Impact Factor 5.46 Volume 5, Issue 4, April 2018

Website- www.aarf.asia, Email : editor@aarf.asia , editoraarf@gmail.com

COMMON FIXED THEOREM FOR TWO MAPPINGS ON FUZZY METRIC SPACE
DR. MANOJ KUMAR SANTOSHI, Ph.d (MATHS) FROM M.U., BODH-GAYA
(VILLAGE - ROUNDWA, POST - ROUNDWA, P.S - MOHANPUR, DISS - GAYA, BIHAR)
EMAIL - mkumarsantoshi@gmail.com

Abstract

The purpose of this paper is to prove a common fixed point theorem for two coincidentally commuting mapping on Fuzzy matric space.

The notion of Fuzzy sets was introduced by Zadeh's []. This laid foundation of Fuzzy mathematics, the theory of Fuzzy metric space has been extensively studied and developed by Sessa [] Junk and Rhodes [] Dhae [].

Chauhan and Singh [] on 1997 proved a fixed point theorem for a continuous self mapping T of a complete S-Fuzzy metric space ($\mathrm{X}, \mathrm{S}, *$) satisfying the condition. $\mathrm{S}(\mathrm{Tx}, \mathrm{Ty}, \mathrm{Tz}, \mathrm{Kt}) \geq \mathrm{S}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}, 0<\mathrm{K}<1, \mathrm{t}>0$. $\lim _{t \rightarrow \infty} \mathrm{~S}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=1$, then T has a unique fixed point in X . We have extended this theorem to a pair of self mappings T_{1} and T_{2} on X and showed that T_{1} and T_{2} have a unique common fixed point.

PRELIMINARIES :

How we set some definitions to be used an our result.
DEFINITION (i): The three tuple ($\mathrm{X}, \mathrm{S},,^{*}$) is said to a S-Fuzzy metric space if X is an arbitrary sets, * is continuous t-norm and S is a Fuzzy set on $X^{3} x(0, \infty)$ satisfying the following conditions.:
$S(x, y, z, t)>0$
(non-negative)
(i)

$$
\begin{aligned}
& \mathrm{S}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=1 \text { iff } \mathrm{x}=\mathrm{y}=\mathrm{z} \quad \text { (coincidence) } \\
& \text { (symmetry)----------------------------(iii) }
\end{aligned}
$$

$* S(\mathrm{w}, \mathrm{y}, \mathrm{z}, \mathrm{t}) \forall \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w} \in \mathrm{X}$
and $\mathrm{r}, \mathrm{s}, \mathrm{k}>0$ (Tetrahedral inequality.)

DEFINITION (ii) : A sequency (yn) is a S-Fuzzy metric space ($\mathrm{x}, \mathrm{s},{ }^{*}$) is a cauchy sequence iff for Each $\in>0, \mathrm{t}>0$, there exists $n_{0} \in \mathrm{~N}$ such that
$\mathrm{S}\left(y_{n}, y_{m}, y_{p}, \mathrm{t}\right)>1-\in$ for all $\mathrm{n}, \mathrm{m}, \mathrm{p} \geq n_{0}$.
DEFINITION (iii) : A S-Fuzzy metric space in which every cauchy sequence is convergent is called a complete S -Fuzzy metric space.
DEFINITION (iv): Let X be a arbitrary set. Two maps T_{1} and $\mathrm{T}_{2}: \mathrm{X} \rightarrow \mathrm{x}$ are said to be coincidentally commuting if they commute at coincidence point.

Main Result:

Let (X, S, *) be a S-Fuzzy metric space and let $\mathrm{T}_{1}, \mathrm{~T}_{2}: \mathrm{X} \rightarrow \mathrm{x}$ be map that the following conditions:

[^0]\[

$$
\begin{equation*}
\mathrm{T}_{1}(\mathrm{x}) \subseteq \mathrm{T}_{2}(\mathrm{x}) \tag{1.1}
\end{equation*}
$$

\]

and any one of $T_{1}(x)$ and $T_{2}(x)$ is complete.

$$
\begin{equation*}
S\left(T_{1} x, T_{1} y, T_{1} z \alpha t\right) \geq S\left(T_{2} x, T_{2} y, T_{2} z, t\right) \tag{1.2}
\end{equation*}
$$

for all $x, y, z \in x$ and $0<1, t>0$ and for

$$
\begin{equation*}
\mathrm{t}>0, \lim _{t \rightarrow \infty} \mathrm{~S}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=1 \tag{1.3}
\end{equation*}
$$

Then T_{1} and T_{2} have a unique common fixed point, provided T_{1} and T_{2} are coincidentally commuting mapping on X .

Proof: Suppose $x \in X$ be an arbitrary point in X.
By (1.1) we get $\mathrm{T}_{1} x_{0}=\mathrm{T}_{2} x_{1}=\mathrm{y}_{1}$.
By induction:

$$
\begin{aligned}
& y_{n+1}=\mathrm{T}_{1 x n}=\mathrm{T}_{2 x n+1}, \mathrm{n}=0,1,2, \ldots \ldots \ldots \ldots \ldots . \\
& \text { Since } \mathrm{T}_{1}(\mathrm{x}) \subseteq \mathrm{T}_{2}(\mathrm{x}) . \\
& \text { If } y_{t}=\mathrm{y}_{t+1} \text { for some } \mathrm{r} \in \mathrm{~N} \text { then } \\
& \quad \mathrm{y}_{\mathrm{r}}=\mathrm{T}_{1} \mathrm{x}_{r-1}=\mathrm{T}_{1 x r}=\mathrm{T}_{2} \mathrm{x}_{r}=\mathrm{T}_{2} \mathrm{x}_{r+1}=\mathrm{y}_{r+1}=\mathrm{u} \text { for some } \mathrm{u} \in \mathrm{X} . \\
& \text { We show that } \mathrm{u} \text { is a common fixed point of } \mathrm{T}_{1} \text { and } \mathrm{T}_{2} .
\end{aligned}
$$

Since $\mathrm{T}_{1} \mathrm{x}_{r}=\mathrm{T}_{2} \mathrm{x}_{r}$ and T_{1} and T_{2} are coincidentally commuting Mapping.
We have,

$$
\mathrm{T}_{1} \mathrm{u}=\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{x}_{r}=\mathrm{T}_{2} \mathrm{u}
$$

From (1.3), we have

$$
\begin{array}{lll}
\mathrm{S}\left(\mathrm{~T}_{1 \mathrm{u}}, \mathrm{~T}_{1} \mathrm{u}, \mathrm{u}, \alpha \mathrm{t}\right) & = & \mathrm{S}\left(\mathrm{~T}_{1 \mathrm{u}}, \mathrm{~T}_{1} \mathrm{u}, \mathrm{~T}_{1} \mathrm{x}, \alpha \mathrm{t}\right) \\
& \geq & \mathrm{S}\left(\mathrm{~T}_{2} \mathrm{u}, \mathrm{~T}_{2 \mathrm{u}}, \mathrm{~T}_{2} \mathrm{x}, \mathrm{t}\right)=\left(\mathrm{T}_{1} \mathrm{u}, \mathrm{~T}_{1 \mathrm{u}}, \mathrm{~T}_{1} \mathrm{x}_{\mathrm{r}}, \mathrm{t}\right) \\
& \geq & \mathrm{S}\left(\mathrm{~T}_{2} \mathrm{u}, \mathrm{~T}_{2 \mathrm{u}}, \mathrm{~T}_{2} \mathrm{z}, \mathrm{t} / \alpha\right) \\
& \geq & \mathrm{S}\left(\mathrm{~T}_{2} \mathrm{u}, \mathrm{~T}_{2 \mathrm{u}}, \mathrm{~T}_{2} \mathrm{x}, \mathrm{t} / \alpha \mathrm{n}\right)
\end{array}
$$

Letting $\mathrm{n} \rightarrow \infty$ we have

$$
\mathrm{T}_{1} \mathrm{u}=\mathrm{u}=\mathrm{T}_{2} \mathrm{u}
$$

This shows that u is a fixed point of T_{1} and T_{2}.
If $\mathrm{yn} \neq \mathrm{y}_{n+1}$ for each $\mathrm{n}=0, \mathrm{I}, 2$,
For each $P \in N, t>0$ we have by.

$$
\begin{equation*}
S\left(y_{1}, y_{2}, y_{p+1}, \alpha t\right) \quad=\quad S\left(x_{0}, T_{1} x_{1}, T_{1} x_{p}, \alpha t\right) \tag{1.3}
\end{equation*}
$$

$$
\geq \quad S\left(T_{2} x_{0}, T_{2} x_{1}, T_{2} x_{p}, \alpha t\right)
$$

$$
=\quad S\left(y_{0}, y_{1}, y_{p}, t\right)
$$

And

$$
\begin{aligned}
& \mathrm{S}\left(\mathrm{y}_{2}, \mathrm{y}_{2}, \mathrm{y}_{\mathrm{p}+2}, \alpha \mathrm{t}\right) \geq \\
& \geq \\
& \mathrm{S}\left(\mathrm{y}_{0}, \mathrm{y}_{2}, \mathrm{y}_{\mathrm{p}+1}, \mathrm{t}\right) \\
& \mathrm{S}\left(\mathrm{y}_{0}, \mathrm{y}_{2}, \mathrm{y}_{\mathrm{p}}, \mathrm{t} / \alpha\right)
\end{aligned}
$$

Or,

$$
S\left(y_{2}, y_{3}, y_{p+2}, \alpha t\right) \quad \geq \quad S\left(y_{0}, y_{2}, y_{p}, t / \alpha^{2}\right)
$$

Proceeding in this way for $\mathrm{p}, \mathrm{q} \in \mathrm{N}$ and $\mathrm{t}>0$ we have

Which implies that
$\mathrm{S}\left(\mathrm{y}_{n}, \mathrm{y}_{\mathrm{n}+\mathrm{p}}, \mathrm{y}_{\mathrm{n}+\mathrm{p}+\mathrm{q}}, 3 \mathrm{t}\right) \rightarrow 1$, then $\left\{\mathrm{y}_{n}\right\}$ is Cauchy sequence in X .
Since $T_{2}(x)$ is complete so there exists a point $u \in T_{2}(x)$ such that

$$
\lim _{n \rightarrow \infty} \mathrm{y}_{n}=\lim _{n \rightarrow \infty} \mathrm{~T}_{2} \mathrm{x}_{n}=\mathrm{u}
$$

Now we show that u is a common fixed point of T_{1} and T_{2}.
Since $u \in T_{2}(x)$ so there exists point $P \in X$ such that $T_{2} p=u$
By (1.3)

$$
\begin{aligned}
& \mathrm{S}\left(\mathrm{~T}_{1} \mathrm{P}, \mathrm{~T}_{2} \mathrm{P}, \mathrm{~T}_{2} \mathrm{P}, \mathrm{k}\right)=\lim _{n \rightarrow \infty} \mathrm{~S}\left(\mathrm{~T}_{1} \mathrm{P}, \mathrm{~T}_{1} \mathrm{x}_{\mathrm{n}}, \mathrm{~T}_{1} \mathrm{x}, \mathrm{k}\right) \text { for } \mathrm{t}>0 \\
& \quad \geq \lim _{n \rightarrow \infty} \mathrm{~S}\left(\mathrm{~T}_{2} \mathrm{P}, \mathrm{~T}_{2} \mathrm{x}, \mathrm{~T}_{1} \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right) \\
& \quad=\mathrm{S}\left(\mathrm{~T}_{2} \mathrm{P}, \mathrm{u}, \mathrm{u}, \mathrm{t}\right) \\
& \quad=\mathrm{S}(\mathrm{u}, \mathrm{u}, \mathrm{u}, \mathrm{t}) \text { which mapping that } \mathrm{T}_{1} \mathrm{P}=\mathrm{T}_{2} \mathrm{P} .
\end{aligned}
$$

Now we show that $u=T_{1} P=T_{2} P$ is a common fixed point of T_{1} and T_{2}.
Since $T_{1} P=T_{2} P$ and T_{1}, T_{2} are coincidentally commuting mapping.
We have $\mathrm{T}_{1} \mathrm{u}=\mathrm{T}_{1} \mathrm{~T}_{2} \mathrm{P}=\mathrm{T}_{2} \mathrm{~T}_{1} \mathrm{P}=\mathrm{T}_{2} \mathrm{u}$
We claim, $\mathrm{T}_{1} \mathrm{u}=\mathrm{T}_{2} \mathrm{u}=\mathrm{u}$.
From (1.3) we have

This we have by Chauhan and Singh [] $T_{1} u=T_{2} u=u$.
For uniqueness if u and v are two points common to T_{1} and T_{2}, we have

$$
\mathrm{S}(\mathrm{u}, \mathrm{u}, \mathrm{v}, \alpha \mathrm{t})=\mathrm{S}\left(\mathrm{~T}_{1} \mathrm{u}, \mathrm{~T}_{1} \mathrm{u}, \mathrm{~T}_{1} \mathrm{v}, \alpha \mathrm{t}\right)
$$

$$
\geq \quad S\left(T_{2} u, T_{2} u, T_{2} v, t\right)
$$

$$
=\quad S(u, u, v, t)
$$

$$
\geq \quad \mathrm{S}\left(\mathrm{u}, \mathrm{u}, \mathrm{v}, \mathrm{t} / \alpha^{n}\right) \text { as } \mathrm{n} \rightarrow \infty .
$$

have $\mathrm{u}=\mathrm{v}$
This completes the proof.

Reference :

1. Zadeh L.A. : Fuzzy sets inform and control 89(1965) 338-353.
2. Sessa,S:On a week commutative condition in fixed point consideration Publ. Inst Math (Beograd) 321982146153
3. Jungck, G. and Rhoades, B.E. : Fixed point for set valued function without according Indian J. Pure and app. Math V. 29(1988)227235.
4. Singh, B. and Chauhan, M.S. : Fuzzy sets and systems $110(2000) 131134$.

$$
\begin{aligned}
& \mathrm{S}\left(\mathrm{~T}_{1} \mathrm{u}, \mathrm{~T}_{2} \mathrm{u}, \mathrm{u}, \alpha \mathrm{t}\right)=\mathrm{S}\left(\mathrm{~T}_{1} \mathrm{u}, \mathrm{~T}_{2} \mathrm{~T}_{1} \mathrm{P}, \mathrm{u}, \alpha \mathrm{t}\right) \\
& =S\left(T_{1} u, T_{1} T_{2} P, T_{1} T_{2}, \alpha t\right) \\
& =\quad S\left(T_{1} u, T_{1} u, T_{1} P, \alpha t\right) \\
& \geq \quad S\left(T_{2} u, T_{2} u, T_{2} P, t\right) \\
& =\quad \mathrm{S}\left(\mathrm{~T}_{1} \mathrm{u}, \mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{P}, \mathrm{~T}_{1} \mathrm{P}, \mathrm{t}\right) \\
& =\quad S\left(T_{1} u, T_{1} u, T_{1} P, t\right) \\
& \geq \quad S\left(\mathrm{~T}_{1} \mathrm{u}, \mathrm{~T}_{2} \mathrm{u}, \mathrm{u}, \mathrm{t} / \alpha\right)=\mathrm{S}\left(\mathrm{~T}_{1} \mathrm{u}, \mathrm{~T}_{2} \mathrm{u}, \mathrm{u}, \mathrm{t} / \alpha\right) \\
& =\quad \ldots \ldots \ldots . S\left(T_{1} u, T_{2} u, u, t / \alpha^{n}\right) \\
& 0<\alpha<1 \text { as } n \rightarrow \infty \text {. }
\end{aligned}
$$

[^0]: © Associated Asia Research Foundation (AARF)
 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

