

International Research Journal of Natural and Applied Sciences ISSN: (2349-4077)

Impact Factor 5.46 Volume 5, Issue 4, April 2018

Website- www.aarf.asia, Email: editor@aarf.asia, editoraarf@gmail.com

COMMON FIXED THEOREM FOR TWO MAPPINGS ON FUZZY METRIC SPACE

DR. MANOJ KUMAR SANTOSHI, Ph.d (MATHS) FROM M.U., BODH-GAYA (VILLAGE – ROUNDWA, POST – ROUNDWA, P.S – MOHANPUR, DISS – GAYA, BIHAR) EMAIL – mkumarsantoshi@gmail.com

Abstract

The purpose of this paper is to prove a common fixed point theorem for two coincidentally commuting mapping on Fuzzy matric space.

The notion of Fuzzy sets was introduced by Zadeh's []. This laid foundation of Fuzzy mathematics, the theory of Fuzzy metric space has been extensively studied and developed by Sessa [] Junk and Rhodes [] Dhae [].

Chauhan and Singh [] on 1997 proved a fixed point theorem for a continuous self mapping T of a complete S-Fuzzy metric space (X, S, *) satisfying the condition.

$$S(Tx, Ty, Tz, Kt) \ge S(x, y, z, t)$$
 for all $x, y \in X$, $0 < K < 1$, $t > 0$. $\lim_{t \to \infty} S(x, y, z, t) = 1$, then T has a unique fixed point in X.

We have extended this theorem to a pair of self mappings T_1 and T_2 on X and showed that T_1 and T_2 have a unique common fixed point.

PRELIMINARIES:

S(x, y, z, t) > 0

How we set some definitions to be used an our result.

DEFINITION (i): The three tuple (X, S, *) is said to a S-Fuzzy metric space if X is an arbitrary sets, * is continuous t-norm and S is a Fuzzy set on X^3 x $(0,\infty)$ satisfying the following conditions.:

(non-negative) ----- (i)

$$S(x, y, z, t) = 1 \text{ iff } x = y = z$$
 (coincidence)-----(ii)
 $S(x, y, z, t) = S(y, z, x, t)$ (symmetry)-----(iii)
 $S(x, y, z, r + s + k) \ge S(x, y, w, r) * S(x, w, z, s)$
 $*S(w, y, z, t) \forall x, y, z, w \in X$
and $r, s, k > 0$ (Tetrahedral inequality.)-----(iv)

DEFINITION (ii): A sequency (yn) is a S-Fuzzy metric space (x, s, *) is a cauchy sequence iff for Each \in > 0,t> 0, there exists $n_0 \in$ N such that

$$S(y_n, y_m, y_p, t) > 1 - \epsilon$$
 for all n, m, $p \ge n_0$.

DEFINITION (iii): A S-Fuzzy metric space in which every cauchy sequence is convergent is called a complete S-Fuzzy metric space.

DEFINITION (iv): Let X be a arbitrary set. Two maps T_1 and $T_2: X \rightarrow x$ are said to be coincidentally commuting if they commute at coincidence point.

Main Result:

Let (X, S, *) be a S-Fuzzy metric space and let $T_1, T_2 : X \rightarrow x$ be map that the following conditions:

© Associated Asia Research Foundation (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 $T_1(x) \subseteq T_2(x)$ (1.1)and any one of $T_1(x)$ and $T_2(x)$ is complete. (1.2) $S(T_1x, T_1y, T_1z \alpha t) \ge S(T_2x, T_2y, T_2z, t)$ for all x, y, $z \in x$ and 0<1, t>0 and for t > 0, $\lim_{t \to \infty} S(x, y, z, t) = 1$ (1.3)Then T₁ and T₂ have a unique common fixed point, provided T₁ and T₂ are coincidentally commuting mapping on X. Proof: Suppose $x \in X$ be an arbitrary point in X. By (1.1) we get $T_1x_0 = T_2x_1 = y_1$. By induction: $y_{n+1} = T_{1xn} = T_{2xn+1}$, $n = 0, 1, 2, \dots$ Since $T_1(x) \subseteq T_2(x)$. If $y_t = y_{t+1}$ for some $r \in N$ then $y_r = T_1 x_{r-1} = T_{1xr} = T_2 x_r = T_2 x_{r+1} = y_{r+1} = u \text{ for some } u \in X \text{ .}$ We show that u is a common fixed point of T_1 and T_2 . Since $T_1x_r = T_2x_r$ and T_1 and T_2 are coincidentally commuting Mapping. We have, $T_1 \mathbf{u} = T_1 T_2 \mathbf{x}_r = T_2 \mathbf{u} .$ From (1.3), we have $S(T_{1u}, T_1u, T_1x, \alpha t)$ $S(T_{1u}, T_1u, u, \alpha t)$ $S(T_2u,\,T_{2u},\,T_2x,\,t)=\,(T_1u,\,T_{1u},\,T_1x_r,\,t)$ $S(T_2u, T_{2u}, T_2z, t/\alpha)$ $S(T_2u, T_{2u}, T_2x, t/\alpha n)$ Letting $n \to \infty$ we have $T_1 u = u = T_2 u$. This shows that u is a fixed point of T_1 and T_2 . For each $P \in N$, t > 0 we have by. (1.3) $S(y_1, y_2, y_{p+1}, \alpha t)$ $S(x_0, T_1x_1, T_1x_p, \alpha t)$ $S(T_2x_0, T_2x_1, T_2x_p, \alpha t)$ $S(y_0, y_1, y_p, t)$ And $\geq S(y_0, y_2, y_{p+1}, t)$ $\geq S(y_0, y_2, y_{p+1}, t/\alpha)$ $S(y_2, y_2, y_{p+2}, \alpha t)$ $S(y_0, y_2, y_n, t/\alpha)$ Or, $S(y_0, y_2, y_p, t/\alpha^2)$ $S(y_2, y_3, y_{p+2}, \alpha t)$ \geq Proceeding in this way for p, $q \in N$ and t > 0 we have $S(y_n, y_{n+1}, y_{n+p+q}, t)*S(y_{n+1}, y_{n+p}, y_{n+p+q}, t)$ $S(y_n, y_{n+p}, y_{n+p+q}, 3t) \ge$ $*S(y_n, y_{n+p}, y_{n+1}, t)$ $\geq S(y_0, y_1, y_p, t/\alpha^n) * S(y_0, y, y_{p+q}, t/\alpha^n) * S(y_{n+1}, y_{n+2}, y_{n+2$ $y_{n+p+q}, t) *S(y_{n+1}, y_{n+p}, y_{n+2}, t) *S(y_{n+2}, y_{n+p}, y_{n+p+q}, t)$ $\geq S(y_0, y_1, y_p, t/\alpha^n) * S(y_0, y_1, y_{p+q}, t/\alpha^n) * S(y_0, y_1, y_{p+q-1},$ t/α^{n+1}) *S(y₀, y₁, y_{p-1}, t/α^n) *S(y_{n+2}, y_{n+p}, y_{n+p+q}, t) $\geq S(y_0, y_1, y_p, t/\alpha^n) * S(y_0, y_1, y_{p+q}, t/\alpha^n) * S(y_0, y_1, y_{p-1}, t/\alpha^n) * S(y_0, y_1, y_p, t/\alpha^n) * S(y_0, y_1, y_1, t/\alpha^n) * S(y_0, t/\alpha^n) * S(y_0, t/\alpha^n) * S(y_0, t/\alpha^n) *$ α^{n+1}) *S(y₀, y₁, y_{n+p-1}, t/ α^{n+1})...... *S(y₀, $y_1, y_{p+1}, t/\alpha^{n+p-1}$ Taking limit as $n \to \infty$, we have

© Associated Asia Research Foundation (AARF)

 $S(y_n, y_{n+p}, y_{n+p+q}, 3t)$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

≥ 1*1*1*1*1*....*1

Which implies that

 $S(y_n, y_{n+p}, y_{n+p+q}, 3t) \rightarrow 1$, then $\{y_n\}$ is Cauchy sequence in X. Since $T_2(x)$ is complete so there exists a point $u \in T_2(x)$ such that

$$\lim_{n\to\infty} y_n = \lim_{n\to\infty} T_2 x_n = u$$

Now we show that u is a common fixed point of T_1 and T_2 . Since $u \in T_2(x)$ so there exists point $P \in X$ such that $T_2p = u$

By (1.3)

$$\begin{split} S(T_1P,\,T_2P,\,T_2P,\,k) &= &\lim_{n\to\infty}\,S(T_1P,\,T_1x_n,\,T_1x,\,k) \;\; \text{for } t \!\!>\! 0 \\ &\geq &\lim_{n\to\infty}\,S(T_2P,\,T_2x,\,T_1x_n,\,t) \\ &= S(T_2P,\,u,\,u,\,t) \\ &= S(u,\,u,\,u,\,t) \;\; \text{which mapping that } T_1P = \,T_2P. \end{split}$$

Now we show that $u = T_1P = T_2P$ is a common fixed point of T_1 and T_2 .

Since $T_1P = T_2P$ and T_1 , T_2 are coincidentally commuting mapping.

We have
$$T_1 u = T_1 T_2 P = T_2 T_1 P = T_2 u$$

We claim, $T_1u = T_2u = u$.

From (1.3) we have

This we have by Chauhan and Singh [] $T_1u = T_2u = u$.

For uniqueness if u and v are two points common to T₁ and T₂, we have

$$\begin{array}{rcl} S(u,\,u,\,v,\,\alpha\,\,t) & = & & S(T_1u\,\,,\,T_1u,\,T_1v,\,\alpha\,\,t) \\ & \geq & S(T_2u\,\,,\,T_2u,\,T_2v,\,\,t) \\ & = & S(u,\,u,\,v,\,t) \\ & \geq & S(u,\,u,\,v,\,t/\,\alpha^n) \ \ \text{as } n \to \infty \ . \end{array}$$

have u = v

This completes the proof.

Reference:

- 1. Zadeh L.A.: Fuzzy sets inform and control 89(1965) 338-353.
- 2. Sessa,S:On a week commutative condition in fixed point consideration Publ. Inst Math (Beograd) 321982146153
- 3. Jungck, G. and Rhoades, B.E.: Fixed point for set valued function without according Indian J. Pure and app. Math V. 29(1988)227235.
- 4. Singh, B. and Chauhan, M.S.: Fuzzy sets and systems 110(2000)131134.