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ABSTRACT 

In this paper, we shall study about simultaneous approximation for the linear 

combinations of Stancu Type Generalization for Modified Beta Operators.  We  obtain a  

direct  result in terms of higher order modulus of continuity. To prove the main result, we 

use the technique of the linear approximation method i.e. Steklov Mean. 
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1. INTRODUCTION 
Let ƒ be a function defined on [0, ∞). The Modified Beta Operators are introduced by 

Gupta and Ahmad [3] as 

 

These operators are introduced by Gupta and Ahmad [3] to approximate Lebesgue 

function     on the [0, ∞) as- 

Let Cy[0, ∞) = {ƒ ∈ [0,∞): |ƒ(t)| ≤ Mt
y
  ƒor soNe y Σ 0 and soNe constant M Σ 0}, we define 

the norm  

 

Here we shall apply Stancu [7] type generalization of Bernstein [1] polynomials as- 
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We get the Bernstein polynomials by putting   0 , starting with two parameters α & þ 

satisfying 0 ≤ α ≤ þ in1983. 

 

The other generalization of Stancu Operators was given in [8] and studied the linear positive 

operators as follows- 

 

 

 

It is the Bernstein basis function. 

Recently Ibrahim [5] introduced Stancu Chlodowsky polynomials and investigated  

convergence and approximation properties of these operators. 

Now Stancu type generalization for Operators (1.1) as follows- 

 
 

 

It is easily verified that the operators Pn  are linear positive operators. Also P (1, x) = 1, it turns out the order of approximation for the operators (1.2) are at best O (1/n), howsoever smooth the function may be. Thus to improve the order of approximation, we consider the  linear combination of operators (1.1) as described further. 

 

For dO, d1, d2, … , dv arbitrary but fixed distinct positive integers, the linear combination 

Pn(ƒ, v, x) of Pdjn(ƒ,x), j = 0, 1,2, … , n are defined by 
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Alternately the above linear combination may be defined as- 

 

 

 

2. BASIC RESULTS 

In this section, we study some definitions and certain lemmas by using Stancu operators to 

prove our main theorems. We shall extend the results of Maheshwari and Gupta [6] by  

applying Stancu type of generalization. 

Here we mention two definitions named as Steklov mean and k
th

 order modulus of 

continuity, which will be beneficial in finding our results. 

Steklov Mean- Let us assume that 0 < a < a1 < b1 < ∞, for sufficiently small ð > 0, the 

(2k + 2)
th

 order. 

Steklov mean g2k+2,ið corresponding to g ∈ Cy[0, ∞) is defined by 
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It is easily checked [2, 3, 5] that

 

where ′K′ is an arbitrary constant and in this paper it will have different values at different 

places. 

k
th

  Order  Modulus  of  Continuity-  The k
th

 order  

moment  of  continuity mk(ƒ, ð)  for  a function continuous on an interval [a, b] is defined by 

mk(ƒ, ð) = Sup{|∆
k
ƒ(x)| ∶  |ℎ | ≤ ð, x, x + kℎ  ∈ I} 

For k = 1,  mk(ƒ, ð) is written simply as mi(ð) or m(ƒ, ð) . 

 

Lemma-2.1 – For m ∈  N ∪  {0} if 

 

 

Consequently 

 
 

Lemma-2.2- Let the N
th

 order moment be defined by 
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ROOF: The proof of Lemma-2.1 can easily be obtained by using the definition of Tn,N(x) 

from   Lemma-2.2. so, first, for the proof of Lemma-2.2 we proceed as follows. 

 

 

Differentiating (1.5) with respect to x and multiplying by x(1 + x) on both sides- 

 

 

 

Using relations 

 

we obtain- 
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Lemma-2.3- There exists the polynomial qi,j,r(x) independent of n & v, such that 
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Lemma-2.4- Let f be r times differentiable on [0,∞) such ƒ
(r–1)

  = 0(t
q
) for some α > 0 

as t → ∞ then 

 

PROOF- We have
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By using Leibnitz theorem- 

 

 

Again, by using Leibnitz theorem, we get 

 

Integrating r times, we get the required result. 

 

where Q(i, v, r, x) are certain polynomials in x 

 

 

3. MAIN RESULTS 
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In this section we shall prove the following main results. 

Theorem 3.1- Let ƒ
r
 ∈ Cy[0, ∞) and 0 < a < a1 < b1 < b < ∞ then for ‘n sufficiently 

large 

 

 

Proof: First, we have by linearity property of the operators, we have 

 

By property (iii) of Steklov mean, we have 

   B3  ≤ Km2v+2(ƒ
r
, ð, a, b) 

Next, by Lemma-2.5, we have                       

   

By interpolation property due to Goldberg and Meir [2] for each j = r, r + 1, … ,2v + r + 2, 

we have- 

 

 

 

 

Therefore by properties (ii) and (iv) of Steklov mean, we have- 
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Finally, we shall estimate B, choosing a*, b* satisfying the conditions, 

0 < a < a∗ < a1 < b1 < b∗ < ∞ 

 

Also let ƒ be a characteristic function of the interval [a*, b*], thenType equation here. 

 

 

We may note here that to estimate B4 and B5, it is enough to  consider  their  expressions 

without the linear combinations. 

By Lemma-2.4, we have 

 

 
 

 

 

 

 

 

Therefore by Lemma-2.3 and Schwarz inequality, we have- 
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Hence, by Lemma-2.1 & 2.2, we have- 

 

 

Where q = (s − n/2). Now choose ð > 0 such q ≥ (v + 1), then 

I ≤ Kn–(v+1)‖ƒ‖y 

Therefore by property (iii) of Steklov mean, we get- 

 

Hence with ð = n
–1/2

, the theorem follows. 
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