EFFECT OF DERIVATIONS ON ANALYTIC FUNCTIONS

Sanjay Goyal
S/o Sh. Trilok Chand Goyal Associate Professor in Mathematics
Vaish College, Bhiwani

Abstract

To study derivations satisfying certain analytic function of region R of domain D. By Cauchy's Integral and Riemann Equations of an analytic in the region R at any point $z=a$. Taylor's Series expansion of an analytic function determine.

KEYWORD

Analytic function, Taylor Series expansion, Region R, Cauchy's.

INTRODUCTION

In the complex plane, let boundary behaviour of
functions be as $\left(1-z^{2}\right) f^{(n)}(z) \quad$ Where f is an analytic function defined on the open unit disk and $n>0$.By taking an example let $\left(1-z^{2}\right) f^{\prime}(z)$
be bounded on D for Block Space B , set of analytic function f on D . Also, $\left(1-z^{2}\right) f^{\prime}(z) \rightarrow 0$ as for Block $\quad z \rightarrow 1$ be the set of analytic function f on D
Space B0.

Let Lebesgue area denoted by $d A$ measure on the complex plane.
By the Bergman Space $\quad p$

$$
\begin{aligned}
& \operatorname{lf}^{p} d A \quad \text { for } p \in[1, \infty), \\
& <\infty \\
& D
\end{aligned}
$$

Let us define an $\quad P(f) \quad$ on D then,
analytic function

$$
\begin{array}{ll}
P(f)(z)=\frac{f(w)_{d A(w)}}{} \quad \text { for } f \in L^{1}(D, d A) \\
D(1-z w) & \\
L^{2}(D, d A) & \text { then, }
\end{array}
$$

Let us suppose P
restricted to

Let us suppose P restricted to $\quad L^{p}(D, d A)$ then,

$$
\begin{aligned}
& L^{p}(D, d A) \quad L^{p}(D, d A) \text { onto } \quad L^{p} . \\
& \text { is a } \\
& \text { bounded } \\
& \text { projection } \\
& \text { of }
\end{aligned}
$$

By the, Analytic Function following lemma exist:
Lemma 1: Let us suppose f be an analytic function on D then by an analytic function as an area integral of its equivalents are as follow:
(a) $f \in B$
$\begin{array}{ll}\text { (b) })^{n} & f^{(n)}(z): z \in D_{\}}<\infty, \\ f^{(n)}(z): z \in D_{\}}<\infty,\end{array} \quad$ for every $\forall n>0 ;$
${ }_{)^{n}}{ }^{n} \sup _{i}\left(1-z^{2} \quad f(z): z \in D_{\}}<\infty, \quad\right.$ for some $\forall n>0$;

Lemma 2: Let us suppose $f \in B$
such that, f has a zero of order at least
2 n at 0 then

$$
\begin{array}{cc}
f(z)=-\frac{\left(1-w^{2}\right)^{n} f^{(n)}(w)}{} d A(w), & \forall n>0 z \in D \\
\square!\pi^{\top}(1-z w)^{2}(w)^{n} &
\end{array}
$$

Lemma 3: Let us suppose $h \in u$ and $t>0$ then \exists

$$
b>0 s t
$$

$\lambda, \lambda^{\prime} \in D$ and $d\left(\lambda, \lambda^{\prime}\right)<$
δ Where u is the closed
subalgebra
by the Complex Conjugate

$$
H^{\infty}(D)
$$

Lemma 4: Let us suppose f be an analytic function on D . then its equivalents are:
(a) $f \in P(u)$
(b) $\left(1-z^{2}\right)^{n}$
(c) $\left(1-z^{2}\right)^{n}$
$f^{(n)}(z) \in u$,
for every $\forall n>0$;
$f^{(n)}(z) \in u,$,
for some $\forall n>0$;

Proposition (1)

$$
p(u)
$$

is properly contained in the Block Shape B.

Proposition (2) Let $u \in C(D$
then u is bounded on $\quad D$
Lemma 5: Let u be a bounded, continuous, complex-valued function on D in such a way that

for

$$
\mathrm{u} \in \mathrm{C}(D
$$

Cauchy's Integral Theorem:

Let $f(z)$ is an analytic function on D by supposing D as a bounded
domain with piecewise smooth boundary, then

$$
\begin{aligned}
& \text { } f(z) d z=0 \\
& D
\end{aligned}
$$

Cauchy's Integral Formula:

Let $f(z)$ is an analytic function on D over C at a is then,

$$
f(a)=\frac{1 f(z)}{2 \pi i_{C} z-a}
$$

Cauchy's Riemann Equations:

Let $f(z)$ is an analytic function on D over C at a over a complex
plane satisfies Cauchy's Riemann Equations throughout D.

$$
\partial u=\partial v \quad \text { and } \quad \partial u=-\partial v
$$

$\partial x \quad \partial y \quad \partial y \quad \partial x$

To check weather f has a complex derivative and to compute that derivative. Cauchy's Riemann Equations uses the partial derivatives of u and v.

Taylor series :

The Taylor Series of a function is an infinite sum of terms
also known as Maclaurin Series if zero is the point of derivative that are expressed in terms of the function's derivatives at a single point.

A real or complex-valued function $f(x)$ of Taylor Series for
complex or real number a is the power series of n ! is

where derivative of f is

$$
f^{(n)}(a)
$$

METHODOLOGY

If a function is having complex $f^{\prime}(z)$ then a function derivative
$f(z)$ is analytic. Real derivative of a Real function is too much similar as Complex derivative of Complex function.

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z 0} \begin{array}{r}
\\
0
\end{array}
$$

$$
f(z)-f\left(z_{0}\right)
$$

$$
z-z
$$

$\therefore \quad \exists$ f is analytic and differentiable at z_{0}

By Cauchy's Integral Formula

> Let $f(z)$ is an analytic in region R then its derivation at any
point $\mathrm{z}=\mathrm{a}$ is also analytic in R

$$
\begin{equation*}
F^{\prime}(a)=\frac{1}{2 \pi i\rfloor} \frac{f(z)}{(z-a)^{2}} \quad d z \tag{1}
\end{equation*}
$$

By Analytic functions and the necessary Cauchy's Riemann.
A function of z defined a single valued function of z

$$
\text { i.e. } w=f(z)
$$

$$
\text { differentiable at } \quad z=z_{0}
$$

lim

$$
f(z)-f\left(z_{0}\right) \square(2)
$$

$$
z \rightarrow z 0
$$

By using equation (1) and (2) in Taylor Series expansion
of an analytic function.

$$
\begin{aligned}
\Rightarrow \mathrm{f}(z) & =1^{1} \frac{f\left(z^{\prime}\right)}{2 \pi i_{c} z^{\prime}-z} \\
& \Rightarrow \frac{1}{2 \pi i c\left(z^{\prime}-z_{0}\right)-\left(z-z_{0}\right)} \quad d z^{\prime}
\end{aligned}
$$

Thus,
f is analytic in R

$$
\Rightarrow \quad \frac{1}{2 \pi i} \frac{\square f\left(z^{\prime}\right)}{\left(z^{\prime}-z\right)} \Gamma^{d z^{\prime}}
$$

$$
\left.-\left(z-z_{0}\right)\right]
$$

$$
0\left\lfloor\begin{array}{ll}
1 & \left(z^{\prime}-z_{0}\right\rfloor
\end{array}\right.
$$

$$
\text { where }\left(z^{\prime}-z_{0}\right)>\left(z-z_{0}\right)
$$

By an analytic function Cauchy's Riemann,

By the theorem of complex line
integral if analytic function then,

$$
\begin{aligned}
& \text { If } f^{\prime}(z) d z=f\left(z_{1}\right)-f(\\
& \left.z_{0}\right) \\
& c
\end{aligned}
$$

The Cauchy-Riemann equations

$$
f(z) \quad=\sum_{n=0} a_{n} \quad\left(z-z_{0}\right)
$$

Taylor's Series expansion $\quad f(z) \quad$ about z_{0}
Derivative of all order exist $f(z) \quad$ is analytic function.
if

$$
\begin{array}{lll}
{ }_{h} n \\
\\
\text { Thus } & \lim & f
\end{array}(x)=0
$$

A Taylor-series expansion is available for functions which are analytic within a restricted domain.

CONCLUTION

In analytic function

$f(z)$

plane. ${ }^{d u} .{ }^{d u}={ }^{d v} .{ }^{d v}$
$d x d y \quad d y d x$
of bounded domain D over a
complex
over C at a point a i.e (then real and
$z-a) d z$
complex valued function $f(x)$
$f(z)$ about
is a power series of ($n!$). Series expansion
z_{0} of analytic series of expansion by Taylorseries are Shower.

REFERENCES

1. J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
2. S. Axler, Bergman spaces and their- operators, Surveys of some recent results in operator theory, v. I (J. B. Conway and B. B. Morrell, eds.), Pitman Res. Notes Math. Ser., 171, pp. I -50, Longman Sci. Tech., Harlow, 1988.
3. S. Axler and P. Gorkin, Sequences in the maximal ideal space of H^{∞}

Proc.
Amer. Math. Soc. 108 (1990), 731—740.
4. L. Brown and P. M. Gauthier, Behavior of normal meromorphic function on ${ }^{\infty}$, the maximal ideal space Of H Michigan Math. J. 18 (1971), 365-371.
5. E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Univ. Press, Cambridge, 1966.
6. P. L. Duren, Theory of H^{p} spaces, Academic Press, New York, 1970.
7. J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
8. K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. (2) 86 (1967), 74—111.
9. P. Lappan, Some results on harmonic normal functions, Math. Z. 90 (1965),155—159.
10. G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), 595-611.
11. K. Zhu, The Bergman spaces, the Bloch space, and Gleason's problem, Trans.

Amer. Math. Soc. 309 (1988), 253-268.
12. Krantz, Steven; Parks, Harold R. (2002). A Primer of Real Analytic Functions (2nd ed.). Birkhäuser.
13. A holomorphic function with given almost all boundary values on a domain with homomorphic support function. J. Convex Anal. 14(4), 693-704 (2007).
14. Homogeneous polynomials on strictly convex domains. Proc. Am.

Soc. 135, 3895-3903(2007).
15. Bounded holomorphic functions with given maximal modulus on all circles.

Proc. Am. Math. Soc. 137, 179-187 (2009).

