AN APPROACH FOR THE RATE OF CONVERGENCE FOR STANCU- MODIFIED BETA OPERATOR

Vikash Kumar
Research Scholar
Department of Mathematics
Sri Satya Sai University of Technology \& Medical Sciences, M.P.

Abstract

In this paper, we shall study about simultaneous approximation for the linear combinations of Stancu Type Generalization for Modified Beta Operators. We obtain a direct result in terms of higher order modulus of continuity. To prove the main result, we use the technique of the linear approximation method i.e. SteklovMean.

Keywords: Stancu Type Generalization of Modified Beta Operators; Linear Combinations; Modulus of Continuity.

AMS Subject Classification: 41A25, 41A35

1. INTRODUCTION

Let f beafunctiondefinedon $[0, \infty)$.TheModifiedBetaOperatorsareintroducedbyGupta and Ahmad [3]as

$$
\begin{equation*}
P_{n}(\underline{\underline{f}} x)=\frac{n-1}{n} \sum_{v=0}^{\infty} \underline{b}_{n, v}(x) \int_{0}^{\infty} \underline{\underline{p}}_{n, x}(t) f(t) d t \quad \underline{\underline{\mathrm{x}} \in}[0, \infty) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \underline{\underline{b}}_{n, v}(x)=\frac{1}{b(v+\underline{\underline{n})}} \mathrm{*}^{\mathrm{v}}(1+\mathrm{x})^{-(\mathrm{n}+\mathrm{v}+1)} \quad,,,,,, \prime \\
& \underline{p}_{\mathrm{n}, \mathrm{x}}(\mathrm{t})=\left({ }^{\mathrm{n}+\mathrm{v}-1}\right) \mathrm{t}^{\mathrm{v}}(1+\mathrm{t})^{-(\mathrm{n}+\mathrm{v})}
\end{aligned}
$$

and

$$
\underline{\underline{B}}(v+1, n)=\frac{\mathrm{v}(\mathrm{n}-1)!}{(\mathrm{n}+\mathrm{v})!}, \quad \text { also } \quad B(v, n)=f_{0}^{\infty} \frac{s^{v-1}}{(1+\underline{s})^{n+v}} d x
$$

These operators are introduced by Gupta and Ahmad [3] to approximate Lebesgue function on the $[0, \infty)$ as-

[^0]LetCy $[0, \infty)=\left\{\boldsymbol{f} \in[0, \infty):|\boldsymbol{f}(\mathrm{t})| \leq \mathrm{Mt}^{\mathrm{y}} \boldsymbol{f}\right.$ orsoNey $\boldsymbol{\Sigma}$ 0andsoNeconstantM $\left.\Sigma 0\right\}$, wedefinethenor m

$$
\|\cdot\|_{y} \text { on } \underline{\underline{C_{y}}[0}[\infty) \text { by }\|f\|_{y}=\sup _{0 € t € \infty}|f(t)| \pm t y
$$

Here we shall apply Stancu [7] type generalization of Bernstein [1] polynomials as-
where

$$
\begin{equation*}
p_{n, \alpha}^{n(x)}=\left(\left.\right|_{(n)} ^{\left.\left.\right|_{s}\right)} \prod_{s=0}^{k-1}(x+\alpha s) \prod_{s=0}^{n=k-1}(1-x+\alpha s)\right. \tag{1.3}
\end{equation*}
$$

We get the Bernstein polynomials by putting $\square \square 0$, starting with two parameters α \& p satisfying $0 \leq \alpha \leq \mathrm{p}$ in1983.

The other generalization of Stancu Operators was given in [8] and studied the linear positive operators as follows-
where

$$
\begin{equation*}
p_{a, k}(x)=\left.\left.\right|_{\|} ^{\prime \prime}\right|^{1 k}(1-x)^{u=\pi} \tag{1.5}
\end{equation*}
$$

It is the Bernstein basis function.
Recently Ibrahim [5] introduced Stancu Chlodowsky polynomials and investigated convergence and approximation properties of theseoperators.

Now Stancu type generalization for Operators (1.1) as follows-

$$
\left.P_{n}^{\alpha, \beta} \underline{\underline{f,} x=\sum_{n} x \underline{\underline{b}}_{n, \psi}(x) \int_{v=0}^{\infty} p_{m_{1}, t}(t) f \mid}\right|_{n+\beta} \mid d t, \quad x \in[0, \infty]
$$

where $\underline{b}_{n, \alpha}(x)$ and $p_{n, x}(t)$ are defined as earlier. The operators $\mathrm{P}_{\mathrm{n}}^{(\alpha, \mathrm{p})}$ are called Modified Beta Stancu Operators. For $\alpha=\mathrm{p}=0$, the operators (1.2) reduce to operators (1.1).

ItiseasilyverifiedthattheoperatorsP ${ }_{\mathrm{n}}$ arelinearpositiveoperators.AlsoP $\quad \mathrm{n}(1, \mathrm{x})=1$, it turns out the order of approximation for the operators (1.2) are at best $O(1 / n)$, howsoever smooth the function may be. Thus to improve the order of approximation, we consider the linear combination of operators (1.1) as describedfurther.

For $d_{\mathrm{O}}, \mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{v}}$ arbitrary but fixed distinct positive integers, the linear combination $\mathrm{P}_{\mathrm{n}}(f, \mathrm{v}, \mathrm{x})$ of $\mathrm{P}_{\mathrm{djn}}(f, \mathrm{x}), \mathrm{j}=0,1,2, \ldots, \mathrm{n}$ are defined by

$$
\begin{equation*}
P_{n}(f, v, x)=\sum_{j=0} C(j, v) P_{d, n}(f, x) \tag{1.7}
\end{equation*}
$$

where $\quad C(j, v)=\underset{i=0}{v} \frac{a_{j}}{d_{i}-d_{i}}, \quad v \neq 0$ and $\underline{C}(0,0)=$

Alternately the above linear combination may be defined as-

2. BASICRESULTS

In this section, we study some definitions and certain lemmas by using Stancu operators to prove our main theorems. We shall extend the results of Maheshwari and Gupta [6] by applying Stancu type ofgeneralization.
Here we mention two definitions named as Steklov mean and $\mathrm{k}^{\text {th }}$ order modulus of continuity, which will be beneficial in finding our results.

Steklov Mean-Let us assume that $0<a<\mathrm{a}_{1}<\mathrm{b}_{1}<\infty$, for sufficiently small $ð>0$, the
$(2 k+2)^{\text {th }}$ order.
Steklov mean $\mathrm{g} 2 \mathrm{k}+2$, ið corresponding to $\mathrm{g} \in \mathrm{C}_{\mathrm{y}}[0, \infty)$ is defined by

$$
\begin{aligned}
& \text { ð/2 ð/2 ð/2 } \\
& 2 \mathrm{k}+2
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{i} \mathrm{y} / 2 \mathrm{i} \mathrm{i} / 2 \quad \mathrm{i} / 2 / 2 \\
& \mathrm{i}=1 \\
& \text { where } \quad 5=\frac{1}{2 k+2} \sum_{i=1}^{2 k+2} i, \quad \text { and } i \in[a, b]
\end{aligned}
$$

It is easily checked $[2,3,5]$ that
i. $\quad g_{2 k+2,0}$ has continuous derivatives up to order $(2 k+2)$ on $[a, b]$.

iv. $\quad\left\|g_{2 k+2, d}\right\|_{\mathrm{e}\left|\mathrm{a}_{1}, \mathrm{~b}_{1}\right|} \leq \mathrm{K}\|g\|_{\mathrm{y}}$
where ' K ' is an arbitrary constant and in this paper it will have different values at different places.
$\mathrm{k}^{\text {th }}$ OrderModulusofContinuity-The ${ }^{\text {th }}$ ordermomentofcontinuitym $\mathrm{k}_{\mathrm{k}}(\boldsymbol{f}$, 厄)fora function continuous on an interval $[a, b]$ is defined by

$$
\begin{array}{r}
\mathrm{m}_{\mathrm{k}}(\boldsymbol{f}, \mathrm{\varnothing})=\operatorname{Sup}\left\{\left|\Delta^{\mathrm{k}} \boldsymbol{f}(\mathrm{x})\right|:|h| \leq \mathrm{\chi}, \mathrm{x}, \mathrm{x}+\mathrm{k} h \in \mathrm{I}\right\} \\
\text { Fork }=1, \mathrm{~m}_{\mathrm{k}}(\boldsymbol{f}, \varnothing) \text { iswrittensimplyasm }{ }_{\mathrm{i}}(\boldsymbol{\varnothing}) \operatorname{orm}(\boldsymbol{f}, \nearrow) .
\end{array}
$$

Lemma-2.1 - For $m \in N \cup\{0\}$ if

$$
\underline{U}_{a, m}(x)=\frac{\left.\left.\underline{1} \sum_{v=0}^{\infty} b_{n, k}(x)\right|^{v}-x\right)^{)^{\prime \prime}}}{\square}
$$

then

$$
(n+1) U_{\underline{\underline{n, m}}+1}(x)=x(1+x)\left\{U_{n, \underline{m}}(x)+m U_{\underline{\underline{n}, \underline{\underline{m}}+1}}(x)\right\}
$$

Consequently

(i) $\quad \underline{U}_{n, m}(x)$ is a polynomial in x of degree $\leq m$.
(ii) $U_{n m}(x)=O\left(n^{-[m+1 / 2]}\right)$, Where $\lceil £\rceil$ denotes the integral part of $£$.

Lemma-2.2-Letthe ${ }^{\text {th }}$ ordermomentbedefinedby

$$
\begin{equation*}
T_{n, N}(x)=\frac{n-1}{n} \sum_{v=0}^{\infty} b_{n, k}(x){\underset{0}{f}}_{\infty}^{\infty} p_{n, v}(t)\left(\frac{n t+\alpha}{n+b}-x\right)^{N} d t \tag{1.5}
\end{equation*}
$$

then $\quad T_{n, 0}(x)=1, \quad T_{n, 1}(x)=\frac{u}{n+p}-x \quad$ and

$$
\begin{aligned}
&(n-N-2) T_{n, N+1} \\
&=x(1+x)\left[T^{\prime}(x)+2 N T_{n . N-1}(x) \mid+I\left(1+\langle x)(N+1)+x \mid I_{n . N}(x),\right.\right. \\
& n>N+2
\end{aligned}
$$

Further, for all $x \in[0, \infty), \quad T_{n m}(x)=\underline{O}\left(n^{-[m+1]^{2}}\right)$
ROOF:TheproofofLemma-2.1caneasilybeobtainedbyusingthedefinitionof $T_{n, \mathrm{~N}}(\mathrm{x})$ fromLemma-2.2.so,first,fortheproofofLemma-2.2weproceedasfollows.

Differentiating (1.5) with respect to x and multiplying by $\mathrm{x}(1+\mathrm{x})$ on both sides-

$$
x \operatorname{Tn}, N-1 x
$$

Using relations

1) $\underline{x}(1+x) b_{n, p}^{\prime}(x)=[v-(n+1) x] b_{n, v}(x)$,

we obtain-

$$
\begin{aligned}
& \underline{x}(1+x)\left[T_{n, N}^{\prime}(x)+N_{n, N-1}(x)\right] \\
& =\frac{n-1}{n} \sum_{v=0}^{\infty}[v-(n+1) x] b_{n, v}(x) \underset{0}{\infty} p_{n, v}(t)\left(\frac{\underline{n t}+\alpha}{n+b}-x\right)^{N} d t \\
& =\frac{n-1}{n} \sum_{v=0}^{\infty} b_{n, v}(x) \underset{0}{\infty}\left[\left(v-n \frac{n t+\alpha}{n+b}\right)+n\left(\frac{\underline{n t}+\alpha}{n+b}-x\right)-x\right] p_{p, v}(t)\left(\frac{n t}{n+b} x\right) d t \\
& \left\lvert\,=\frac{n-1}{n} \sum_{v=0}^{\infty} \underline{b}_{n, x}(x) \underset{\alpha}{\infty} \frac{n t+\alpha}{n+p}\left(1+\frac{n t+\alpha}{n+p}\right) p_{n \underline{n}}^{\prime}(t)\left(\frac{n t+\alpha}{n+p}-x\right)^{N} d t+\underline{n T}_{n, N+1}(x)\right. \\
& -\mathrm{xT}_{\mathrm{n}, \mathrm{~N}}(\mathrm{x})
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n-1}{n} \sum_{v=0}^{\infty} \underline{b}_{n, \alpha}(x) \underset{0}{\infty} \boldsymbol{f}\left[(1+2 x) \underset{\left(\epsilon_{n+B}\right.}{\left.\frac{n t+\alpha}{(}-x\right)+\frac{n t}{\epsilon_{n}+\alpha}}-x^{2}\right. \\
& +x(1+x)] p_{n+1}(t)(\ldots, r) \text { ut } \quad+\mu_{\ln N+1}(x)-x \ln N(x) \\
& =(1+2 x) \frac{n-1}{n} \sum_{v=0}^{\infty} b_{n, v}(x) f_{0}^{\infty} p_{n, y}^{\prime}(t)\left(\frac{n t+\alpha}{n+p}-x\right)^{m+1} d t \\
& +\frac{n-1}{n} \sum_{v=0}^{\infty} \underline{b}_{n \cdot v}(x){\underset{0}{f}}_{\infty}^{p}(t)\left(\frac{n t+\alpha}{n+p}-x\right)^{m+2} d t
\end{aligned}
$$

$$
\begin{aligned}
& =-(N+1)(1+2 x) T_{n, N}(x)-(N+2) T_{n, N+1}(x)-N X(1+x) T_{n, N-1}(x) \\
& +\underline{\mathrm{n}} \mathrm{~T}_{\mathrm{n}, \mathrm{~N}+1}(\mathrm{x})-\mathrm{x} \mathrm{~T}_{\mathrm{n}, \mathrm{~N}}(\mathrm{x})
\end{aligned}
$$

This leads to Lemma-2.2. Obviously $T_{2 m}(x)=\underline{O}\left(n^{-[m+1]^{2}}\right)$

Lemma-2.3- There exists the polynomial $\mathrm{qi}, \mathrm{j}, \mathrm{r}(\mathrm{x})$ independent of $\mathrm{n} \& \mathrm{v}$, such that

$$
x^{r}(1+x)^{r} \frac{d^{r}}{d x^{r}}\left(x^{v}(1+x)^{-n-v}\right)=\sum_{\substack{2 i+i s k \\ i,>0}} n_{r}^{i}(v-n x)^{j} q_{i, j, x}(x) x^{v}(1+x)^{-n-v}
$$

Lemma-2.4-Letfbertimesdifferentiableon $[0, \infty) \operatorname{such} \boldsymbol{f}^{(r-1)}=0\left(\mathrm{t}^{\mathrm{q}}\right)$ forsome $\alpha>0$ as $\mathrm{t} \rightarrow$ ∞ then

$$
\text { for } r=1,2,3 \text { and } n>q+r \text {, we have }
$$

PROOF- We have

By using Leibnitz theorem-

Again, by using Leibnitz theorem, we get

Hence,

$$
p_{n-\frac{r, v+r}{r}}^{(t)=} \frac{(n-1)!}{(n-r-1)!} \sum-1 \quad \text { (1) } p_{n, v+i}^{i=0}
$$

Integrating r times, we get the required result.

Lemma-2.5 Let $f \in C_{y}[0, \infty)$, if $\mathbf{f}^{(2 k+r+2)}$ exists at a point $x \in[0, \infty)$, then

$$
\varliminf_{n \rightarrow \infty} n^{v+1}\left\lceil\frac{P_{r}}{n}\left(f,\left(d_{0}, d_{i}, \ldots d_{v}\right), x\right)-f r(x)\right\rceil=\sum_{i=r}^{2 v+r+2} Q(i, v, r, x) f(x)
$$

where $\mathrm{Q}(\mathrm{i}, \mathrm{v}, \mathrm{r}, \mathrm{x})$ are certain polynomials in x

$$
\begin{aligned}
& \underline{\operatorname{Pr}(f, x)}=^{n-1} \quad r(n+v+r-i)!(-1)^{r-i} X^{v-i}(1 \\
& \left.n \quad \underline{n} \sum_{i=0}^{\sum \sum \sum_{v=1}^{i}} \underline{i}^{(}\right) \overline{(n-1)!(v-i)!} \\
& +x)^{-n-v-1-r-i} \boldsymbol{f}_{\overline{n, v}}(t) f(\underset{n+p}{\underline{n t}+\alpha} d t \\
& 0 \\
& =\frac{n-1}{n} \sum \frac{(n+v+r)!}{(n-1)!v!} \cdot \frac{x^{v}}{(1+x)^{n+v+r+1}} \boldsymbol{f} \sum(-1)^{r-i}() p_{n, v+i}(t) f \underline{\underline{n t}+\alpha} \underbrace{}_{n+p}) d t \\
& v=0 \quad 0 \quad i=0
\end{aligned}
$$

3. MAINRESULTS

In this section we shall prove the following main results.
Theorem 3.1- Let $f^{\mathrm{T}} \in \mathrm{C}_{\mathrm{y}}[0, \infty)$ and $0<\mathrm{a}<\mathrm{a}_{1}<\mathrm{b}_{1}<\mathrm{b}<\infty$ then for 'nsufficiently large

$$
\begin{aligned}
& \left\|\operatorname{Pr}_{\mathrm{n}}^{\mathrm{Pr}}(\mathbf{f}, \mathrm{v}, \mathrm{x})-\mathbf{f}_{\mathrm{r}}^{\mathrm{r}}\right\|_{\mathrm{Cla}}^{\underset{11}{\mathrm{~b}} \mid} \leq \\
& \text { where } \\
& \quad \mathrm{C}_{1} \equiv \mathrm{C}_{1}(\mathrm{v}, \mathrm{r}) \text { and } \mathrm{C}_{2} \equiv \mathrm{C}_{2}(\mathrm{v}, \mathrm{r}, \mathrm{f})
\end{aligned}
$$

Proof: First, we have by linearity property of the operators, we have

$$
\begin{aligned}
& \left\|\underset{\mathrm{n}}{\operatorname{Pr}}(\mathrm{f}, \mathrm{v})-\mathrm{fn}_{\mathrm{n}}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& +\left\|f^{r}-f_{2 v+\underline{, d}}^{r}\right\|_{C\left|a_{1, b_{1}}\right|} \\
& =B_{1}+B_{2}+B_{3} \text {, (Say) }
\end{aligned}
$$

By property (iii) of Steklov mean, we have

$$
\mathrm{B} 3 \leq \mathrm{Km}_{2} \mathrm{v}+2\left(\boldsymbol{f}^{\mathrm{r}}, \mathrm{\delta}, \mathrm{a}, \mathrm{~b}\right)
$$

Next, by Lemma-2.5, we have

ByinterpolationpropertyduetoGoldbergandMeir[2]foreachj $=\mathrm{r}, \mathrm{r}+1, \ldots, 2 \mathrm{v}+\mathrm{r}+2$, wehave-

Therefore by properties (ii) and (iv) of Steklov mean, we have-

$$
\mathrm{B}_{2} \leq \mathrm{Kn}^{-(\mathrm{v}+1)}\left\{\|\mathbf{f}\|_{\mathrm{y}}+\check{\partial}^{-(2 \mathrm{v}+2)} \mathrm{m}_{2 \mathrm{v}+2}\left(\mathbf{f}^{\mathrm{r}}, \check{\mathrm{\partial}}\right)\right\}
$$

Finally, we shall estimate B, choosing a^{*}, b^{*} satisfying the conditions,

$$
0<\mathrm{a}<\mathrm{a}^{*}<\mathrm{a}_{1}<\mathrm{b}_{1}<\mathrm{b}^{*}<\infty
$$

Alsolet \boldsymbol{f} beacharacteristicfunctionoftheinterval $\left[\mathrm{a}^{*}, \mathrm{~b}^{*}\right]$,thenTypeequationhere.

$$
\begin{aligned}
& \text { nt }+\alpha \quad \text { nt }+\alpha
\end{aligned}
$$

$$
\begin{aligned}
& \left.-f_{i v+2 . \Delta}\left(\frac{n t+\alpha}{n+h}\right)\right\}, v, . \text {]II } \\
& C\left|a_{1}, b_{1}\right| \\
& =B_{4}+B_{5}, \quad \text { (Say) }
\end{aligned}
$$

We may note here that to estimate B_{4} and B_{5}, it is enough to consider their expressions without the linearcombinations.

By Lemma-2.4, we have

Hence.

Therefore by Lemma-2.3 and Schwarz inequality, we have-

$$
\begin{aligned}
& I=P_{n}\left|\{1-f(\overline{\underline{n t}+\alpha} \overline{n+p})\}\left\{f\left(\overline{n t}+\alpha, \frac{\underline{n t}+\alpha}{(\overline{n+p})}-f_{2 v+2, \delta}^{(n+p}\right)\right\}, x\right|
\end{aligned}
$$

$$
\begin{aligned}
& \text { r } \quad \underline{n t}+\alpha \quad \underline{n t}+\alpha \quad \underline{n t}+\alpha \\
& I=P_{n}\left|\{1-f(\overline{n+p})\}\left\{f(\overline{n+p})-f_{2 v+2, \partial}(\overline{(n+p})\right\}, x\right|
\end{aligned}
$$

$$
\begin{aligned}
& \text { i, iSSO } \\
& -\boldsymbol{f}\left(\frac{\underline{n t}+\alpha}{\left(\frac{n}{n+p}\right)}\right)\left|\boldsymbol{f}\left(\frac{\underline{n t}+\alpha}{n+p}\right) \quad-f_{2 v+2,0}\left(\frac{\underline{n t}+\alpha}{n+p}\right)\right| d t
\end{aligned}
$$

$$
\begin{aligned}
& n t+\alpha \quad \begin{array}{cc}
1 & \\
4 c & 2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \leq K \tilde{\sigma}_{i}^{-2 c}\|f\|_{y} \boldsymbol{\Sigma} \underline{n}^{i}\left(\boldsymbol{\Sigma} \underline{b}_{\mathrm{n}, \mathrm{~L}}(\mathrm{x})(\mathrm{v}\right. \\
& 2 i+j \text { Sr } \quad v=0 \\
& \text { i, } \mathrm{j} \text { So } \\
& -\underline{n x}) i)^{1 / 2} \cdot\left\{\frac{n-1}{n} \sum_{v=0}^{\infty} b_{n v}(x) \underset{0}{\infty}\left(f p_{n v v}(t)\left(\frac{n t+\alpha}{n+p}-x\right)^{4 c} d t\right)\right\}^{1 / 2}
\end{aligned}
$$

Hence, by Lemma-2.1 \& 2.2, we have-

$$
1 \leq K\|f\|_{y} 0(n)^{t+\frac{1}{L}+c} \leq \underline{K n}^{-y}\|f\|_{y}
$$

Where $q=(s-n / 2)$. Now choose $ð>0$ such $q \geq(v+1)$, then

$$
\mathrm{I} \leq \mathrm{Kn}^{-(\mathrm{v}+1)}\|f\|_{\mathrm{y}}
$$

Therefore by property (iii) of Steklov mean, we get-

$$
\begin{aligned}
B_{1} \leq K \| f r & f_{f_{2}+2 . \delta}\left\|_{C\left[a^{*} . b^{*}\right]}+K n^{-(v+1)}\right\| f \|_{y} \\
& \leq K m_{2 v+2}\left(f^{r}, \check{o}, a, b\right)+K n^{-(v+1)}\|f\|_{y}
\end{aligned}
$$

Hence with $ð=\mathrm{n}^{-1 / 2}$, the theorem follows.

REFERENCES

(1) Agrawal PN, Gupta V. Bull. Greek Math. Soc 1989; 30:21-29.
(2) Goldberg S, Meir V. Proc. London Math. Soc. 1971; 23:1-15.
(3) Gupta V, Ahmad A. Simultaneous approximation by Modified Beta Operators. Istanbul Univ. Fen. Fak. Mat. Derg. 1995; 54:11-22.
(4) HewittE,StrombergK.RealandAbstractAnalysis,McGrawHill,NewYork1956.
(5) Ibrahim B. Approximation by Stancu- Chlodowsky polynomials. Comput. Math. Appl. 2010; 59:274-282.
(6) Maheshwari P, Gupta V. Estimation on the Rate of Convergence for Modified Operators. Indian J.Pure aApl. Math. 2003; 34 (6):927-934.
(7) Stancu DD. Approximation of function by means of a new generalized Bernstein Operator. Calcolo 1983; 20:211-229.
(8) Stancu DD. Approximation of function by a new class of linear polynomials Operators. Rev. Romaine. Math. Pures Appl. 1968; 13:1173-1194.

[^0]: © Association of Academic Researchers and Faculties (AARF)
 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

