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THE INTEGRO-EXPONENTIAL FUNCTION IN ITS GENERALIZED FORM 

Sumit Geahlan, Asst Professor, Deptt. of Mathematics, IB College, Panipat. 

ABSTRACT 

Exponent integral (incomplete Gamma) and order derivatives define General integrated 

function exponential. A section contains a collection of analytical results. Sufficient rational 

minimum approximations are provided in another section to calculate the first six first order 

functions.This article presents an extension of the distribution of power mouth (PM) that 

models positive Kurtosis data. The distribution is higher than the PM distribution in the 

resultant distribution. It can be shown using the incomplete generalized whole-exponential 

feature that the density can be expressed. We examine some of its characteristics and 

moments, asymmetry and kurtosis coefficients. We use the moments and the maximum 

probability techniques to estimate the parameter recovery and provide a simulation analysis. 

Application results for two real data sets show that in the presence of outliers the new model 

is extremely good. 

Keywords: Generalized Integro-exponential function; Exponential function; Generalization; 

Laplace Transform. 

INTRODUCTION  

The universal integral Exponential function is of crucial importance in transportation systems 

and fluid flow theory, but in the literature, there is not a comprehensive description of its 

characteristics. First presented by Van de HülstChandrasekhar has summarized the function 

and recently examined it by Van de Hülst, who has provided power and numerical taboos for 

specific situations. 

The slash distribution is a symmetrical extension of the normal distribution. The quotient is a 

uniform distributional power between two independent random variables, one normal and 

one. Thus, if its representation is, X has a slash distribution: 

 

International Research Journal of Mathematics, Engineering and IT 

ISSN: (2349-0322)      

Association of Academic Researchers and Faculties (AARF) 

Impact Factor- 7.132 Volume 10, Issue 01, January 2023 

Website- www.aarf.asia, Email : editoraarf@gmail.com 

http://www.aarf.asia/
mailto:editoraarf@gmail.com


 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 9  

X= 
𝑌

𝑈
1
𝑞

  , 

Where Y ∼N(0, 1), U ∼ U(0, 1) and Y is independent of U and q > 0. 

It has heavier tails, i.e. a bigger Kurtose than the regular distribution. The properties are 

explored in Rogers and Tukey, Mosteller and Tukey. Kafadar explores the maximum 

probability (ML) estimates. Gómez et al. and Gómez and Venegas increased the distribution 

by adding the elliptical slash family. To extend Birnbaum – Saunders distribution, Gómez et 

al. used the slash elliptical family. Olmos et al. used the slash method in semi-normal and 

usually semi-normal distributions; Reyes et al. in the Birnbaum–Saunders distribution; 

Gomez et al. in the Gunbel distribution; and Segovia et al. in the Maxwell power distribution, 

among others. 

Muth suggested continuous probability distribution via the idea of reliability; and Jodrá et al. 

A random variable Y is called an α-form distribution when the function of probability density 

is specified by 

f(y; α) = (e 
αy

 − α) exp {αy −
1

𝛼
 (e

 αy
 − 1)} , y > 0, 

which we denote by Y ∼ M(α).  

The generalized integral-exponential function is a key function in the M distribution, 

expressed in the following integral representation: 

𝐸𝑆
𝑚  (t) =  

1

𝑇(𝑚+1)
 (log u) m e−tu u−s   du,
∞

1
 t ∈ (−∞, ∞), 

Where, s ∈ (−∞, ∞), m > −1 and Γ(·)  is the gamma function. 

Jodrá et al. have created a M model modification dubbed PM that fixes the form parameter 

alpha = 1 in the M model. In this research they add an α-form parameter, making the PM 

model more flexible than the α-parameter. They generate a model with two parameters which 

we take into account following. A random X variable has a β-and-shape PM-distribution 

when its pdf is given 

f(x; β, γ) = 
ϒ

𝛽ϒ
𝑥ϒ

−1
 𝑒

 
𝑥

𝛽
 
ϒ

− 1 exp  
𝑥

𝛽
 
ϒ

− 𝑒
 
𝑥

𝛽
 
ϒ

+ 1 , x > 0(1) 
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Which we denote by X ∼PM(β, γ) 

Let X ∼PM(β, γ), some properties of this distribution are: 

1. FX(x; β, γ) = 1 - exp  
𝑥

𝛽
 
ϒ

− 𝑒
 
𝑥

𝛽
 
ϒ

+ 1 , x > 0               

 

2. Q(p) = β log  −𝑊−1  
𝑢−1

𝑒
   

1
ϒ 

  ,   0 < u < 1, 

 

3. E(X 
r
 ) = eβ 

r
 T  

𝑟

ϒ
+  1 𝐸0

𝑟

ϒ
−1

(1),     r = 1, 2, . . . 

Where F(•) is a cumulative function for X distribution, Q(•) is a quantile function, and W−1 

indicates the Lambert W function's negative branch and  is described above as the generic 

integral-exponential function.  

The incomplete generalized integral exponential function is defined for future advancements 

𝐸𝑆
𝑚  (t;y)= 

1

𝑇(𝑚+1)
 (log u) m e−tu u−s   du,

y

1
     t ∈ (−∞, ∞),         (2) 

Where limy→∞  𝐸𝑆
𝑚 (t; y) = 𝐸𝑆

𝑚  (t). 

The main aim of this paper is to examine a larger range of the PM model in its Kurtosis 

coefficient so that this new distribution may be used in the models and atypical observations 

of data sets.  

LITERATURE REVIEW 

Serdar Beji (2021) A fast-converging power series initially designed to solve Grandi's 

dilemma is used to assess the exponential component of real arguments. The historical 

solution of Laguerre is first summarized and then the new solution technique is detailed. The 

numerical results from the current series solution are compared to the accurate tabular values 

at nine decimal places. Finally, remarks are given on the further application of this technique 

to integrals with certain functions in the denominator. 

SupapornKaewta ,SeksonSirisubtawee and SurattanaSungnul (2021) The main aim of this 

article is to provide precise route wavelength solutions for Kadomtsev–Petviashvili ( KP) 

exp-function compatible Time 2 integrodifferential hierarchy and (2 + 1) compatible time 
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partial integro-differential Evolution of Jaulent–Miodek (JM) with the Kudryashov technique 

in general. Both of these issues require the compatible time partial derivative. Initially, a 

fractional complex transformation allows conforming partial temporal differential equations 

to be Transformed into non-linear common equations of differences. The resultant equations 

are then analytically resolved using the appropriate techniques.  

Juan M. Astorga, Jimmy Reyes, Karol I. Santoro, Osvaldo Venegas, Orcid andHéctor W. 

Gómez (2020) this paper presents extended power mouth distribution(PM) for the modeling 

of high kurtosis value positive data sets. Kurtosis is greater than PM in the resulting 

distribution. We show that a general integral-exponentially incomplete function may be used 

as a means to characterize the density. We analyze some of its features, moments and 

coefficients for asymmetry and Kurtosis. We use moments and maximum probability 

techniques and provide a simulation exercise to demonstrate the recovery of the parameters. 

The results of the application in two real data sets indicate that the new model is very good 

for outlines. 

Yudhveer Singh et al. (2020) In this paper we use a comprehensive transforming method to 

resolve the integrodifferential (FVIDE) Volterra-type fractional order involving the 

generalized in terms of complex kernel variables, Lorenzo-Hartely function and the 

generalized Lauricella hypergeometric confluent function. The Lorenzo-hardly generalized 

helpers' derivatives and the hypergeometric confluent function of Lauricelle is also studied 

and presented. Three discoveries in this Article were recognized as lemmas which provide us 

new results in the three functions referred to above, and utilizing these results we have 

derived our major conclusions in the form of theorems. Our primary findings are extremely 

broad, giving some fresh and existing findings here as a particular example of the results. 

Tibor K. Pogány, Gauss M. Cordeiro, M. H. Tahir, Hari Mohan Srivastava (2017) In 2000 

Chen developed a two-parameter model and provided just moments, quantities, and functions 

for producing mathematical properties, among other things. In this paper, we provide an 

extension to the power series for the newly presented generalized integral/exponential 

function E ps (z), which extends some Milgram results. By our new findings, Moments, 

function generation, Renyi entropy and Chen quantile function power series are expressed in 

a closed form. 

EXPONENTIAL FUNCTION 
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Exponential functions in mathematics are the relationship of the shape y = a
x
, and the 

independent Variable x is an exponent for a positive integer across the whole real number 

line. Probably y = ex, commonly written y = exp(x), is the most important exponential 

function; e (2,7182818...) is the foundation of natural logarithmic systems (ln). x is definitely 

the logarithm and thus the logarithmic function differs from the exponential function (Figure 

1). 

 

Figure 1 The exponential and natural logarithm functions  

If y = e
x
, then x = ln y, in particular. Also, the exponential feature is the sum of the infinite 

series 

𝑒±𝑥= 1 ± x +  
𝑥2

2!
± 

𝑥3

3!
 + 

𝑥4

4!
 ±  

𝑥5

5!
+ …….. , 

This is a product of the first n positive integer for every x and n! So the constant in particular 

𝑒1= 2.7182818 

= 1 + 
1

1!
 + 

1

2!
+

1

3!
+……. + 

1

𝑛 !
 + ……. , 

Exhibited functions contain examples of non-algebraic or transcendental functions – 

functions not representable as a Product, sum and variable differences which are raised to 

specified non-negative integral power. Also common transcendental functions are logarithmic 

and trigonometric functions. Exponential functions often occur and quantitatively explain 

some physical processes, such as radioactive decay where the rate of change is directly reliant 

on its current value in a process or substance. 
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The exponential integral Ei(x) is defined as true nonzero values of x 

Ei(x) = -  
𝑒−𝑡

𝑡

∞

−𝑥
 dt =  

𝑒 𝑡

𝑡

∞

−𝑥
 dt. 

The Risch method shows that Ei is not a fundamental function. For positive values of x, the 

following formula may be applied, however due to the uniqueness of the integer at nil, the 

integral must be interpreted in the Cauchy main value. 

For complex values, because of branch points at 0 and ∞, the definition becomes 

confusing.The notation below is used instead of Ei, 

E1(z) =  
𝑒−𝑡

𝑡

∞

𝑧
dt,    𝐴𝑟𝑔(𝑧) < π 

For positive values of x, we have - E1(x) = Ei(-x) 

In general, a branch is severed across the negative real axis and E1 somewhere on the 

complex plane may be determined by analytical continuation. 

For real portion positive values of , this can be written 

E1(z) =  
𝑒−𝑡𝑧

𝑡

∞

1
 dt =  

𝑒−𝑧 𝑢 

𝑢

1

0
du,   ℜ 𝑧 ≥ 0. 

The following relationship may be observed in E1's branch cutting behavior: 

lim𝛿→0+ E1 −x ± 𝔦δ = -Ei(x)∓𝔦π,       x<0. 

GENERALIZATION 

It may also be the exponential integral widespread𝑬𝒏(𝑥) =  
𝑒−𝒙𝑡

𝒕𝒏

∞

1
dt 

that may be represented as an incomplete gamma function as a particular instance:  

𝑬𝒏(𝑥) = 𝑥𝑛−1T (1- n, 𝑥). 

The wide-spread Misra Function is frequently termed form𝜑𝑚 𝑥 , 

𝜑𝑚 𝑥 =  𝐸−𝑚 𝑥 . 

The NIST mathematical digital library has many characteristics of this extended form. 
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The generalized integral-exponential function is defined by a logarithm 

𝐸𝑗
𝑠 𝑧 =  

1

𝑇 𝑗+1 
 (𝑙𝑜𝑔 𝑡𝑗 )
∞

1

𝑒−𝑧𝑡

𝑡𝑠
𝑑𝑡. 

The indefinite component: 

Ei (a.b) =  𝑒𝑎𝑏 𝑑𝑎 𝑑𝑏 

is like the usual generating function, the number of dividers of n: 

 𝑑 𝑛 𝑥𝑛

∞

𝑛=1

=    𝑥𝑎𝑏

∞

𝑏=1

∞

𝑎=1

 

GENERALIZED INTEGRO–EXPONENTIAL FUNCTION 

Our primary objective in this section is to take full account of the generic integrated 

exponential function with higher p parameter 

𝐸𝑆
𝑝  (z) = 

1

𝑇(𝑝+1)
 (ln x) px−se−zx   dx,
∞

1
ℜ 𝑝 >  −1; 𝑠, 𝑧 ∈ 𝐶(2) 

 

The resulting power series form of that integral, which meets the upper parameter, provides 

the key instrument to provide Chen's distributed RV T with moments and incomplete 

moments of positive real order. By this finding we significantly expand the results of the 

current Milgram for p / N (for which compare and the references there in). 

Φµ,ν
 ρ ,ς (z,s,u)= 

 𝜇 𝜌𝑛

 𝑣 𝜍𝑛n≥0
𝑧𝑛

 n + u 𝑠
, 

Where µ ∈ C, ν, u ∈ C \ Z0
−
 ρ, σ ∈ R+ and ρ < σ when z, s ∈ C  

(λ)𝑛 =  
Γ(λ  + η)

Γ(λ)
 , λ ∈ C \ {0} 

represents the generalized symbol of Pochhammer by convention (0)0 = 1. Thus,] 

Φµ,1
 0,1  −a, p +  1, 1 = limy→∞  Φµ,1

 ρ ,1  −a, p +  1, 1 =  
(−a)𝑛

𝑛 !(𝑛+1)𝑝+1n≥0 (4) 
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Next, we determine the power series of 𝐸𝑆
𝑝  (z). By setting (1 − x) 

−1
 → x in the integrand of 

(3), we obtain 

𝐸𝑆
𝑝  (z)= 

(−1)𝑝

Γ(p + 1) 
  1 –  x 

−s−21

0
ln𝑝 1 − 𝑥 . exp  −

z

1−x
  dx. 

By expanding the exponential and the binomial terms and interchange the sums and the 

integral it follows 

𝐸𝑆
𝑝  (z)= =  

(−1)𝑝

Γ(p + 1) 
 

(−1)𝑘  (−𝑍)𝑛

𝑛 !n,k≥0  n − s − 2
𝑘

 
 ln𝑝  1−𝑥  𝑑𝑥 .

1
0

𝐽𝑘(𝑝)
 

The inner integral Jk(p) can be handled by substituting 1 −𝑒−𝑥 ↔x : 

𝐽𝑘 𝑝 =   1 –  e−x 
𝑘

e−x∞

0
(−𝑥𝑝 )dx=(−1)𝑝  (−1)𝑚𝑘

𝑚=0  𝑘
𝑚
  𝑒− 𝑚+1 𝑥∞

0
𝑥𝑝𝑑𝑥 

       = (−1)𝑝   𝑘
𝑚
 𝑘

𝑚=0
(−1)𝑚 T(p+1)

(𝑚+1)𝑝+1  = (−1)𝑝   𝑘
𝑚
 𝑘

𝑚=0
T p+1 (−k)m

𝑚 !(𝑚+1)𝑝+1  ,   (5) 

When both amounts in (5) can be utilized for accurate numerical assessment. We also arrive 

at the more compact textual form in the final equation. 

𝐽𝑘 𝑝 = (−1)𝑝  T p + 1 Φµ,1
 0,1  −k, p +  1, 1 ,       µ ∈  C, 

Where Φµ,1
 0,1  −k, p +  1, 1  is the k–partial sum of the HL Zeta function (6). 

Remark 1.  The situation of a non-negative integer p for 𝐽𝑘 𝑝  is well established. The 

formula (converted into our environment) 

 
𝑑

𝑑𝑥
 
𝑝 1

 x + 1 k−1
 = 

(−1)𝑝𝑝!

k!
 

 −𝑘 𝑚

𝑚 !(𝑚+𝑥+1)𝑝+1
𝑘
𝑚=0   , p ∈ N0 

The progenitor of the Hungarian Probabilistic School Charles (K'aroly) Jordan appears in the 

monograph. 

The relation (6) leads to 

𝐸𝑆
𝑝  (z)=  

(−1)𝑘  (−𝑍)𝑛

𝑛 !n,k≥0  −n − s − 2
𝑘

 Φµ,1
 0,1  −k, p +  1, 1  

        =  
(s + 2)n +k

𝑘! (s + 2)k
n,k≥0

(−𝑍)𝑛

𝑛 !
Φµ,1

 0,1  −k, p +  1, 1  
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        =  
(s + 2)k

𝑘! k≥0 Φµ,1
 0,1  −k, p +  1, 1  

(s + 2+k)n

(s + 2)𝑛
n,≥0

(−𝑍)𝑛

𝑛 !
 

         =  
(s + 2)k

𝑘! k≥0 Φµ,1
 0,1  −k, p +  1, 1 , 1F1(s + k + 2; s + 2; −z), 

Where the hypergeometric confluent function - Kummer function. 

1F1(a; b; x) = 
(a)n

(b)𝑛
n,≥0

𝑥𝑛

𝑛 !
 , x, a ∈ C; b ∈ C \ Z − 0 

is employed. Hence the desired result.] 

Theorem 1. Forall ℜ 𝑝 >−1, s, z ∈ C, The expansion equations of the generalized integral-

exponential function in three power series remain valid. 

𝐸𝑆
𝑝  (z)=  

(s + 2)k

𝑘! k≥0 Φµ,1
 0,1  −k, p +  1, 1 1F1(s + k + 2; s + 2; −z). 

Remark 2. We point out that the closed form expression of 𝐸𝑆
𝑝  (z), for a non-negative 

integer p the Meijer G function is given by Milgram; see also the appropriate formulas in. 

However, findings for general real positive p have not been reported to the best of our 

knowledge. 

LAPLACE TRANSFORM OF GENERALIZED EXPONENTIAL INTEGRALS 

The transformation of the 𝐸𝑣(x) Laplace is defined in this section 

𝑁𝑎 {𝐸𝑣 (x)} ≡ 𝑎  𝑒−𝑎𝑥
∞

0
𝐸𝑣 𝑥 𝑑𝑥 = 𝑎  𝑑𝑥

∞

0
 𝑑𝑡 𝑡−𝑣
∞

0
𝑒−(𝑡+𝑎)𝑥 .    (7) 

According to Milgram's paper, in the case  𝑎 < 1, one obtains: 

𝑁𝑎 {𝐸𝑣 (x)}=− 
(−𝑎)𝑛+1

𝑣+𝑛
∞
𝑛=0  ,                    𝑣 ∈ 𝑅,  𝑎 ≤  1.          (8) 

If 𝑎> -1, the integration order in (6) may be changed and the results can be achieved: 

𝑁𝑎 {𝐸𝑣 (x)}=𝑎  
𝑑𝑡

𝑡𝑣

∞

0
 𝑒−(𝑡+𝑎)𝑥∞

0
𝑑𝑥 =  𝑎  

𝑑𝑡

𝑡𝑣 (𝑎+𝑡)

∞

0
  ,     𝑎> -1.     (9) 

Using the basic identity: 

1

𝑡  (𝑡+𝑎)
 = 

1

𝑎
 

1

𝑡
−  

1

𝑡+𝑎
 ,    (10) 
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The Laplace transformation of 𝐸𝑣 leads in a recurrence relation (x): 

𝑁𝑎 {𝐸𝑣+1 (x)}=
1

𝑣
−  

1

𝑎
 𝑁𝑎 {𝐸𝑣 (x)}, v ≥1, 𝑎> -1, (11) 

Extending the finding to v = n integer 

It is also possible to get equation (11) in the transformation of both recurrence members. 

Besides Equation (8), the following equation may be easily derived. 

𝑁𝑎 {𝐸𝑣 (x)}, v=m+𝛂, m ∈ N0,0≤  𝑎 < 1: 

𝑁𝑎 {𝐸𝑣 (x)} =  −
1

𝑎
 
𝑚−1

In (1+ 𝑎) +  −
1

𝑎
 
𝑚−1

  
(−𝑎)𝑘

𝑘+∝
+∝   

(−𝑎)𝑗

𝑗 (𝑗+∝)

∞
𝑗=1

𝑚−1
𝑘=1  ,   -1<𝑎 ≤1, (12) 

which, for v integer, reduces to the result. In particular𝑁𝑎 {𝐸1 (x)} = In (1+ 𝑎). Equation (12) 

Can be acquired accordingly. Putting v=m+𝛂 into Equation (8), one gets 

𝑁𝑎 {𝐸𝑣 (x)} =𝑎  
(−𝑎)𝑛

𝑛+𝑚+𝛼
∞
𝑛=0 = − −

1

𝑎
 
𝑚−1

 
(−𝑎)𝑗

𝑗+∝
,∞

𝑗=𝑚  𝑎 ≤  1.       (13) 

where j = m + n. 

Furthermore, considering: 

In (1+ 𝑎) =  − 
(−𝑎)𝑗

𝑗
,∞

𝑗=1          -1< 𝑎 ≤1,    (14) 

It follows that using this term in equation (13): 

𝑁𝑎 {𝐸𝑣 (x)} =  −
1

𝑎
 
𝑚−1

 – 
 −𝑎 𝑗

𝑗+∝
+   

 −𝑎 𝑗

𝑗

∞
𝑗=1

∞
𝑗=1 + In  1 +  𝑎 +  

(−𝑎)𝑗

𝑗 (𝑗+∝)

𝑚−1
𝑗=1  ,-1< 𝑎 ≤1  

(15) 

After the initial equation series (15), the identity at that point was introduced 

1

𝑎 + 𝑗
=  

1

𝑗
−

𝛼

𝑗 (𝑗 + 𝑎)
 , 

You may recover easily equation (12). 

The following relationship also applies to equation (12): 
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𝑁𝑎 {𝐸𝑚+𝑎  (x)}  =  𝑁𝑎 {𝐸𝑚  (x)}+
∝

(−𝑎)𝑚−1
 

(−𝑎)𝑗

𝑗 (𝑗+∝)

∞
𝑗=𝑚  ,   -1< 𝑎 ≤1,   m ∈ N0,0≤  𝑎 < 1(16) 

Which the phrase might be derived𝑁𝑎 𝐸𝑚+𝑎 x  and for𝑁𝑎 {𝐸𝑚  (x)}, equation (12) provided 

and equation considered (16). 

Lastly, it should be noted that the phrase (12) is more computational than equation (8). In 

addition, it is totally convergent since the Abel series raises the suitable absolute value series. 

The applicable equation series is converging faster than the Equation series (12). 

𝜓  1 =   1
𝑘2  

∞

𝑘=1

= 𝜋2

6  

CONCLUSION 

In this paper, we have deducted joint pdfs of a generalized order for the Generalized and 

Integro-Exponential functions in explicit form. The probability density function (pdf) of the 

conditions of the general order distribution generated from the distributions under discussion 

is also given. 
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