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In this study, we looked at the problem of estimating the population mean using stratified 

random sampling in the context of non-response and measurement error. For alternative 

configurations of two-phase stratified sampling schemes, two different chain exponential to 

regression type estimators are produced separately. We devised successful imputation 

strategies to lessen the nuisance effect of random non-responses in practical surveys. The 

estimates' properties are investigated. The proposed strategy's performance has been 

demonstrated by numerical evidences carried over a data set of natural population and 

population developed through simulation research. We also looked at how the proposed 

technique performed for different values of random non-response probabilities. 

1. Introduction  

It is widely known in sample survey that the use of auxiliary variables to estimate unknown 

population variables at the estimation stage in various sampling designs. A variety of 

sampling procedures make use of advance knowledge about an auxiliary variable. When such 

information is unavailable, it is frequently relatively inexpensive to conduct a large 

preliminary sample in which only the auxiliary variable is measured. The goal of this sample 

is to provide an accurate approximation of the auxiliary variable's population mean. This is 

referred to as double sampling or two-phase sampling. This work is primarily concerned with 

population mean estimators based on various architectures of two-phase stratified random 

sampling. Stratified sampling is one of the most widely used sampling techniques as it 

increases the precision of the estimate of the survey variable when units of the population are 

from different segment of population. For example, in socio-economic surveys, people may 

live in hospital, hostel, residential houses and jail etc. Thus, the problem of estimation is 

different for these different segments of the population.   

It is evident from practical surveys that, there are two types of non sampling errors: response 

error and non-response error. Response error or measurement error occurs when the reported 

value differs from the true value due to some over reporting, under reporting, memory failure 

by respondents etc. For example, in surveys regarding household consumption/expenditure 

where the respondents are asked to report their catalogue, there is a great likelihood that the 

respondents may fail to recall precisely how much they spent on various items over the 

interval. Many researchers have studied measurement errors like Shalabh [7], Manisha and 

Singh [4, 5], Singh and Karpe [11], Shukla, Pathak and Thakur [13] etc. Similarly, non-
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response error occurs when the researcher fails to collect information on one or more than 

one unit of survey or when surveying human populations as people hesitate to respond in 

surveys. Statisticians have identified for some time that failure to account for the stochastic 

nature of incompleteness can spoil inference. Rubin [6] advocated three concepts: missing at 

random (MAR), observed at random (OAR) and parameter distribution (PD). Rubin defined 

“the data are MAR if the probability of the observed missingness pattern, given the observed 

and unobserved data, does not depend on the value of the unobserved data”. Heitzan and 

Basu [3] have distinguished the meaning of missing at random (MAR) and missing 

completely at random (MCAR) in a very nice way. It is important to reduce the nuisance 

effect of non-response in practical surveys. Imputation technique is used to substitute values 

for missing data for reducing impact of non-responses. Recent contribution on this line could 

be considered due to Singh and Horn [9], Singh and Deo [8] Arnab and Singh [1] etc.  

 Some time, the researcher faces situations where some measurement error and non-response 

occur at the same time while collecting information. Motivated with the above discussion, we 

have suggested two exponential type estimators for population mean favourable for two 

different structure of two-phase stratified random sampling in presence of random non-

responses (MAR) and measurement errors. We have formulated regression type imputation 

technique to reduce nuisance effect of non-response in practical surveys. The superiority of 

the suggested technique over the conventional ones have been justified through numerical 

evidences carried over the data set of natural population as well as population generated 

through simulation studies. The outcomes of the proposed methodology have been 

recommended for application by survey statisticians.   

 

2. Research Method  

2.1. Sampling Scheme 

We consider a finite population U =  1, 2, 3, . . . , N  of N identifiable units divided into K 

homogeneous strata with the h
th

 stratum  h = 1, 2,… , K  having Nh  units such that 

 Nh =K
N=1 N.  Let y and (x, z) be the study variable and two auxiliary variables respectively 

taking values yhi  and  xhi , zhi  respectively, for the unit i = 1,2, ...., Nh  of the hth stratum. We 

have defined the population variables as:  

Y =  WhY h  ,K
h=1 X =  WhX h  

K
h=1 and Z =  WhZ h  K

h=1 be the population mean of the 

variables y, x and z respectively where 

Y h =  
yhi

Nh

Nh
i=1 , X h =   

xh i

Nh

Nh
i=1 ,  Z h =   

zhi

Nh

Nh
i=1   be the corresponding stratum and Wh =

Nh

N
  is 

the stratum weight. To estimate the population mean Y  we have taken two-phase stratified 

random sampling. The first phase sample Snh of size nh  is drawn at random without 

replacement from the each stratum containing Nh  units {h=1,2,…,K}. The second phase 

sample is selected by the following two different procedures.  

Case 1: Select a second phase sample Smh of size mh  using SRSWOR from each first phase 

sample of size nh h = 1, 2,… , K . 

Case 2: Select a second phase sample Smh of size mh  using SRSWOR from remaining units 

of the h
th

 stratum h = 1, 2,… , K  the population.  

We are considering the practical situation having (i) non-response situation only and (ii) joint 

presence of non-response and measurement error. 
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The occurrences of random non-response situation considered for the study variable y and 

noted the responses of the auxiliary variable x in the following ways  

(i) It is to be noted from the Case 1 of sampling structure that the second phase 

sample Smh is drawn from the first phase sample Snh {h=1,2,…,K}. In first phase 

sample, we consider that the units are responding for the variable x and second 

phase sample is drawn from it. Hence, it units of the sample Smh give complete 

response for the variable x.    

      (ii) It is to be noted from the Case 2 of sampling structure that the second phase sample 

Smh is drawn   

independently of the first phase sample Snh {h=1,2,…,K}. Therefore, we consider that units 

of first phase sample give complete response while non-response occurs on the variable x in 

second phase sample.  

 We have considered complete response for the variable z at all the units of the population.  

 

2.2. Non-response Probability Model 

If random non-response situations occur at the second phase sample Smh for the stratum 

h{h=1,2,…,K}of size mh and rh h hr  = 0, 1, 2, . . ., (m  - 2) denotes the number of sampling 

units on which information could not be collected due to random non-response (non 

responding set denoted by 
cAr ), then the observations of the respective variables on which 

random non-response occur can be taken from the remaining (mh – rh) responding units of the 

second phase sample (responding set denoted by Ar ). It is assumed that rh is less 

than (mh − 1), that is, h h0  r  (m  - 2). 
 
We also assume that if ph denotes the probability of 

a non-response among the (mh− 2) possible values of non-response, then rh has the following 

discrete distribution 

 
 

h h h hm  - 2 r m  - 2 - rh h

h r h h

h h h

m  - r
P r = C  p q

m q  + 2p
    

where h hr  = 0, 1, 2, . . ., (m  - 2) and h=1, 2, . . ., K.  

where h hq  = 1- p and h

h

m  - 2

rC denote the total number of ways of obtaining r non-responses out 

of the (mh− 2) total possible non-responses, for instance, see Singh and Joarder [10].  

It is to be noted, the probability model, defined in equation (1), is free from actual data 

values; hence, can be considered as a model suitable for MAR situation.  

We have defined following variables based on the responding part of the sample as 

h h h hm  - r m  - r
* *

mh hi mh hi

i = 1 i = 1h h h h

1 1
 x = x , y = y :

(m  - r ) m  - r
  Sample means of the respective variables 

based on the responding part of the second phase sample Smh for stratum h {h=1,2,…,K}.  

Since, all the units related to the auxiliary variable z in sample Smh are responding, therefore 

we consider 
hm

mh hi

i = 1h

1
z = x

m
 as sample mean of z in second phase sample. Similarly, when 

units of the sample Smh{h=1,2,…,K}give complete response for the variable x then we have 

respective sample mean 
hm

mh hi

i = 1h

1
x = x .

m
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h h

mh

m  - r
*2 * 2

x h mhi
i = 1h h

1
s = (x - x ) :

m  - r  - 1
  Sample variance of the variable x based on the 

responding part of the second phase sample S. 

mh

*2

y s :  Sample variance of the study variable y based on the responding part of the second 

phase sample S. 

2.3. Effect due to Measurement Error 

 Let (x
*
, y

*
, z

*
) be the observed values and (X

*
,Y

*
,Z

*
) be the true values on three 

characteristics(x,y,z) respectively. Let the measurement errors be (u, v, w) and are defined as 

follows:  

u =  y∗ − Y∗ 

v =  x∗ − X∗ 

and 

w =  z∗ − Z∗ 

The following notations are further used:    

Syh =   
1

Nh−1
  yhi − Y h 

2Nh
i=1  ,Sxh =  

1

Nh−1
  xhi − X h 

2Nh
i=1 , Szh =  

1

Nh−1
  zhi − Z h 

2Nh
i=1  

: population standard deviations  for the variables y, x and z for the h
th

 stratum  h =

1, 2, …,K.  

   Cyh =
Syh

Y h
 ,         Cxh =  

Sxh

X h
 ,    Czh =

Szh

Z h
: coefficient of variations for the variables y, x and z 

for the h
th

 stratum  h = 1, 2,… , K . 

yxh, yzhρ  ρ  and, xzhρ :  correlation coefficients between (y, x), (y, z), and (x, z) respectively in the 

h
th 

stratum. 

 x nh =
1

nh
 xhi  ,   z nh =

1

nh
 zhi

nk
i=1

nk
i=1 ,   sample mean for the respective variables for the h

th
 

stratum based on first phase sample Snh. 

 

2.4. Imputation Technique 

Since, information on the auxiliary variable z is readily available for the sample mhS and 

motivated by the regression methods of imputation for estimating population mean as was 

suggested by Diana and Perri [2], we propose the following imputation method based on 

responding and non-responding units of the sample Smh (h =1, 2, . . ., K)  to estimate the 

population means Y h  as  

  
 

 
h.i

*

h mh
h h hi

h hm

c

h h hi

m y
+ b Z  - z      if  i Ar

m -ry =

b Z  - z                  if  i Ar





 

      (1) 

where hb (h =1, 2, . . ., K) is a real scalar to be chosen suitably.  

Under the above method of imputation, the estimator 
mhŷ for estimating Y h  (h =1, 2, . . ., K)

can be derived as  

h.i h.i h.i
c

mh

mh m m m

i  S i  Ar i  Arh h

1 1
ŷ = y = y + y .

m m  

 
 
 

        (2) 
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After simplification the estimator 
mhŷ  takes the form of well-known regression estimator 

which is given as  

 *

mh mh h h mhŷ = y + b Z  - z ;(h =1, 2, . . ., K).      (3) 

Similarly, we suggest regression type imputation technique based on responding and non-

responding units of the sample Smh (h =1, 2, . . ., K)  to estimate the population means X h  as  

 
 

 
h.i

*

h mh
h h hi

h hm

c

h h hi

m x
+ b Z  - z      if  i Ar

m -rx =

b Z  - z                  if  i Ar


 


  

  

where hb (h =1, 2, . . ., K) is the real scalar.  

After simplifying as above, we have 
mhx̂  for estimating  X h  (h =1, 2, . . ., K) as 

 *

mh mh h h mhx̂ = x + b Z  - z ;(h =1, 2, . . ., K).
 

  

2.5. Formulation of Proposed Estimation Strategy 

Motivated with the earlier work, we have developed the following class of chain exponential 

regression type estimators for population mean Y  based on the two different cases of two-

phase stratified random sampling discussed in section 2 as presented below. 

Estimator based on Case 1 of two-phase stratified random sampling has been suggested as 

TP1 =   Wh
K
h=1 mhŷ exp

 nhx −
mhx  

 nhx +
mhx  

                                                                                              

(4) 

Similarly, the estimator based on Case 2 of two-phase stratified random sampling has been 

constructed as 

TP2 =   Wh
K
h=1

*

mhy exp
 nhx − mhx̂  

 nhx + mhx̂  

                                                                                              

(5) 

2.6. Mean Square Error of Proposed Estimator Tp1and Tp2 

Since, Tp1and Tp2  are regression and chain exponential to regression type estimators. The 

mean square error M(.) up to the first order of approximations are derived using large sample 

approximations given below: 

y mh
∗ = Y h   1 + 𝑒0 , x mh = X h   1 + 𝑒1  , x nh = X h   1 + 𝑒3  , z mh

∗ = Z h   1 + 𝑒2 ,   x mh
∗ =

 X h   1 + 𝑒4 . 

Using above transformations the estimators Tp1and Tp2 may be represented by discarding 

higher order terms of e’s as 

Tp1 =  Wh
K
h=1  Y h 1 + e0 − bhZ he2 + Y h

 e3−e1 

2
                                                                         

(6) 

and  

Tp2 =  Wh
K
h=1 Y h  1 +

1

2
 e3 − e4 +

b ′h z 

X 
e2 + e0                  (7)             
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Mean Square Errors (MSEs) of the estimators  Tp1and Tp2 are obtained in (i) non-response 

situation only and (ii) joint presence of non-response and measurement error up to first order 

of sample size as 

(i) MSEs of  Tp1and Tp2 under non-response situation only 

MSE Tp1  =E Tp1 − Y  
2
=   Wh

2Y h
2k

h=1  A1 + b1
2Z h

2B1 − 2b1Y hZ hC1                                           

(8) 

and  

MSE Tp2  =E Tp2 − Y  
2
=  

1

mh qh +2ph
−

1

Nh
 Wh

2Y h
2k

h=1  A2 +
b2

2Z 2

4X 2 B2 +
b2Z 

X 
C2                          

(9) 

where   

 A1 =   
1

mh qh +2ph
−

1

Nh
  

Syh
2

Y h
2 +

1

4
 

1

nh
−

1

Nh
  ρ

yxh  
Cyh Cxh −

1

4
Cxh

2    

  B1 =  Y h
2Wh

2  
1

mh
−

1

Nh
 k

h=1 Czh
2  

 C1 =   
1

mh
−

1

Nh
 Wh

2Y h
2ρ

yzh
Cyh Czh +

1

2

k
h=1   

1

mh
−

1

nh
 Wh

2Y h
2ρ

xzh
Cxh Czh

k
h=1                                    

A2 =   
1

mhqh + 2ph
−

1

Nh
 

k

h=1
Wh

2Y h
2Cyh

2

+
1

4X h
2  

1

mhqh + 2ph
−

1

Nh
+

1

nh
−

1

Nh
 Wh

2Y h
2Cxh

2

−  
1

mhqh + 2ph
−

1

Nh
 Wh

2Y h
2ρ

yxh Cyh Cxh
 

 B2 =   
1

mh
−

1

Nh
 Wh

2Y h
2Czh

2k
h=1  

 C2 =    
1

mh
−

1

Nh
 Wh

2Y h
2ρ

yzh
Cyh Czh

k
h=1 −

1

2
  

1

mh
−

1

Nh
 Wh

2Y h
2ρ

xzh
Cxh Czh

k
h=1   

(ii) MSEs of  Tp1and Tp2  under joint presence of non-response and measurement 

errors situation  

MSE Tp1  =E Tp1 − Y  
2
=   Wh

2Y h
2k

h=1  A 1 + b1
2Z 2B 1 − 2b1Y Z C1                                        

(10) 

and   

MSE Tp2  =E Tp2 − Y  
2
= Wh

2Y h
2k

h=1  A 2 +
b2

2Z 2

4X 2 B 2 +
b2Z 

X 
C2                                               

(11) 

where      A 1 = A1 + A1
′    ;   B 1 = B1 + B1

′   

               A 2 = A2 + A2
′  ; B 2 = B2 + B2

′    ;  

 A1′ =    
1

mh qh +2ph
−

1

Nh
 k

h=1  
SU

2

Y h
2 −

1

4
 

1

nh
−

1

Nh
 

SV
2

X h
2   

 B1
′ =   

1

mh
−

1

Nh
 

SW
2

Z h
2

k
h=1   ;     C1

′ = 0  

A2
′ =   

1

mhqh + 2ph
−

1

Nh
 

k

h=1
Wh

2Y h
2 SU

2

Y h
2

+
1

4X h
2  

1

mhqh + 2ph
−

1

Nh
+

1

nh
−

1

Nh
 Wh

2Y h
2 SV

2

X h
2  
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 B2
′ =   

1

mh
−

1

Nh
 

SW
2

Z h
2

k
h=1   ;      C2

′ = 0  

Remark: It may be noted that the following expectations  

E e1e2 = E e2e3 = E e4e3 = E e0e3 = 0 as in Case 2 of sampling scheme, we have 

drawn second phase sample independent of first phase sample.  

 

2.7. Minimum Mean Square Error of Proposed Estimators  Tp1 and Tp2 

It may be noted from equation (8) and (9) that the expressions for M(Tp1) and M(Tp2) 

depends on the values of h hb and b (h =1, 2, . . ., K) which are real constants. Therefore, we 

need to find the optimum values of h hb  and b which can minimize the MSEs of the estimators 

Tp1 and Tp2 respectively.  

The optimum values of b1 and b2are found as 

bh =
Y h C1

Z h B1
     and    b′h = −

2C2X h

Z h B2
  ; h = (1, 2, . . . , K)                                                                (12) 

Substituting the optimum values of h hb and b in from equation (12) into the equations (8) and 

(9), we have the minimum MSE of the estimators Tp1 and Tp2  in presence of non-response 

situation as 

Min. M Tp1 =   Wh
2y h

2k
h=1  A1 −

C1
2

B1
                                                                                  (13) 

and Min. M Tp2 =   Wh
2y h

2k
h=1  A2 −

C2
2

B2
                                                                           (14) 

Similarly, in joint presence of non-response and measurement error the expressions of 

Minimum MSE for the estimators Tp1and Tp2 may be found as 

Min. M(Tp1) =  Wh
2y h

2k
h=1  A 1 −

C 1
2

B 1
                                                                                  (15)                                                                                                  

and 

Min. M(Tp2) =   Wh
2y h

2k
h=1  A 2 −

C 2
2

B 2
                                                                                 (16) 

3. Results and Analysis  

3.1. Performance of the Proposed Strategy 

It is important to investigate the performances of the proposed strategy. To compare the 

efficiency of the proposed estimator   Tp1 and  Tp2, we have considered the natural sample 

mean estimator y mh (i.e., mean of the study variable y based on second phase sample Smh ) of 

Y h  (h=1, 2, . . ., K) in absence of any non-response and measurement error.  

Thus, the natural sample mean estimator y  of Y  is found as  

y mh =   Wh
K
h=1 y mh                      (17) 

The expression of variance of y  is found as: 

V y  =  Wh
2Y h

2  
1

mh
−

1

Nh
 

Syh
2

Y h
2

k
h=1                                      (18) 

Thus, to have a tangible idea about the performance of the estimators   p1T  and p2T , we have 

computed Percent Relative Losses in efficiencies L1 and L2 of the estimators Tp1 and Tp2 with 

respect to  y    have been derived as

 

  

We have  
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                                L1 =
V y   −  M Tp 1 

M Tp 1 
× 100                                                                       (19) 

 

                  and        L2 =
V y    −  M Tp 2 

M Tp 2 
× 100                                                                       (20) 

 

3.2. Numerical Illustration through Population Generated Artificially by Simulation Studies 

An important aspect of simulation is that one builds a simulation model to replicate the actual 

system. Simulation allows comparison of analytical techniques and helps in concluding 

whether a newly developed technique is better than the existing ones. Motivated by Singh 

and Deo [8] and Singh et al. [12] who have been adopted the artificial population generation 

techniques,  we have generated five sets of independent random numbers of size N (N = 100) 

namely 
k k k k1 1 2 2 kx , y ,x , y  and z     (k =1, 2, 3, . . ., N) from a standard normal distribution with 

the help of  R-software. By varying the correlation coefficients ρ   and ρyx xz
, we have generated 

the following transformed variables of the population U with the values of

2

yσ = 50 (variance of y), yμ = 10 (mean of y), 2

xσ = 50(variance of x),
xμ = 10(mean of x),

2

zσ = 40(variance of z) and zμ = 20(mean of z)  by the following transformations 

 

 

k k k

k k

k

k k

k k

2

1 y y xy 1 yx 1

1 x x 1

2

k z z xz 1 xz k

2 1

2 1

y =μ +σ ρ x  + 1-ρ y

x =μ +σ x  

z =μ +σ ρ x  + 1 -ρ z

y y

and x x .

  
  



  
  





 

We have spitted total population of size 100 sequentially into 5 strata each of size 20 (i.e., 

N=100, Nh =20 h = (1, 2, . . ., 5)).  

We have computed the losses in efficiencies L1 and L2 of the estimators Tp1 and Tp2with 

respect to the sample mean estimator based on the above population for different values of 

the non-response probability ph on h
th

 strata (h =1, 2, . . ., 5),  correlation coefficients 

ρ   and ρyx xz
 and sample sizes (i.e., nh and mh) and the findings are displayed in Tables 1-4. 
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Table 1. Loss in Efficiency of the estimator Tp1 in presence of Non-response situation only 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ  =0.7, ρ 0.5yx xz   

nh = 12, mh = 8 nh = 10, mh = 6 

ph  L1 ph  L1 

            0.1 

(fixed for all strata) 
-10.035 

            0.1 

(fixed for all strata) 
-7.452 

         0.15  

(fixed for all strata) 

-2.1531          0.15  

(fixed for all strata) 

-2.062 

       p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-2.5136        p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-1.981 

ρ  =0.9, ρ 0.5yx xz   

nh = 12, mh = 8 nh = 10, mh = 6 

ph L1 ph L1 

            0.1 

(fixed for all strata) 
-14.163 

            0.1 

(fixed for all strata) 
-11.134 

         0.15  

(fixed for all strata) 

-6.442          0.15  

(fixed for all strata) 

-3.251 

       p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-4.831        p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-2.753 
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Table 2. Loss in Efficiency of the estimator Tp1 in joint presence of Non-response and 

Measurement Error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Loss in Efficiency of the estimator Tp2 in presence of Non-response situation only 

ρ  =0.7, ρ 0.5yx xz   

nh = 12, mh = 8 nh = 10, mh = 6 

ph   L1 ph L1 

            0.1 

(fixed for all strata) 

-7.271             0.1 

(fixed for all strata) 
-5.142 

         0.15  

(fixed for all strata) 

-13.796          0.15  

(fixed for all strata) 

-8.517 

       p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-10.224        p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-7.248 

ρ  =0.9, ρ 0.5yx xz   

nh = 12, mh = 8 nh = 10, mh = 6 

ph L1 ph   L1 

            0.1 

(fixed for all strata) 
-11.427 

            0.1 

(fixed for all strata) 
-9.314 

         0.15  

(fixed for all strata) 

-14.358          0.15  

(fixed for all strata) 

-10.891 

       p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-12.275        p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-8.761 

ρ  =0.7, ρ 0.5yx xz   

nh = 12, mh = 8 nh = 10, mh = 6 

ph  L2 ph  L2 

            0.1 

(fixed for all strata) 

-9.273             0.1 

(fixed for all strata) 
-7.258 

         0.15  

(fixed for all strata) 

-11.090          0.15  

(fixed for all strata) 

-8.147 

       p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-10.489        p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-9.247 
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Table 4. Loss in Efficiency of the estimator Tp2 in joint presence of Non-response and 

Measurement Error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ  =0.9, ρ 0.5yx xz   

nh = 12, mh = 8 nh = 10, mh = 6 

ph   L2 ph   L2 

            0.1 

(fixed for all strata) 
-12.374 

            0.1 

(fixed for all strata) 
-10.318 

         0.15  

(fixed for all strata) 

-14.291          0.15  

(fixed for all strata) 

-12.873 

       p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-11.269        p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-9.716 

ρ  =0.7, ρ 0.5yx xz   

nh = 12, mh = 8 nh = 10, mh = 6 

ph L2 ph   L2 

            0.1 

(fixed for all strata) 

-22.840             0.1 

(fixed for all strata) 
-20.452 

         0.15  

(fixed for all strata) 

-23.321          0.15  

(fixed for all strata) 

-21.286 

       p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-22.753        p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-18.835 

ρ  =0.9, ρ 0.5yx xz   

nh = 12, mh = 8 nh = 10, mh = 6 

ph   L2 ph L2 

            0.1 

(fixed for all strata) 
-24.346 

            0.1 

(fixed for all strata) 
-22.458 

         0.15  

(fixed for all strata) 

-25.287          0.15  

(fixed for all strata) 

-23.817 

       p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-23.290        p1=0.05(first strata) 

       p2= 0.1  (second strata) 

       p3= 0.15  (third strata) 

       p4= 0.2 (forth strata) 

       p5= 0.25 (fifth strata) 

-20.183 
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Numerical Illustration using known natural population 

4. Conclusion  

(i) From Table 1 – 4, it is found that losses in efficiencies L1 and L2 of the estimators Tp1 and 

Tp2  are all negative. Negative loss indicates gain in efficiencies. It may be noted that loss in 

efficiency is usual because we are comparing our proposed methodology which face non-

response and measurement errors situation with respect to natural sample mean estimator 

under complete response situation and in absence of measurement error. However, the 

structure of the estimator proposed and imputation technique suggested in this present work 

found to be effective and may cope with the nuisance effect of non-response situation as well 

as produce precise estimates.  

(ii) From Tables 1-4, it is also observed that for different choices of non-response probability 

our suggested methodology performs well.  

(iii) It may be observed that natural population data set is heterogeneous as parametric values 

are found significantly different from strata to strata while population generated through 

simulation studies is homogeneous as parametric values are almost similar between strata to 

strata. From Tables 6 and 7, it is clear that our suggested estimator Tp1 and Tp2 produce 

efficient estimates in these practical situation.    

(iv) From Tables 1-4, it may be seen that for increasing values of the correlation coefficients 

ρ ,yx
 loss in efficiencies L1 and L2 are decreasing and we are getting more precise estimates. 

This phenomenon justifies the effectiveness of suggested methodologies employed here. It 

also claims that our suggested strategy performs well if highly correlated auxiliary variable 

present.  

Moreover, looking on the encouraging findings, we are happy to recommend the proposed 

strategy to the survey statisticians for their application in real life.  
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