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Abstract 
Fractional calculus is the study of different fractional orders-integral operators, and it is used 

in many engineering and scientific fields. A fractional difference makes up the newline. Only 

an operator with a comprehensive perspective on the common distinction. Fractional 

derivative newline equations, such as real or complex order differentiation, have not fully 

addressed the exceptional complexity of many components in some of the most diverse fields 

of engineering and research that depend on complex newline structures. In this paper, we 

present a unique numerical method for solving fractional differential equations. Given a 

fractional derivative of any real order, we provide an approximation method for the fractional 

operator using solely integer-order derivatives. As a result, we can rephrase FDEs in terms of 

a conventional model and then use any acceptable technique. With a few examples, we show 

how accurate the method. 

Keywords:Fractional Calculus,accuracy,fractional derivative 

1. INTRODUCTION  

Since the inception of differential calculus, the question of what could be a derivative of a no 

integer order has been important, and even Leibniz considered the derivative of order = 1/2. 

Following a thorough investigation, Lowville proposed the idea of a fractional integrator 

operator. Later, Riemann created a fractional integration and developed the science of 

fractional calculus by expanding on Cauchy's n-fold integral formula.In 1967, a new class of 

fractional operators appeared thanks to Michel Caputo, and it has since been demonstrated 

that these operators are effective in a variety of situations. It exhibits two advantages: when 

using this operator to solve fractional differential equations, the derivative of a constant is 

zero and ordinary initial conditions can be used instead of establishing fractional order initial 

conditions. FDEs have lately proven to simulate some real phenomena more successfully 

since these fractional operators have memory and some dynamics of trajectories are 
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characterized by non-integer order derivatives from experimental data. As a result, they have 

several applications in numerous scientific domains as well as a wide range of technical uses 

(such as viscoelasticity, viscoelasticity, modeling polymers, transmission of ultrasonic waves, 

etc.). These differential equations can't be solved quickly and easily, though. As a result, the 

literature contains a wide variety of numerical methods that can be utilized to solve them. 

In Section 2, examples from are used to briefly introduce fractional calculus. In Section 3, the 

study's main finding is presented and illustrated: under certain smoothness assumptions, we 

may approximate any real order fractional derivative by a sum that only contains integer-

order derivatives. Additionally, a rough estimate of the error is given. By taking into account 

fractional derivatives of any real order, we further the main conclusions of. The examples in 

Section 4 compare the exact computation of the Caputo fractional derivative of a given 

function with a few numerical approximations as an early evaluation of the method's 

performance. We give an illustration of how solving fractional differential equations might be 

useful in the end. 

 

1.1 Fractional Calculation 

Nearly as old as calculus itself, fractional calculus has recently gained in popularity due to its 

practical applications as well as its strengths as pure mathematics. Recently, a number of 

textbooks on this topic were published, each of which addressed various difficulties in a 

unique manner. The idea of the non-integer differential and integral operators researched in 

the field of fractional calculus may be the most understandable, given that Cauchy's well-

known definition of an n-fold integral as a convolution integral. 

𝒋𝒏𝒚 𝒙 =   … 𝒚 𝒙𝟎 
𝒙𝟏

𝟎

𝒙𝒏=𝟏

𝟎

𝒙

𝟎

𝒅𝒙𝟎. . 𝒅𝒙𝒏. . 𝟐𝒅𝒙𝒏 − 𝟏 

=
𝟏

 𝒏−𝟏 
 

𝟏

 𝒙−𝒕 𝟏−𝒏

𝒙

𝟎
𝒚 𝒕 𝒅𝒕, 𝒏 ∈ 𝑵𝒙 ∈ 𝑹 + 

Where J 0y(x) = y and J n is the n-fold integral operator (x). the discrete factorial (n 1) is 

being replaced! With Euler's continuous gamma function, (n), one can define a non-integer 

order integral by proving that (n 1)! = (n) for n N. 

 

𝒋𝜶𝒚 𝒙 =
𝟏

𝒓 𝜶 
 

𝟏

 𝒙 − 𝒕 𝟏 − 𝜶

𝒙

𝟎

𝒚 𝒕 𝒅𝒕,    𝜶𝒙𝝐𝑹 + 

Non-integer order derivatives, which are easiest characterized as the concatenation of integer 

order differentiation and fractional integration, are the source of several significant parts of 

fractional calculus. 
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𝑫𝜶𝒚 𝒙 = 𝑫𝒏𝒋𝒏−𝜶𝒚 𝒙 𝒐𝒓 𝑫𝜶𝒚 𝒙 = 𝒋𝒏−𝜶𝑫𝜶𝒚 𝒙  

 

whereDn, n N, is the n-fold differential operator with D0y(x) = y and n is the number 

satisfying n + 1. (x). One of the challenging and gratifying parts of this mathematical 

discipline is that there are undoubtedly multiple ways to define non-integer order derivatives. 

The operator D is typically designated as Riemann-Liouville. It is clear that these derivatives 

are non-local operators because of the integral in the formulation of the non-integer order 

derivatives, which explains one of their most important applications: A non-integer derivative 

at a specific time or spatial location contains details about the function at previous times or 

locations, respectively. Thus, non-integer derivatives have a memory effect, which they share 

with a number of substances, including polymers or viscoelastic substances, as well as with 

principles used in applications like anomalous diffusion. One of the factors contributing to 

the increased interest in fractional calculus is also this fact: Fractional derivatives can be 

utilised to create straightforward material models and unifying principles due to their non-

local nature. The textbook by Oldham and Spanier and the paper by Olmstead and 

Handelsman both provide prominent examples of diffusion processes. The classic papers by 

Bagley and Torvik , Caputo , and Caputo and Mainardi provide examples of modelling 

viscoelastic materials, and the publication  by Marks and Hall discusses applications in the 

field of signal processing. The works of Chern ,Diethelm and Freed , Gaul, Klein, and 

Kemplfe, Unser and BluPodlubnyand Podlubny et al contain a number of fresh results. 

Several surveys that include collections of applications can also be found, for example in 

Gorenflo and Mainardi,Mainardi , or Podlubny. 

The memory effect of fractional derivatives has a high cost in terms of numerical solvability 

when used to build simple material models or unified principles. Any method that uses a 

discretization of a non-integer derivative must, among other things, take into consideration 

the non-local structure of the derivative, which typically results in a large storage need and 

high algorithmic complexity. In the literature, there have been several attempts to resolve 

equations involving various kinds of non-integer order operators: Abel-Volterra integral 

equations can be solved using so-called collocation methods, according to several works by 

Brunner The non-integer order integral as previously defined serves as the integral portion in 

these equations. His book  on the subject has these findings as well as others. For instance, 

Linz's book  andOrsi's article both employ product integration strategies to resolve Abel-

Volterra integral equations. The so-called fractional linear multistep methods are used in 
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several works by Lubich as well as Hairer, Lubich, and Schlichte to numerically solve Abel-

Volterra integral equations. Additionally, a number of works discuss numerical approaches to 

the solution of differential equations of fractional order. With the exception of the non-integer 

order of their derivatives, these equations resemble conventional differential equations. The 

publications by Diethelm, Ford and Simpson , Podlubny  and Walzare just a few examples of 

approaches based on fractional formulation of backward difference methods. For instance, 

Diethelm et al. explore the fractional formulation of Adams-type approaches in their articles 

the majority of the cited concepts are introduced and developed in this thesis, with the 

exception of the collocation methods by Brunner and the product integration approaches by 

Linz and Orsi. 

2. REVIEW OF LITREATURE  

The introduction of a literature review process and the proper methodology required for 

carrying out the process chosen for evaluating the research papers are presented at the 

beginning of this work. This course will also include a categorical review of "Efficient 

Numerical Methods for Fractional Differential Equations and their Applications" by 

summarizing the research papers and organizing them according to the issues they address. It 

concentrates on the advantages and disadvantages of the discussed Area/Sub Area.I. 

Podlubny et al. 1997  constructed Riemann-Lioville fractional differ-integrals of weighted 

Jacobi polynomials as special examples by extrapolating fractional Riesz potential connected 

to Jacobi polynomials. The Jacobi polynomials have certain relationships, according to 

authors.Virginia Kiryakova et al. 2000based on two sets of multiple indices, Mittag-Liffler 

analogues were investigated. With the introduction of generalised integral and differential 

operators known as the GelfondLeontiev-type, also known as the Borel-Laplace-type integral 

transform, the author worked on the fundamental properties as well as the relationships 

between the M-L functions and the operators of the fractional equations.  

H. J. Glaeske et al. 2000 investigated the integral transform using a kernel that was based on 

a generalisation of either the Macdonald function or the modified Bessel function. With both 

the left and right sides Liouville fractional differ-integrals, authors looked at the integral 

transform's composition and kernel features.  

H. M. Srivastava et al. 2010 introduced and studied a family of generalised M-L functions-

related integral operator in fractional calculus. Special cases of Mittage-Leffler functions 

were discussed by the author. DeshnaLoonker et al. 2012 ABoehmian space wavelet 

transform of the fractional integral operator. Additionally, the Gabor transform for 

integrableBoehmians was explored. The relationship between the Fourier and Wavelet 
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transforms was used by the authors to generate the Gabor transform for the fractional integral 

operator. 

Kazuhiro onodera et al. 2010 examined several sine and gamma functions' external values 

over a range of fundamental intervals. In order to demonstrate that all local maximum and 

minimum values were larger than one and less than zero, respectively, authors illustrated the 

quantity and location of external points.  

N. Virchenko et al. 2010 Wrighthypergeometric function and the confluent hypergeometric 

function were introduced, along with the generalisation of Gauss hypergeometric functions. 

Some of its qualities were derived by him. Using Laplace and Mellin transforms, four new 

integral operators are defined after their derivation, and their inverse operators are also 

obtained.  

MunmumKhanra et al. 2010 investigated a number of earlier approaches, including 

function Laplace, for rationally approximating fractional functions. The pros and 

disadvantages of variation approaches were discussed by the authors.  

Jean Claude et al. 2011 contrasted the Grunewald derivative, a frequency distributed model, 

and a fractional integrator operator. After the author provided the frequency integrator and its 

integer order approximation connected to the frequency response, it was also discussed 

different integral and integrators that are equivalent and organised the Riemann Liouville 

integral as well as the corresponding fractional derivatives.  

 

3. GENERALIZED FRACTIONAL INTEGRAL OPERATOR 

The investigation of a novel contemplate fractional integral operator incorporating K4 

mapping is the focus of this paper . Along with the research of boundedness and the 

construction of new composite features connected to the operator, the Mellin and Laplace 

transforms for the suggested generalised operator are also examined. To solve the fractional 

derivative equation using Hilfer differentiations and K4 mapping, the acquired findings are 

put to use. The K4 mapping is a generalisation of the M-series, and the accuracy of the 

conclusions depends on how precisely the earlier-mentioned findings of our inquiry were 

followed. Applications for generalised special functions in applied sciences, engineering, and 

technology have lately been discovered. To "confirm the results," many corollaries and 

lemmas are established. 
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3.1 Introduction and Preliminaries 

Kilbas researched the characteristics and a number of adjunctions of various fractional 

integral and differential operators as a result of the widespread use of fractional calculus. As 

introduced by Sharma , the K4 function is as follows: 

 

 
𝑘 𝑎 ,𝐵,𝑦  𝑎1 𝑛… (𝑎𝑝)𝑛 𝑦 𝑛𝑐)𝑛

 𝑏1 𝑛…  𝑏𝑞 𝑛       𝑛   𝑟 𝑛 + 𝑦 𝛼 − 𝛽)

𝛼

𝑛=0

 

Notation in Pochhammer. If any number variable I an is zero or a negative integer, the series 

transforms to a polynomial in variable x, and the following equation (3.1) is only true when 

none of the variables j b are zero or integer (negative). If q 1 p, the series is convergent. 

If we change, 1, 1 1 c in (3.1), we get the following outcome: 

𝑲 𝒂, 𝒂 − 𝜷𝟏  𝟏, 𝟎  𝒑, 𝒒  𝒂𝟏 …𝒂𝒑. 𝒃𝟏 …𝒃𝒒: 𝒙  

= 𝒙𝜷−𝟏𝑴 𝒂𝟏, 𝒂𝟐, . . , 𝒂𝒑𝒃𝟏, 𝒃𝟐,..𝒃𝒒𝒙
𝒂  

where the well-known generalized M-series, studied by Sharma and Jain [97], is designated 

as a power series and 1 p Mq. 

 

𝑴 𝒂𝟏, 𝒂𝟐,…,𝒂𝒑𝒃𝟏, 𝒃𝟐, …𝒃𝒒 = 𝑴 𝒛 =
𝒂
𝒑 𝒎 𝒂𝒊  𝒃𝒋  𝒒

𝟏
, . 𝒛  

=  
 𝒂𝟏 𝒏… 𝒂𝒑 𝒏

 𝒃𝟏 𝒏… 𝒃𝒑 𝒏

𝜶

𝒏=𝟎

𝒁𝒏

𝒓 𝜶𝒏 + 𝜷 
 𝒁, 𝒂, 𝜷, 𝜺𝒄𝑹 𝒂 > 0  

where the recognisedPochhammer symbols are n I n j a, b. A polynomial in z replaces the 

series given in (3.3) if any numerator variable, I a, is zero or a negative integer. The series 

given in (3.3) is characterised as only when none of the variables, b s j q j ', 1, 2,...., are. If p 

q, the equation (3.3) is confluent for all variables with z, concurrent for all variables with z, 

and divergent if p q. Equation will converge on conditions depending on variable values 

when p = q + 1 and z . 

The generalisedMittag-Leffler mapping was first presented by Prabhakar [98] and can be 

found in (3.3) for ; 1 ; 1 a1 C p q b1, as 

𝑬𝒂,𝜷
𝒚  𝒛 =  

 𝜸 𝒎
 𝟏 𝒎

∞

𝒎=𝟎

𝒁𝒎

𝒓 𝒎𝒂 + 𝜷𝟏 

𝒛𝒎

𝒎
=  

 𝜸 𝒎
 𝟏 𝒎

∞

𝒎=𝟎

𝒁𝒎

𝒓 𝒎𝒂 + 𝜷𝟏 
= 𝑴 𝒀; 𝟏; 𝒛  

It is possible to identify the induced M-series represented by (3.3) as a specific instance of the 

Wright generalized hyper geometric function and the Fox H-function as 
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𝑴( 𝒂𝟏)𝟏
𝒑
 𝒃𝒋 𝟏

𝒒
; 𝒛 = 𝒌𝒑+𝟏𝝍𝒒+𝟏  

 𝒂𝟏𝟏  𝒂𝒑, . 𝟏 

 𝒃𝟏, . 𝟏  𝟏, 𝒃𝒋𝟏 
  

Let's go through some essential definitions related to fractional calculus. Let x: [a, b] R be a 

function, n N be such that (n 1, n), and R be a positive non-integer number. The following 

makes the assumption that x is good enough for the fractional operators to have a clear 

definition. The definition of the left and right Riemann-Liouville fractional integrals of order 

generalizes the Cauchy's formula to any real number. 

𝒂𝑰
𝒕
𝒂
𝒙 𝒕 =

𝟏

𝒓 ∝ 
  𝒕 − 𝒓 𝜶−𝟏𝒙 𝒓 

𝒕

𝒂

𝒅𝒓 

Respectively. We look at two different sorts of operators for fractional derivatives. The 

fractional derivatives of the left and right Riemann-Liouville sides are given by 

𝑫𝒕
𝒂𝒙 𝒕 =

𝟏

𝒓 𝒏 − 𝒂 

𝒅𝒏

𝒅𝒕𝒏
  𝒕 − 𝒓 𝒏−𝒂−𝟏𝒙 𝒓 𝒅𝒓

𝒕

𝒂

 

 

 

 

4. EFFICIENT NUMERICAL METHODS AND THEIR APPLICATIONS 

The goal of this chapter is to examine several effective numerical techniques and show how 

they may be used to solve a variety of time-fractional order partial differential equations that 

are both linear and nonlinear. The fractional differentiations are used in Caputo's 

interpretation. Several applications are used to show the efficacy of the suggested numerical 

methods. The outcomes exactly correspond to the outcomes for classical orders of derivatives 

found in literature. The paper  introduction of numerical approaches is proven to be effective 

and simple to use. 

 

4.1 Power Series Method 

The solutions to fractional differential equations are in series form since using fractional 

operators in calculations can be challenging. Therefore, one of the effective methods to 

produce series solutions when fractional derivatives arise in an equation is the fractional 

power series approach. provide a power series approach to solve fractional partial differential 

equations.The following is the power series form (PSM): 

 𝒄𝒏 𝜺 − 𝜺𝟎 
𝒂 + 𝒄𝟐

∞

𝒏=𝟎
 𝜺 − 𝜺𝟎 

𝟐𝒂 + 𝒄𝟑 𝝐 − 𝜺𝟎 
𝟑𝒂 + 
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The series transitions to a fractional Maclaurin series when 1 0, where 0 m 1 m and n c are 

constants. A fractional power series if 𝑐𝑛
∞
𝑛=0  𝜀 − 𝜀0 

𝑛𝑎 Whenever is larger than or equal to 

zero but less than b, where b is a positive number, convergence occurs. If the fractional 

power series continues, 𝑐𝑛
∞
𝑛=0  𝜀 − 𝜀0 

𝑛𝑎 diverges when d is positive and is greater than d. 

 

4.2 Modified Variation Iteration Method (Mvim) 

Guo-Cheng Wu and DumitruBaleanu  suggested a novel variant of the variational iteration 

method employing the Laplace transform and Lagrange multipliers. When different nonlinear 

fractional derivative problems emerge in mathematical physics and other related fields, the 

Lagrange multiplier approaches have been frequently applied. He  developed the variational 

iteration method to solve nonlinear equations. Due to the flexibility, dependability, and 

effectiveness of the VIM method, it has gained popularity among researchers. The technique 

has been used to initialise boundary value problems , fractional initial problems, and q–

difference equations. This algorithm employs a general Lagrange multiplier and typically 

goes through the following three steps: constructing a correlation functional, identifying the 

Lagrange multipliers, and deciding on the initial iteration. This issue has been resolved by the 

modified VIM approach, which also defines the Lagrange multiplier from the Laplace 

transform and is easily applicable to fractional differential equations with initial value issues. 

To further understand the MVIM approach, let's take a look at the following nonlinear 

differential equation. 

𝒅𝒎𝒖

𝒅𝜺𝒎
+ 𝑹𝟏 𝒖 + 𝑵𝟏 𝒖 = 𝒇 𝜺  

In the initial circumstances 

𝒖 𝒌  𝟎 = 𝒖𝟎
𝒌 

For𝐾 = 0,1,2 … . 𝑚 − 1 𝑤ℎ𝑒𝑟𝑒 𝑢 = 𝑢(𝜀)𝑅1is a regular function because it is linear and N1 is 

a nonlinear bounded operator. 

 

4.3 Solution of Fractional SIR Model by MVIM Method 

In order to solve the fractional Susceptible-Infected Recovered model, the modified VIM 

approach  is now used. By introducing the SIR model, W.O. made a significant contribution 

to mathematical epidemiology by estimating the proportion of susceptible, ill, and recovered 

individuals in the community. 



 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 26  

Basic notations for the fractional model are as follows: S denotes the number of susceptible 

individuals at the time, I denotes the number of infectedindividuals at the time, and R is the 

number of individuals who have recovered at the time. 

𝑺 ∈ + 𝟏 𝜺 + 𝑹 𝜺 = 𝑵 

Where N is the total population. 

The following introduction of the fractional order SIR model results from the assumptions: 

𝑫∈
𝒂𝒙 ∈ = −𝜷𝒙 𝜺 𝒚 ∈  

𝑫∈
𝒂𝟐𝒚 ∈ = 𝜷𝒙 𝜺 𝒚 𝜺 − 𝒌 𝒚 𝝐  

𝑫∈
𝒂𝟑𝒛 ∈ = 𝒌𝒚 ∈  

 

4.4 Application Of The Fractional Reduced Differential Transform Method 

For a thorough explanation of the characteristics of various genuine materials, differentiation 

and integration of arbitrary order are excellent tools. Since the application of fractional 

models is supported by physical considerations, fractional structural models are more 

beneficial than earlier integer order models. The best tools for describing the genetic and 

memory properties of various materials and activities are fractional derivatives. 

The paper goal is to give creative theories about the two-dimensional differential 

transformation approach that can increase its applicability to equations with linear and 

nonlinear partial derivatives, as well as time and space distinction.Fractional. FRDTM is used 

to solve a variety of partial differential equations and graphically illustrate how the solutions 

behave for various fractional orders.Phase plots and error diagrams demonstrate the 

numerical effectiveness and accuracy, demonstrating the application of FRDTM in a variety 

of applied science domains. 

 

4.5 One dimensional fractional parabolic equation 

First, let's discuss second order partial differential equations. 

𝒈 = 𝑨𝒖𝒙𝒙 + 𝑩𝑼𝒙𝒄 + 𝑪𝑼∈∈ + 𝑫𝑼𝒙 + 𝑬𝑼∈ + 𝑭𝑼 

A, B, and so forth are kwon functions. If 4, 2 B AC > and 0 apply, the aforementioned 

equation will be referred to as parabolic, hyperbolic, and elliptic, respectively. 

In this part, using the FRDTM technique, we provide an analytical approximation to a 

solution to the nonlinear fractional order parabolic equation. Due to its numerous applications 

in practical sciences that now transcend beyond potential theory, fluid dynamics, the 

Brownian process, conformal geometry, etc., the parabolic equations with fractional order 

diffusion is the most popular topic among scholars. Demir and Ozbilge's research on 
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fractional parabolic equations . Consider as though it were the next instance. Similar to a 

fractional parabolic issue. 

 

5. CONCLUSION  

Operators with fractional derivatives are thought to be the best tools for thoroughly 

describing memory and hereditary characteristics of various materials and complex 

developments. Therefore, fractional calculus is essential for understanding the dynamics of 

various complex mathematical models. The study of fractional differ-integral problems 

encourages the widespread use of these tools in practical fields. 
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