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Abstract 

 Using hybrid and Gaussian model, m= o low lyig mode frequency (  ) and high 

lying mode frequency (  )  were calculated Our theoretically evaluated results are in good 

agreement with the experimental data and with the other workers. 

Introduction 

 Bose-Einstein condensation of dilute atomic gases has been achieved in a variety of 

magnetic and optical dipole force traps with different geometries. There is considerable 

interest in studying the properties of these ultracold gases under conditions where the 

confinement gives a system with dimensionality less than 3. 

 Recent experiments in optical lattices have observed the properties of a one-

dimensional Tonks gas in which bosons show fermionic properties. 
1,2

 Many other 

experiment: phase coherence between of lattice wells was observed;
3,4

 collective excitations 

of a one-dimensional gas were studied and three-body recombination rates in a correlated ID 

degenerate Bose gas measured.
5
 All these experiments were carried out with many individual 

condensates in a lattice of tightly confining  potential tubes formed at the inter-section of two 

optical standing waves. Tunnelling between individual wells was controlled through the beam 

intersities. A single optical potential well was used to confine a mixture of BEC and Frem gas 

where the BEC was found to have a one-dimensional character.
6 

 Other experiments used a one- of BECs formed by a single standing wave. Each 

individual condensate was confined to an extreme pancake shaped potential well and had 

quasi-two dimensional properties; the tunnelling between the well could be controlled by 
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adjusting the intensity of the standing wave an oscillating atomic current in an array of 

Josephson junctions was studied,
7
 number-squeezed states were created

8
 and interference 

between independent  condensates was observed
9
 

 Two-dimensional Bose-condensates in a single potential were studied
10-12

 However, 

the new physics in this regime remains to be explored: a two-dimensional Bose gas in a 

homogenous potential does not undergo Bose-Einstein condensation(BEC);instead there is a 

Berenzinskill-Thouless transition(a topological phase transition mediated by the spontaneous 

formation of vortex pairs), a system that is superfluid even though it does not possess long-

range order. This is counter to the usual picture os superfluidity in three dimensions 

explained in terms of a macroscopic wave function describing the whole system. A recent 

theoretical paper
13

 discusses of the condensate coherence length on temperature. It shows that 

even for very low temperature . at a fraction of the critical temperature, the coherence length 

is much smaller than the condensate size due to strong phase fluctuations. Early experiments 

on the KT transition were carried out with films of superfluid
4
He

14-15  
and more recent once 

include the observation of quasi condensates in thin layers of spin-polarized hydrogen.
16

 

 In recent experiments, BECs created in conventional tree-dimensional magnetic traps 

have been put into the quasi-two dimensional(Q2D) regime through the addition of an optical 

potential. In this limit the interaction energy. proportional to the chemical potential  ,is on 

the order of or smaller than the harmonic oscillator level spacing. Along the tightly confined 

axial direction the characteristics of the condensate  of the condensate are those of an ideal 

gas and the condensate width equals to harmonic oscillator length. Only when compressing 

the trap much further to a point where the condensate width becomes comparable to the 

scattering length one finds that the coupling constant g is changing and becomes dependent 

on the density, 
17,18

 However, such a tight compression has not been achieved in recent 

experiments. The crossover to the Q2D regime was first observed in 
10 

and in 
11

 continuously 

removing atoms form a highly anisotropic trap to decrease the interaction energy. In the 

experiment described in
12

 the Q2D crossover is observed by gradually increasing the trap 

anisotropy form moderate to very large values whilst keeping the number of atoms fixed. 

Mathematical Formula used in the Calculation 

 Condensates are usually trapped in harmonic potentials given by 

V ext  =
222

2
i

i
iO

m


     ------------- (1)
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where the i (t) denote the trap anisotropies which can in general depend on time. A quasi-

two dimensional trap has  >>  For large anisotropies the condensate shape along the z 

direction is very similar to the Gaussian profile of an ideal gas. However, along the weakly 

confined x and y axes the condensate  has parabolic shape characteristic the hydrodynamic 

regime. To determine the dynamics of the quasi-two dimensional condensate we use a 

variation  method 
17

  and define the trial wave function 

   = n )y(e/ze
yx

zyx

i

z

xx

22222

2

2

2

2

21
11

1 

------------- (2) 

where the normalization constant An is given by  

  
2
n  = 

23
zyx 111

2


     ------------- (3) 

The condensate with (t) and phase i (t) parameters are functions of time and their time 

evolution completely describes that of the condensate. The condensate density profile is at all 

time restricted to a parabolic shape in the radial plane and a Gaussian shape along the highly 

compressed axial direction. The Lagrangian density for the  nonlinear Schrodinger equation 

is given by  
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with the nonlinearity parameter g = ,m/a4 2  where a is the scattering length, N is the 

number of atoms in the condensate and m is the atomic mass. After inserting the trial wave 

function(2) and into Eq.(4) the corresponding lagrangian is found through integration L=

 ;xd 3L   the four terms of Eq.(4) lead to 

 L= L1+L2+L3+L4  
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where we obtained the quantum pressure term
18

 for the x and y directions(where this term is 

divergent due to the sharp boundaries of the condensate wave function in the hydrodynamic 

regime) but retained it for the z direction where the condensate assumes the Gaussian shape 

of an ideal non-interacting gas (as the term proportional to 
2
z11 . The quantum presuure term 
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is crucial in describing the dynamics. The total energy per particle Etot and the chemical 

potential  are given by  

  E tot= Ekin+Epot+Eint, =Ekin+Epot+Eint 

---------- (6)

 

where Ekin, Epot and Eint are the kinetic, potential and interaction energy, given by the last 

three terms of the Lagrangian(5), respectively, the Euler lagrange equations  

 
iiii
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Yield the dynamic equagtion for the condensate whith 1i and phase i  we find for the widths 

 iii
m

I 1
2


        

---------- (8)

 

 After differentiating Eqs.(8) once more with respect to time one can express the 

resulting second equation in terms of the 1i alone  
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where 
iz
 =1 for i=z and 0 otherwise. It is convenient to express the above equation in 

diemensionless quantities. so we introduces the dimensionless time   and widths di  defined 

by  

 ,t,
a

d i

i 0

0

1


     ---------- (10)

 

where a0 =  om/  is the harmonic oscillator length . in terms of quantities Eq(9) can be 

rewritten as  
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wherer the constant Cp =   Na/a/28 o . To find ground state of Eqs.(11) one has to set 

the left side equal to zero and solve the remaining coupled nonlinear equations: 
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This cannot be done analytically but it is straight toforward to find a numerical 

solution.The iio  (o), i= x,y,z are defined as the trap anisotropies at time t=0 when the 
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condensate is in the ground state. The dio=di(o) are the ground state solution of Eq. (11) i.e. 

the solutions for the condensate widths di  when the time derivative is set to zero. 

 After some algebra and using various symmetries the three coupled equations can be 

reduced to one polynomial equation introducing new dimensionless units Di defined as the 

ground state condensate widths 1i0 normalised by the axial harmonic oscillator length az, i.e., 

Di=1i0/az the polynomial equation can be written as  

  1
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1 3
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where DZ = 
2 There is only one real and positive solution to this equation For the x and y 

widths we find 
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 One now examines the case where the anisotropy becomes very large. A solution to 

Eq.(13) is then given by neglecting the first term  on the right- hand side (RHS) and solving 

the remaining equation We find that 1DZ
2   and thus the approximate solution is given 

by the axial harmonic oscillator length  

 Izo=
zm



      ---------- (15)

 

It is the minimum width the condensate shape can attain and it is also the solution for 

the width of a noninteracting gas.For this reason the gas along the z direction is said to have 

the characteristics of an ideal noninteracting gas. 

Now, one calculates the chemical potential form Eq.(6) and the terms of the 

Lagrangian(5) and obtain after some algebra  

22

1
1

22 z
~

xOx
,m





    ---------- (16)

 

Where one used
2

,yo
2
y

2
0x

2
x 11  the expression for Izo[Eq.15] and other symmetries of 

Eqs.(12) one finds that the relation y,xi,m/~I
iio

 
2

2 is similar to that of a 

hydrodynamic gas
19

 only that for the quasi two-dimensional gas one uses the chemical 

potential shifted by an amount 2/
z

  to calculate the radial width. inserting solution(15) 

for the axiatl width into Eq.(14) one obtains explicit expressions for the radial width 
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 Another,as yet unexplored, method to observe the transition of Q2D is probe the 

collective excitation spectrum. An ansatz for the trial wave function of the type(2) allows for 

the description of the three qadrupolar modes
19

 In an axially symmetric trap they are given by 

the m=2 mode and them=0 low and high-lying modes, where m denotes the angular 

momentum quantum number. In order to calculate mode frequencies one linearise the 

dynamic equations of the hybrid mode(11) around the ground state. Making the ansatz. 

  iioi dd        

---------- (18)

 

inserting it into Eqs.(11) expanding up to first order , and using Eqs(12) to simplify and 

combine certain terms, one obtains after some algebra 
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 Calculating the eigenvalue and eighenfrequencies of the above matrix one finds the 

collective excitation frequencies and modes. This can be easily done numerically. For 

simplicity that lends it self to an easy analyticaltreatment one assumes cylindrical symmetry 

zOyxOrOyoxo
dodd,  and reduce the set of three equations to a set of two 
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where D= Cp/  33

zoro
dd  one can diagonalize  the above matrix and find the eigenvalue which 

yields for the eigenfrequencies :2  
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Inserting expression (15) and (17) for the ground state width into the equation above 

one obtains and analytic expression for the collective excitation frequencies in the Q2D 

regime: 
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 The two frequencies given by Eq.(21) describe the high and low lying m=0 modes of 

the collective  excitation spectrum. The high lying m=0 mode is an in-phase compressional 

model mode along all directions (breathing mode) The low lying m=o corresponds to a radial 

oscillation of the width which is out of phase with an oscillation along the trap axis. The third 

mode(not described in Eq.(21) in an axially symeetric trap is the m=2 mode. It corresponds to 

a quadrupole type excitation in the radial plane and its frequency is given r2 , 

irrespective of the axial frequency. 

Discussion of Results 

 In this paper we have evaluated the m=o high lying mode frequency  +  and low 

lying mode freqneucy ( -) as a function of radial frequency(   2/r  by taking two modes 

into account namely the hybrid variatinal model and Gaussian variational model. evaluated 

results are shown in table T1 and T2 respectively. Our results for both  zr /  and  zr /  

decreases with radial frequency   2/r .the results are alos very much identical for both 

these models. One observes the change of the collective excitation frequencies of the two 

m=0 modes for increasing .r For very small r  in the Q2D regime, the mode frequencies 

approach the ideal or non interacting gas limit. 

Table T
1 

Evaluated result of m=o high lying mode frequency 


  as function  

of    2/r  

Radial trap frquency 

  2/r  

m=0 high lying mode   2/r  

Hybrid model Gaussian Model 

0 2.054 2.022 

10 2.006 2.003 

15 1.958 1.962 

20 1.934 1.944 

25 1.907 1.918 

50 1.866 1.873 
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100 1.835 1.840 

125 1.808 1.815 

150 1.786 1.796 

200 1.762 1.777 

225 1.745 1.752 

250 1.732 1.744 

300 1.706 1.716 

 

Table T2 

Evaluated result of m=O low lying mode frequency  as a function of radial trap frequency 

  2/r
 

Radial trap frequency 

 2/r

 

m=0 low lying mode   

  2/
r

 

Hybrid model Gaussian Model  

0 1.986 1.992 

10 1.964 1.987 

15 1.952 1.965 

20 1.932 1.952 

25 1.908 1.922 

50 1.854 1.884 

100 1.814 1.842 

125 1.786 1.805 

200 1.762 1.774 

225 1.754 1.762 

250 1.750 1.754 

300 1.726 1.743 
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