International Research Journal of Mathematics, Engineering and IT
ISSN: (2349-0322)
Association of Academic Researchers and Faculties (AARF)
Impact Factor- 7.132 Volume 8, Issue 9, September 2021 Website- www.aarf.asia, Email : editoraarf@gmail.com

DERIVATION IN NON-ASSOCIATE ALGEBRAIC

Sanjay Goyal

S/o Sh. Trilok Chand Goyal
Associate Professor in Mathematics
Vaish College, Bhiwani

Abstract

In this paper we will explain about the basic of non-associative algebra using triality group and some were matric and graph representation.A Non-associative algebra structure can be studied with other associative algebraic as K-endomorphisms of A just like K-Vector Space. Whereas as some of the researchers we have also consider non-associative algebraic as a multiplicative operation of a commutative Ring R.

KEY WORDS

Non-associative, Triality, multiplicative operation, associator, vector space.

INTRODUCTION

Non-associative algebra: A Non-associative algebra also known as distributive algebra.Non-associative algebra is a vector space over a field because its vector space provides a bilinear product. An algebra known as an algebraic structure which consists of a set with an additive, multiplicative and scalar operations of the elements of a field of vector space. Thus, an algebraic structure A , is a non-associative algebra with binary multiplicative operation over a field K . An algebraic structure $A \times A \rightarrow A$ may or may not be associative. R -module in mathematics is one of the fundamental algebraic structures. The notation of vector space over a field is a module over a ring R with operation of a scalar multiplication known as R-binary multiplication operation. Some of the researcher also stated that Z-algebra as a non-ass0ciative rings. Where Z -algebra is an algebra which obeys all the properties and laws of ring for example as R-algebra. An algebraic structure ring act with two binary operations. Associative is a part of one of the binary operations in which rearranging of the paratheses is done.
The linear algebra multiple mapping is a function $f: V_{1} \times V_{2} \ldots \ldots . V_{n} \rightarrow W$ known as Kmultiple linear maps. Therefore associator of A is a K-multiple linear map with the operation associator on A is given by $[x, y, z]=(x y) z-x(y z)$ where x, y, z is an arbitrary element of the algebra.

Derivative algebra is equipped with number of derivations as differential rings, differential fields which satisfied Leibniz's product rules. A K-derivation is also a K-linear map for an algebraic A over a ring or a field is such that $D: A \rightarrow A$ which satisfies Leibniz's product rules.

$$
D[x y]=x D(y)+D(x) y
$$

Triality Group:Let A be an algebra with a bi-linear product over a field F denoted by x y for all x and y an element of A . Let us suppose a first triple $h=\left(h_{1}, h_{2}, h_{3}\right) \in\left(E_{p i} A\right)^{3}$

Equipped with

$$
h_{j}(x+y)=h_{j} x+h_{j} y
$$

$$
\text { and } h_{j}(\alpha x)=\alpha h_{j}(x)
$$

$E_{p i} A$ represents the set of epimorphisms of A, for $\alpha \in F$
By the Global Triality relation we have,
$h_{j}(x, y)=\left(h_{j+1} x\right)\left(h_{j+2} y\right)$
And

$$
\begin{equation*}
h_{j+3}=h_{j} \tag{1}
\end{equation*}
$$

(2)

Where $\mathrm{j}=1,2,3$ is a module $3, \forall x, y \in A$

Similarly for second triple

$h^{\prime}=\left(h_{1}{ }^{\prime}, h_{2}{ }^{\prime}, h_{3}{ }^{\prime}\right) \in\left(E_{p i} A\right)^{3}$
Equipped with

$$
h h^{\prime}=\left(h_{1} h_{1}{ }^{\prime}, h_{2} h_{2}{ }^{\prime}, h_{3} h_{3}^{\prime}\right)
$$

$$
\begin{equation*}
\therefore \quad \operatorname{Trig}(A)=\left\{h=\left(h_{1}, h_{2}, h_{3}\right) \in\left(E_{p i} A\right)^{3}: h_{i}(x y)=\left(h_{j+1} x\right)\left(h_{j+2} y\right)\right\} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Auto}(A)=\left\{h \in E_{p i} A: h(x y)=(h x)(h y), \forall x, y \in A\right\} \tag{4}
\end{equation*}
$$

Let us assume a function $f \in \operatorname{End}(\operatorname{Trig}(A))$
So as

$$
\begin{equation*}
f: h_{1} \rightarrow h_{2} \rightarrow h_{3} \rightarrow h_{1} \tag{6}
\end{equation*}
$$

© Association of Academic Researchers and Faculties (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

It is a closed walk with cyclic graph and satisfying $f^{3}=i d$
$\operatorname{Trig}(\mathrm{A})$ is invariant for the cyclic group Z_{3} by the generation function f .
Similarly let there be three functions $\gamma_{1}, \gamma_{2}, \gamma_{3}$ by for $\mu=1,2,3 \quad \gamma_{\mu} \in \operatorname{End}(\operatorname{Trig}(A))$
i.e
\qquad
i.e I_{3}

Which satisfies and is isomorphic to \quad| $\gamma_{\mu} \gamma_{\nu}=\gamma_{\nu} \gamma_{\mu}, \gamma_{\mu}{ }^{2}=i d$ |
| :---: |
| $\therefore \gamma_{1} \gamma_{2} \gamma_{3}=i d$ |

For

$$
\begin{equation*}
\gamma_{4}=\gamma_{1} \quad f \gamma_{\mu} f^{-1}=\gamma_{\mu+1} \tag{8}
\end{equation*}
$$

For $\quad x \rightarrow x^{\prime}$
which fulfil
$\left(x^{\prime}\right)^{\prime}=x \quad \& \quad(x y)^{\prime}=y^{\prime} x^{\prime}$
\qquad
We define $\quad \bar{R} \in \operatorname{End}(A)$ for $\quad R \in \operatorname{End}(A)$
$\overline{R x}=\bar{R} \bar{x}$

Take $x \leftrightarrow \bar{y}$
$\overline{h_{j}}(x y)=\left(\bar{h}_{j+2} x\right)\left(\bar{h}_{j+2} y\right)$
For $\quad \theta \in \operatorname{End}(\operatorname{Trig}(A))$
$\theta: h_{1} \rightarrow \overline{h_{2}}, h_{2} \rightarrow \overline{h_{1}}, h_{3} \rightarrow \overline{h_{3}}$.

$$
\left.\begin{array}{c}
\theta_{\gamma_{1}} \theta^{-1}=\gamma_{2} \\
\theta_{\gamma_{2}} \theta^{-1}=\gamma_{1} \\
\theta_{\gamma_{3}} \theta^{-1}=\gamma_{3} \tag{14}
\end{array}\right)
$$

Now,

METHODOLOGY

If $D(x, y)=d_{0}(x, y)+d_{1}(x, y)+d_{2}(x, y)$
Then it holds a derivative $D(x, y) \& D(x, y z)+D(z, z x) * D(z, x y)=0$
Therefore, a model global triality is $\overline{h_{j}}(x * y)=\left(h_{j+1} x\right) *\left(h_{j+2} y\right)$

CONCLUTION

Thus, a researcher stated that automorphism of Cayley algebra can be constructed. Also, Triality algebra (Trig(A) is an important concept of lie algebra.

REFERENCES

I. Allison, B. N.;" A Class of non-associative algebras with innovation containing a class of Jordan algebra" Math, Ann 237, (1978)133-156.
II. Allison, B. N.; Faulkner; J.R.;" Non-associative coefficient algebras for Steinberg unitary lie algebras" J. Algebras 161(1993)133-158.
III. Schafer, R.D.;" An introduction to non-associated algebra" Academic press N.Y. and London (1966)
IV. Elduque , A.; On triality and automorphism and derivation of composition algebra" Linear algebra and its application 314(2000)49-74.
V. I. M. H. Etherington. Non-associative arithmetic. Proc. Roy. Soc. Edinburgh. SectA., 62:442-453,1949.,

