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Abstract: Global warming led to the climate imbalance and has negative impact on humans, 

plants, and animals’ life. Global warming is measured in terms of average temperature of a 

place. Wavelet is a new tool to analyze non-stationary and transient signal/data. We have 

taken average monthly temperature record of India from year 1901 to 2017 as raw data. This 

data has been decomposed into approximation and detail with help of Haar wavelet transforms 

at level 9. The approximation provides average behavior of the data while detail to the 

fluctuations in the data at each level. The average behavior the given data reveals a gradual 

increase in the temperate throughout the time with fast rate in the recent years. 
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1. Introduction 

Global warming is the phenomenon of a gradual increase in the temperature near the earth 

surface. This change disturbs the climatic pattern of the earth. There are several causes of global 

warming, which have a negative effect on humans, plants and animals. These causes may be 

natural or might be the outcome of human activities. In order to curb the issues, it is very 

important to understand the negative impacts of global warming. The main reason behind the 

global warming is the greenhouse effect caused by increased levels of carbon dioxide, 

chlorofluorocarbons (CFCs) and other pollutants [1]. Global warming has affected the coral 

reefs that can lead to a loss of plant and animal lives. Increase in global temperatures has made 

the fragility of coral reefs even worse. Global warming has led to a change in climatic 

conditions. There are droughts at some places and floods at some. This climatic imbalance is 

the result of global warming. Global warming leads to a change in the patterns of heat and 

humidity. This has led to the movement of mosquitoes that carry and spread diseases. Due to 

an increase in floods, tsunamis and other natural calamities, the average death toll usually 

increases. Also, such events can bring about the spread of diseases that can hamper human 

life. A global shift in the climate leads to the loss of habitats of several plants and animals. 

In this case, the animals need to migrate from their natural habitat and many of them even 

become extinct. This is yet another major impact of global warming on biodiversity. We have 

studied and analyzed the average monthly temperature data of India from 1901 to 2017. 
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To represent functions that have discontinuities and sharp peaks, wavelet transforms 

have advantages over classical Fourier transforms. It is also used for precise decomposition 

and reconstruction of finite non-periodic and / or non-stationary signals. There are many signals 

around us such as seismic tremors, human speech, medical pictures, financial data, music and 

many other types of signals that need to be analyzed. Wavelet analysis is a new and favorable 

set of tools and techniques for analyzing these signals. The scaled and translated copies of a 

finite length or fast decaying oscillating waveform are represented as wavelets. A wavelet is a 

mathematical function which is used to divide a given function into different scale components. 

The concept of wavelets is embedded in many areas, including mathematics, physics, and 

engineering. A zero average oscillating function which is well localized over a short period of 

time is called a wavelet. For analyzing and transforming discrete data, wavelets have been 

widely useful. Wavelets are powerful techniques for analyzing and processing digital signals. 

The family of wavelets is produced by wavelet functions that are translated (shifted) and dilated 

(stretched or compressed) versions of the original mother wavelet, so the wavelet function is 

known as the mother wavelet [2]. Wavelet transform, like Fourier transform, is a magical 

mathematical tool for many problems in science and engineering. Wavelet transform is a 

hierarchical set of wavelet functions. All wavelet transforms are related to harmonic analysis 

because we can assume, wavelet transforms form of time-frequency representation for 

continuous-time (analogue) signals. Discrete time filter banks are used by all discrete 

wavelet transforms. In wavelet nomenclature, these filter banks are named as wavelet and 

scaling coefficients. Either finite impulse response (FIR) or infinite impulse response (IIR) 

filters may be involved in these filter banks [3]. 

 

2. Wavelet Transforms and Multiresolution Analysis (MRA) 

 

Wavelets exhibit oscillatory behavior for a short period of time and then die out. A wavelet 

represents a small wave that can be dilated and translated. 
   

 
Figure 1: A wavelet 

 

A whole family of wavelets can be developed by translating and scaling the mother wavelet 

with the help of the mother function [4]. 

                                                 ψa,b(t) =
1

√a
ψ (

t−b

a
) = TbDaψ                                              (1.1) 

Here b is the translation parameter and a is the dilation or scaling parameter. Continuous wavelet 
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transform is a function of two parameters a and b. It contains a high amount of extra information 

due to two parameters when analyzing a function and described as: - 

                                                    W(a,b)  =  ∫ f(t)
t

 
1

√|a|
 ψ (

t−b

a
)  dt                                                  (1.2)                          

The continuous wavelet transform (CWT) coefficient does not affect by the scale and position 

values only, but the value of coefficient is also affected by the choice of wavelet. An important 

sampling of the continuous wavelet transform is expressed as: - 

                                                        Wa,b = ∫ f(t) ϕa,b(t)dt                                                    (1.3) 

The discrete wavelet transform is expressed as: - 

                                                         Wj,k = ∫ f(t)2
j

2 ϕ(2jt – k)  dt                                         (1.4) 

It is obtained via a = 2−j, and 
b

a
= k where j and k  are integers.  

The wavelet transform of a signal captures the localized time frequency information of 

the signal. Discrete wavelet analysis is performed by multiresolution analysis, which is a radically 

new recursive method. An MRA is introduced by Mallat and extended by other researchers [5-8] 

consists of a sequence Vj, j ∈ ℤ of closed subspaces of L2(ℝ), a space of square integrable 

functions, satisfying the following properties: - 

1) Vj+1⊂ Vj: j ∈  ℤ                                                                                                                      (1.5) 

2) ∩j∈ℤ Vj = {0}, ∪j∈ℤ=   L2(ℝ)                                                                                                (1.6) 

3) For every L2(ℝ), f (t)  ∈  Vj  ⇒ f (2t)  ∈  Vj+1, ∀  j ∈  ℤ                                                     (1.7)                                         

4) There exists a function ϕ(t)  ∈  V0, such that {ϕ(t − k): k ∈ ℤ} is orthonormal basis of V0.                                                                                                                                

                                                                                                                                       ……..(1.8) 

The function ϕ (t) is called scaling function of given MRA and property 3 implies a dilation 

equation as following: - 

                                                   ϕ(t) = ∑ αk  k∈ℤ ϕ(2t − k)                                                   (1.9) 

where hk is low pass filter and is defined as follows: - 

                                                      αk = (
1

√2
) ∫ ϕ(t)ϕ(2t − k)dt

∞

−∞
                                         (1.10) 

Now we consider W1 be the orthogonal complement of  V1  in V0 i.e. 

                                                        V0 = V1⊕W1 

If  ψ ∈ W0 be any   function then, 

                                                     ψ(t) = ∑ βk  k∈Z ϕ(2t − k)                                                  (1.11) 

Where, βk  =(−1)k+1 α1−k    are high pass filters. We can express a signal in terms of bases of V0 

space. If we combine the bases of  V1 and W1 space, we can express any signal in V0 space. 

Mathematically, we can write, 
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       V0 = V1 ⊕  W1 

In general, 

                                                                                                     Vj = Vj+1⊕Wj+1 

But,                                                        Vj+1 = Vj+2⊕Wj+2 

Therefore 

                                                                                               Vj = Wj+1⊕Wj+2⊕Vj+2 

  . .        . . . .                . .                                          

                                                                                        Vj = Wj+1⊕Wj+2⊕Wj+3⊕............Wj0
⊕Vj0

                (1.12) 

By MRA, the orthogonal decomposition of space L2(ℝ) is as following [9]: -                                                    

                                                       L2(ℝ) = ∑ Vj =j ∑ (Vj0
⨁ ∑ Wp

j0
p=j+1 )j  

3. Research Methodology 

We can approximate the data in space of square summable sequences ℓ2(ℤ) as follows [10]: - 

                      f[n] =
1

√M
∑ c[j0, k]ϕj0,kk [n] +  

1

√M
∑ ∑ w[p, k]ψp,kk [n]j0

p=j+1                           (1.13) 

where f[n], ϕj,k[n] and ψj,k[n] are discrete functions defined in [0, M − 1], totally M points. We 

can simply take the inner product to obtain the wavelet coefficients, 

                                                  c[p, k] =
1

√M
∑ f[n] ϕp,kn [n]                                                  (1.14)                                                                                   

                                                 w[p, k] =
1

√M
∑ f[n] ψp,kn [n]                                                 (1.15)              

where  c[p, k] and w[p, k] are called approximation and detail coefficients respectively. From 

property of scaling and wavelet functions, other coefficients can be derived as follows: - 

                                                  c[p + 1, k] =  h[n′] ∗ c[j, n]                                                    (1.16) 

where  n ≥ 0. Similarly, for the detail coefficients, we can write, 

                                                 w[p + 1, k] = g[n′] ∗ c[j, n]                                                      (1.17) 

After N iteration a signal S= {Sn: n ∈ ℤ} can be reconstructed as S = aN  +  d1 + d2 +  d3 + d4  + 

d5 + ..............+  dN. The high- scale, low frequency components of the signals are known as the 

approximations. The low-scale, high-frequency components are known as the details. There are 

two complementary filters from which the original signal S passes, namely low pass filter and 

high pass filter as shown in figure 2. 
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Figure 2: Wavelet pyramidal algorithm for data decomposition 

where, 

                                                         S = a1 +  d1 

 =  a2 +  d2 + d1 

            =  a3 +  d3 +  d2 + d1 

                                                             =  a4 +  d4 +  d3 +  d2 +  d1                                   (1.18) 

and so on [11]. 

4. Results and Discussion 

The average monthly temperature record of India from year 1901 to 2017 has been taken as the 

raw data (Figure-3).  

 
Figure 3: Average monthly temperature of India from 1901-2017 
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The data is decomposed through wavelet pyramidal decomposition scheme using Haar wavelet 

transforms at level-9 (Figure-4).  

 

Figure 4: Wavelet decomposition of temperature data (At level 9) 

The approximation coefficients at level 9 provide average behavior of the temperature data, while 

detail coefficients provide differential behavior or fluctuations of given data at different 

decomposition levels. The approximation of the data represents its average behavior throughout 

the time (Figure-5). 
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Figure 5: Approximation of temperature 

The average behavior of temperature in India shows a is gradual increase throughout the given 

time interval. Some statistical parameters of the given data are as follows: - 

S. No. Statistical Parameter Value 

1 Skewness -1.218267522 

2 Kurtosis -0.454495434 

3 Standard Deviation 3.516446048 

The skewness measures the asymmetry of the probability distribution of a real-valued random 

variable about its mean. The small and negative value of skewness represents that data are slightly 

skewed left. Kurtosis parameter is a measure of the tail character of the distribution. The small 

and negative value of kurtosis indicates that the given data has a light tail than that of normal 

distribution [12]. The high value of standard deviation indicates a wide spreading of the data 

points over mean value.   

5. Conclusion 

The wavelet approximation provides average behavior of the given data, while detail provides its 

differential behavior or fluctuations at different levels.  The average behavior of average monthly 

temperature data of India from year 1901 to 2017 shows a gradual increase with fast rate in recent 

years. The wavelet analytical results are consistent with the statistical results of the given data of 

the temperature record. The spectral and statistical analysis provide a strong consistency of the 

global warming in context of India. On basis of the results, it is possible to conjecture that the 

wavelet analytical study provides a simple and accurate framework for modelling the spectral 

analysis of global warming.  
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