AN APPROACH FOR THE RATE OF CONVERGENCE FOR STANCUMODIFIED BETA OPERATOR

Dr. Rajneesh Deo (Ph.D.)
Department of Mathematics, VKS University, Ara

Abstract

In this paper, we shall study about simultaneous approximation for the linear combinations of Stancu Type Generalization for Modified Beta Operators. We obtain a direct result in terms of higher order modulus of continuity. To prove the main result, we use the technique of the linear approximation method i.e. Steklov Mean.

Keywords: Stancu Type Generalization of Modified Beta Operators; Linear Combinations; Modulus of Continuity.

AMS Subject Classification: 41A25, 41A35

1. INTRODUCTION

Let f be a function defined on $[0, \infty)$. The Modified Beta Operators are introduced by Gupta and Ahmad [3] as

$$
\begin{equation*}
P_{n}(\underline{\underline{f}} x)=\frac{n-1}{n} \sum_{v=0}^{\infty} \underline{b}_{n, v}(x) \int_{0}^{\infty} \underline{\underline{p}}_{n, x}(t) f(t) d t \quad \underline{\underline{\mathrm{x}} \in}[0, \infty) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \underline{\underline{b}}_{n, v}(x)=\frac{1}{b(v+\underline{n})} \mathrm{x}^{\mathrm{v}}(1+\mathrm{x})^{-(\mathrm{n}+\mathrm{v}+1)} \quad,,,,, \prime \prime \\
& \underline{p}_{\mathrm{n}, \mathrm{v}}(\mathrm{t})=\left({ }^{\mathrm{n}+\mathrm{v}-1}\right) \mathrm{t}^{\mathrm{v}}(1+\mathrm{t})^{-(\mathrm{n}+\mathrm{v})}
\end{aligned}
$$

and

$$
\underline{\underline{B}}(v+1, n)=\frac{\mathrm{v}(\mathrm{n}-1)!}{(\mathrm{n}+\mathrm{v})!}, \quad \text { also } \quad B(v, n)=f_{0}^{\infty} \frac{s^{v-1}}{\left(1+\underline{s^{n}+v}\right.} d x
$$

These operators are introduced by Gupta and Ahmad [3] to approximate Lebesgue function on the $[0, \infty)$ as-

Let $\mathrm{Cy}[0, \infty)=\left\{f \in[0, \infty):|f(\mathrm{t})| \leq \mathrm{Mt}^{\mathrm{y}}\right.$ for soNe y $\Sigma 0$ and soNe constant $\left.\mathrm{M} \Sigma 0\right\}$, we define the norm

$$
\left.\|\cdot\|_{y} \text { on } \underline{\underline{C_{y}}[0}, \infty\right) \text { by }\|f\|_{y}=\sup _{0 € t € \infty}|f(t)| \pm t^{y}
$$

Here we shall apply Stancu [7] type generalization of Bernstein [1] polynomials as-

[^0]where
\[

$$
\begin{equation*}
\left.p_{n, \alpha}^{n}(x)=\left(I_{k}^{n}\right) \xlongequal\left[\underline{\left.\right|_{s}}\right)\right]{\prod_{s=0}^{k-1}(x+\alpha s) \prod_{s=0}^{n=k-1}(1-x+\alpha s)} \prod_{s=0}^{n-1}\left(1+\alpha_{s}\right) \tag{1.3}
\end{equation*}
$$

\]

We get the Bernstein polynomials by putting $\square \square 0$, starting with two parameters $\alpha \& p$ satisfying $0 \leq \alpha \leq \mathrm{p}$ in 1983 .

The other generalization of Stancu Operators was given in [8] and studied the linear positive operators as follows-

$$
\begin{align*}
& \left.p_{a, k}(x)=\left.\right|_{\|} ^{\prime \prime}\right)^{k x}(1-x)^{u=\pi}, \tag{1.5}\\
& \text { where }
\end{align*}
$$

It is the Bernstein basis function.
Recently Ibrahim [5] introduced Stancu Chlodowsky polynomials and investigated convergence and approximation properties of these operators.

Now Stancu type generalization for Operators (1.1) as follows-

$$
\begin{align*}
& \alpha, \beta\left(\quad \underline{n-1}^{\infty} \quad(\underline{n t}+\underline{\alpha}) \mid\right. \\
& P_{n} \quad \underline{f} x=\left.{ }_{n} \sum \underline{\underline{b}}_{n, x}(x) \int p_{m_{n}, t}(t) f\right|_{n+\beta} \mid d t, \quad x \in[0, \infty] \tag{1.6}\\
& v=0 \quad 0 \quad \text {) }
\end{align*}
$$

where $\underline{b}_{n, x}(x)$ and $p_{n, x}(t)$ are defined as earlier. The operators $\mathrm{P}_{\mathrm{n}}^{(\alpha, \mathrm{p})}$ are called Modified Beta Stancu Operators. For $\alpha=\mathrm{p}=0$, the operators (1.2) reduce to operators (1.1).

It is easily verified that the operators P_{n} are linear positive operators. Also P

For $\mathrm{d}_{\mathrm{O}}, \mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{v}}$ arbitrary but fixed distinct positive integers, the linear combination $\operatorname{Pn}(f, \mathrm{v}, \mathrm{x})$ of $\operatorname{Pd} \mathrm{j} \mathrm{n}(f, \mathrm{x}), \mathrm{j}=0,1,2, \ldots, \mathrm{n}$ are defined by

$$
\begin{align*}
& \text { v } \\
& P_{n}(f, v, x)=\sum_{j=0} C(j, v) P_{d, n}(f, x) \tag{1.7}\\
& \text { where } \quad C(j, v)=\underset{\substack{i=0 \\
i^{*} i}}{v} \frac{a_{j}}{d_{i}-d_{i}}, \quad v \neq 0 \text { and } \underline{C(0,0)}= \\
& \text { Alternately the above linear combination may be defined as- }
\end{align*}
$$

2. BASIC RESULTS

In this section, we study some definitions and certain lemmas by using Stancu operators to prove our main theorems. We shall extend the results of Maheshwari and Gupta [6] by applying Stancu type of generalization.
Here we mention two definitions named as Steklov mean and $\mathrm{k}^{\text {th }}$ order modulus of continuity, which will be beneficial in finding our results.

Steklov Mean- Let us assume that $0<\mathrm{a}<\mathrm{a} 1<\mathrm{b} 1<\infty$, for sufficiently small $ð>0$, the

$$
(2 \mathrm{k}+2)^{\mathrm{th}} \text { order. }
$$

Steklov mean $\mathrm{g} 2 \mathrm{k}+2$,ið corresponding to $\mathrm{g} \in \mathrm{Cy}[0, \infty)$ is defined by

$$
\begin{aligned}
& \text { ð/2 ð/2 ð/2 } \\
& g_{2 k+2, i a \partial}(t)=\partial^{-(2 k+2)} \boldsymbol{f} \quad \boldsymbol{f} \ldots \ldots \quad \boldsymbol{f}\left[g(t)-\Delta^{2 k+2} g(t)\right] \neq d t, \\
& \text { ið/2 ið/2 ið/2 } \\
& \text { where } \quad 5=\frac{1}{2 \mathrm{k}+2} \sum_{\mathrm{i}=1}^{2 \mathrm{k}+2} \underset{\mathrm{i}}{ }, \quad \text { and } \underline{i} \in[\mathrm{a}, \mathrm{~b}]
\end{aligned}
$$

It is easily checked [2, 3,5] that
i. $\quad g_{2 k+2,0}$ has continuous derivatives up to order $(2 k+2)$ on $[a, b]$.

iii. $\| g-g_{2 k+2, \partial \|_{C ץ x_{1}, \mathrm{q} \mid}} \leq \mathrm{KW}_{2 \mathrm{k}+2}(\mathrm{~g}$, ð, $\mathrm{a}, \mathrm{b})$,
iv. $\quad\left\|g_{2 k+2, d}\right\|_{\mathrm{e}\left|\mathrm{a}_{1}, \mathrm{~b}_{1}\right|} \leq K\|g\|_{\mathrm{y}}$
where ' K ' is an arbitrary constant and in this paper it will have different values at different places.
$\mathrm{k}^{\text {th }} \quad$ Order Modulus of Continuity- The $\mathrm{k}^{\text {th }}$ order moment of continuity $\mathrm{mk}(f, \delta)$ for a function continuous on an interval $[\mathrm{a}, \mathrm{b}]$ is defined by

$$
\operatorname{mk}(f, ð)=\operatorname{Sup}\left\{\left|\Delta^{\mathrm{k}} f(\mathrm{x})\right|:|h| \leq \chi, \mathrm{x}, \mathrm{x}+\mathrm{k} h \in \mathrm{I}\right\}
$$

For $\mathrm{k}=1, \mathrm{~m}_{\mathrm{k}}(f, \mathrm{\delta})$ is written simply as $\mathrm{m}_{\mathrm{i}}(\mathrm{\delta})$
or $\mathrm{m}(f$, б).

Lemma-2.1 - For $m \in N \cup\{0\}$ if
then

$$
(n+1) U_{\underline{\underline{n}, \underline{\underline{1}}+1}}(x)=x(1+x)\left\{U_{\underline{n, m}}(x)+m U_{\underline{n}, \underline{m}+1}(x)\right\}
$$

Consequently

(i) $\quad \underline{U}_{n+m}(x)$ is a polynomial in x of degree $\leq m$.

$$
\begin{equation*}
\underline{\underline{U_{n, m}}}(x)=O\left(n^{-[m+1 / 2]}\right) \text {, Where }[£] \text { denotes the integral part of } £ . \tag{ii}
\end{equation*}
$$

Lemma-2.2- Let the $\mathrm{N}^{\text {th }}$ order moment be defined by

$$
\begin{equation*}
T_{n, N}(x)=\frac{n-1}{n} \sum_{v=0}^{\infty} b_{n, v}(x){\underset{0}{f}}_{\infty}^{\infty} p_{n, v}(t)\left(\frac{n t+\alpha}{n+b}-x\right)^{N} d t \tag{1.5}
\end{equation*}
$$

then

$$
\mathrm{T}_{\mathrm{n}, \mathrm{o}}(\mathrm{x})=1, \quad \mathrm{~T}_{\mathrm{n}, 1}(\mathrm{x})=\frac{\mathrm{u}}{\mathrm{n}+\mathrm{b}}-\mathrm{x} \quad \text { and }
$$

$$
\begin{aligned}
&(n-N-2) T_{n, N+1} \\
&=x(1+x)\left[T^{\prime}(x)+2 N T_{n, N-1}(x) \mid+I\left(1+\langle x)(N+1)+x \mid I_{n . N}(x),\right.\right. \\
& n>N+2
\end{aligned}
$$

Further, for all $x \in[0, \infty), \quad T_{n m}(x)=O\left(n^{-[m+1]^{2}}\right)$
ROOF: The proof of Lemma-2.1 can easily be obtained by using the definition of $T_{n, \mathrm{~N}}(\mathrm{x})$ from Lemma-2.2. so, first, for the proof of Lemma-2.2 we proceed as follows.

Differentiating (1.5) with respect to x and multiplying by $\mathrm{x}(1+\mathrm{x})$ on both sides-
 $x \operatorname{Tn}, N-1 x$

Using relations

1) $x(1+x) b_{n, p}^{\prime}(x)=[v-(n+1) x] b_{n, k}(x)$,

we obtain-

$$
=-(N+1)(1+2 x) T_{\mathrm{n}, \mathrm{~N}}(\mathrm{x})-(\mathrm{N}+2) \mathrm{T}_{\mathrm{n}, \mathrm{~N}+1}(\mathrm{x})-\mathrm{NX}(1+\mathrm{x}) \mathrm{T}_{\mathrm{n}, \mathrm{~N}-1}(\mathrm{x})
$$

$$
+\underline{n} T_{n, N+1}(x)-\underline{x} T_{n, N}(x)
$$

This leads to Lemma-2.2. Obviously $T_{2 m}(x)=\underline{O}\left(n^{-[m+1]^{2}}\right)$

Lemma-2.3- There exists the polynomial $q i, j, r(x)$ independent of $n \& v$, such that

$$
\begin{aligned}
& +\underline{x}(1+x)] p_{n+1}(t)\left(\overline{L_{2}}-x\right) \text { ut } \quad+\mu_{n \times 1}(x)-x \ln N(x) \\
& =(1+2 x) \frac{n-1}{n} \sum_{v=0}^{\infty} \underline{b}_{n, z}(x) f_{0}^{\infty} p_{n, y}^{\prime}(t)\left(\frac{n t+\alpha}{n+p}-x\right)^{m+1} d t \\
& +\frac{n-1}{n} \sum_{v=0}^{\infty} \underline{b}_{n, k}(x){\underset{0}{f}}_{\infty}^{\infty}(t)\left(\frac{n t+\alpha}{n+p}-x\right)^{m+2} d t
\end{aligned}
$$

$$
\begin{aligned}
& -\mathrm{xT}_{\mathrm{n}, \mathrm{~N}}(\mathrm{x})
\end{aligned}
$$

$$
\begin{aligned}
& \underline{x}(1+x)\left[T_{n, N}(x)+N_{n, N-1}(x)\right] \\
& =\frac{n-1}{n} \sum_{v=0}^{\infty}[v-(n+1) x] b_{n, v}(x) \int_{0}^{\infty} p_{n, v}(t)\left(\frac{n t+\alpha}{n+b}-x\right)^{N} d t \\
& =\frac{n-1}{n} \sum_{v=0}^{\infty} b_{n, v}(x) \underset{0}{\infty}\left[\left(v-n \frac{n t+\alpha}{n+b}\right)+n\left(\frac{n t+\alpha}{n+b}-x\right)-x\right] p_{n, v}(t)\left(\frac{n t+\alpha}{n+b} x\right) d t
\end{aligned}
$$

$$
x^{r}(1+x)^{r} \frac{d^{r}}{d x^{r}}\left(x^{v}(1+x)^{-n-v}\right)=\sum_{\substack{2 i+i<r \\ i, \ngtr 0}} n_{(i n}^{i}(v-n)^{j} q_{i, j, x}(x) x^{v}(1+x)^{-n-v}
$$

Lemma-2.4- Let f be r times differentiable on $[0, \infty)$ such $f^{(r-1)}=0\left(\mathrm{t}^{\mathrm{q}}\right)$ for some $\alpha>0$
as $t \rightarrow \infty$ then

$$
\text { for } r=1,2,3 \text { and } n>q+r \text {, we have }
$$

n

$$
\underline{n}!(\mathrm{n}-2)!
$$

$$
(x)^{\infty} \int_{n-L_{2}+x^{t} J}^{\frown^{r}} \cdot \frac{n t+\alpha}{n+b}
$$

PROOF- We have

By using Leibnitz theorem-

Again, by using Leibnitz theorem, we get

Hence,

$$
p_{n-\frac{r}{r}+r}^{r^{r}}(t)=\frac{(n-1)!}{(n-r-1)!} \sum-1 \quad()_{i=0}^{i^{r}} \quad \text { (1) } \sum_{n, v+i}
$$

Integrating r times, we get the required result.

Lemma-2.5 Let $f \in C_{y}[0, \infty)$, if $\mathbf{f}^{(2 k+r+2)}$ exists at a point $x \in[0, \infty)$, then
where $\mathrm{Q}(\mathrm{i}, \mathrm{v}, \mathrm{r}, \mathrm{x})$ are certain polynomials in x

3. MAIN RESULTS

In this section we shall prove the following main results.
Theorem 3.1- Let $f^{\mathrm{r}} \in \mathrm{Cy}[0, \infty)$ and $0<\mathrm{a}<\mathrm{a} 1<\mathrm{b} 1<\mathrm{b}<\infty$ then for n sufficiently large

$$
\begin{aligned}
& \left\|\underset{\mathrm{n}}{\operatorname{Pr}}(\mathbf{f}, \mathrm{v}, \mathrm{x})-\mathbf{f}_{\mathrm{r}}^{\mathrm{r}}\right\|_{\mathrm{Cla}} \underset{11}{\mathrm{~b}} \mid \\
& \text { where } \\
& \quad \mathrm{C}_{1} \equiv \mathrm{C}_{1}(\mathrm{v}, \mathrm{r}) \text { and } \mathrm{C}_{2} \equiv \mathrm{C}_{2}(\mathrm{v}, \mathrm{r}, \mathrm{f})
\end{aligned}
$$

Proof: First, we have by linearity property of the operators, we have

$$
\begin{aligned}
& \|\underset{\mathrm{n}}{\operatorname{Pr}(f, v)}-\mathrm{fn}\| \underset{\mathrm{C}}{\mathrm{l}}
\end{aligned}
$$

$$
\begin{aligned}
& +\left\|I f^{r}-\int_{2 v+\underline{2, \delta}}^{r}\right\|_{C\left|a_{1}, b_{1}\right|} \\
& =B_{1}+B_{2}+B_{3} \text {, (Say) }
\end{aligned}
$$

By property (iii) of Steklov mean, we have

$$
\mathrm{B} 3 \leq \operatorname{Km} 2 \mathrm{v}+2\left(f^{\mathrm{r}}, ð, \mathrm{a}, \mathrm{~b}\right)
$$

Next, by Lemma-2.5, we have

$$
B_{2} \leq K^{-(v+1)} \sum_{j=r}^{\mid 2 v+r+2}\| \|_{2 v+2.0}^{i} \|_{\mathrm{C}|a, b|}
$$

By interpolation property due to Goldberg and Meir [2] for each $\mathrm{j}=\mathrm{r}, \mathrm{r}+1, \ldots, 2 \mathrm{v}+\mathrm{r}+2$, we have-

$$
\left\|_{f_{2 v+2,0}^{i}}^{i}\right\|_{C|a, b|} \leq K\left\{\left\|f_{2 v+2, \partial \|^{2}}{ }_{C|a, b|}+\right\| \int_{2 v+2.0}^{2 v+r+2} \|_{\underline{C l a, b \mid}}\right\}
$$

Therefore by properties (ii) and (iv) of Steklov mean, we have-

$$
B_{2} \leq \underline{K n}^{-(v+1)}\left\{\|\mathbf{f}\|_{y}+ð^{-(2 v+2)} m_{2 v+2}\left(\mathbf{f}^{r}, \check{\partial}\right)\right\}
$$

Finally, we shall estimate B, choosing a^{*}, b^{*} satisfying the conditions,

$$
0<\mathrm{a}<\mathrm{a}^{*}<\mathrm{a} 1<\mathrm{b} 1<\mathrm{b}^{*}<\infty
$$

Also let f be a characteristic function of the interval $\left[\mathrm{a}^{*}, \mathrm{~b}^{*}\right]$, thenType equation here.

We may note here that to estimate B_{4} and B_{5}, it is enough to consider their expressions without the linear combinations.

By Lemma-2.4, we have

Hence.

Now, for $\mathrm{x} \in[\mathrm{a}, \mathrm{b}] \& \mathrm{t} \in[0, \infty)\left\|\mathrm{a} \cdot \mathrm{b}^{*}\right\|$. we choose a 冗

[^1]" $\left.\frac{n t+\alpha}{\frac{-}{n+b}}-x \right\rvert\, \geq \frac{\partial}{1}$

Therefore by Lemma-2.3 and Schwarz inequality, we have-

$$
\begin{aligned}
& r \quad \underline{n t}+\alpha \quad \text { nt }+\alpha \quad \text { nt }+\alpha \\
& I=P_{n}\left|\{1-f(\overline{n+p})\}\left\{f(\overline{n+p})-f_{2 v+2, \partial}(\overline{n+p})\right\}, x\right|
\end{aligned}
$$

$$
\begin{aligned}
& \left.I=P_{n} \mid\{1-f(\overline{\underline{n t}+\alpha} \overline{\underline{n t}+\alpha})\}\left\{(\overline{(n+p})-f_{2 v+2, \partial}^{(\underline{n t}+\alpha}\right)\right\}, x \mid
\end{aligned}
$$

$$
\begin{aligned}
& \text { i, } \mathrm{j} \text { ŠO } \\
& \underline{n t}+\alpha \quad \underline{n t}+\alpha \quad n t+\alpha \\
& \left.-\boldsymbol{f}\left(\frac{(}{n+b}\right)\right\}\left|\boldsymbol{f}\left(\frac{}{n+b}\right)-f_{2 v+2,0}\left(\frac{}{n+b}\right)\right| d t
\end{aligned}
$$

$$
\begin{aligned}
& \left.\leq K{\underset{\partial}{1}}_{1}^{-2 c}\|f\|_{y} \frac{n-1}{n} \sum_{\substack{2 i+j S \bar{S} r \\
i, j S O}}^{n^{i}} \sum \underline{b}_{n, v}^{\infty}(x) \right\rvert\, v \underset{v=0}{ } \\
& \underline{n t}+\alpha \quad-\underset{0}{\left.\left.n x\right|^{i}\left(f p_{n, y}(t) d t\right)^{4 c}{\underset{0}{2}}_{\left(f p_{n, v}\right.}^{2}(t)\left(\frac{1}{n+p}-x\right) d t\right) ~}
\end{aligned}
$$

$$
\begin{aligned}
& -\underline{n x})^{i / 2} \cdot\left\{\frac{n-1}{n} \sum_{v=0}^{\infty}{\underset{n}{n} x}^{b_{n}}(x)\left(f p_{n v}(t)\left(\frac{n t+\alpha}{n+b}-x\right)^{4 c} d t\right)\right\}^{1 / 2}
\end{aligned}
$$

Hence, by Lemma-2.1 \& 2.2, we have-

$$
\|\leq K\| f\left\|_{y} 0(n)^{t+\frac{1}{L}+c} \leq \underline{K n}^{-y}\right\| f \|_{y}
$$

Where $\mathrm{q}=(\mathrm{s}-\mathrm{n} / 2)$. Now choose $\partial>0$ such $\mathrm{q} \geq(\mathrm{v}+1)$, then

$$
\mathrm{I} \leq \mathrm{Kn}^{-(\mathrm{v}+1)}\|f\| y
$$

Therefore by property (iii) of Steklov mean, we get-

$$
\begin{aligned}
B_{1} \leq K \| f r & f_{2 v+2 . \delta}\left\|_{C\left[a^{*} . b^{*}\right]}+K n^{-(v+1)}\right\| f \|_{y} \\
& \leq K m_{2 v+2}\left(f^{r}, \check{o}, a, b\right)+K n^{-(v+1)}\|f\|_{y}
\end{aligned}
$$

Hence with $ð=\mathrm{n}^{-1 / 2}$, the theorem follows.

REFERENCES

(1) Agrawal PN, Gupta V. Bull. Greek Math. Soc 1989; 30: 21-29.
(2) Goldberg S, Meir V. Proc. London Math. Soc. 1971; 23: 1-15.
(3) Gupta V, Ahmad A. Simultaneous approximation by Modified Beta Operators. Istanbul Univ. Fen. Fak. Mat. Derg. 1995; 54: 11-22.
(4) Hewitt E, Stromberg K. Real and Abstract Analysis, McGraw Hill, New York 1956.
(5) Ibrahim B. Approximation by Stancu- Chlodowsky polynomials. Comput. Math. Appl. 2010; 59: 274-282.
(6) Maheshwari P, Gupta V. Estimation on the Rate of Convergence for Modified Operators. Indian J.Pure aApl. Math. 2003; 34 (6): 927-934.
(7) Stancu DD. Approximation of function by means of a new generalized Bernstein Operator. Calcolo 1983; 20: 211-229.
(8) Stancu DD. Approximation of function by a new class of linear polynomials Operators. Rev. Romaine. Math. Pures Appl. 1968; 13: 1173-1194.

[^0]: © Associated Asia Research Foundation (AARF)
 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

[^1]: 11

