), 381-390.
- [2] Pathak H.K., Cho Y.J., Kang S.M. and Madharia B., compatible mapping of type (C) and Common fixed point theorem of Gregus type, demonstr. Math., 31 (3) 1998, 499-517.
- [3] Pathak H. K. and Khan M.S., compatible mapping of type (B) and common fixed point theorem of Gregus type, Czechoslovak Math. J., 45 (120) (1995), 685-698.
- [4] Popa V., some fixed point theorem for compatible mappings satisfying an implicit relation, Demonstr. Math., 32 (1) 1999, 157-163.

© Associated Asia Research Foundation (AARF)