

International Research Journal of Natural and Applied Sciences

ISSN: (2349-4077)

Impact Factor 7.032 Volume 10, Issue 06, June 2023

 $Website\- www.aarf.asia, Email: editor@aarf.asia \ , editoraarf@gmail.com$

Human Body Composition Values Measured Through Izana Measuring Tape Remain Close to Values Measured Through In Body 770, DXA and Clinical Methods

Khwaja Ahmad Shadab

Author Member, IRRO (Copyright Society for Literary Work) 418/1-C, ArunaAsaf Ali Marg, Qutab Institutional Area, New Delhi,Delhi 110067, India shacomp@ymail.com

ABSTRACT

This paper includes the human body composition values measured through Izana Measuring Tape, the world's first tape measure or measuring tape thatquickly determines the human body composition even at tissue and molecular levels.Such measured values are compared with the values achieved through InBody 770, ACCUNIQ BC 380, DXA and clinical methods. It is found that the human body composition values measured through this invented nonelectric tape remain close to the values achieved through InBody 770, ACCUNIQ BC 380, DXA and clinical methods.The present invention helps determine PBF, FFM, Total Body Water (TBW), Intracellular Water (ICW), Extracellular Water (ECW), Dry Lean Mass (DLM), Total Body Proteins (TBPro), Total Body Nitrogen (TBN), Minerals, Body Cell Mass (BCM), Bone Mass, Skeletal Muscle Mass (SMM), Appendicular Skeletal Muscle Mass (ASMM), Basal Metabolic Rate (BMR), BMI value, Waist Circumference to Body Height Ratio (WHtR), and Age Peak Height Velocity (in the growing children). **Key Words:**Measuring tape, measured values of human body composition

INTRODUCTION

You might have used the simple measuring tapes in your daily life. These measure the height, length, distance, etc. But can these tapes quickly measure the values for human body composition at tissue and molecular levels? Can these depict your Total Body Water, Proteins, Minerals and SMM? To these questions, your answer will be 'No'.But the present invention 'Izana Measuring Tape' can accurately measure the values for such things. This invented tape functions as per the Body Shape Algorithm, which is developed by me on the basis of empirical relationship. The external and internal human body parts'imagesproved helpful.

Izana Measuring Tape[1]is composed of specific components. The developed empirical relationships help make the specific arrangements. The users need not wait for taking the result printouts. The users need not put in extra effort to collect the printed data for doing comparative study. This invented tape is very light in weight, non-clinical, non-invasive, non-electric, eco-friendly and easy to use. Even the early stage pregnant women, pacemaker holders, sick, obese or bedridden people can use this flexible measuring tape. This tape functions without the use of battery or any other power supply. The users get the accurate results instantly. Thistape is invented by me. For this work, the IPR process has been completed.

[©] Association of Academic Researchers and Faculties (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

The following figure (Fig.1) shows the structure of Izana Measuring Tape:

Fig. 1(a)

© Association of Academic Researchers and Faculties (AARF)

The above picture (Fig.1(a) shows how a person can use non-electric flexible Izana Measuring Tape, easily.On the other hand, when we talk of BIA (Bioelectrical Impedance Analysis) machines or BIA scales,the process seems not so simple, as these BIA devices use the electrical method to measure body composition.All these BIA machines remain dependent on external power supply or batteries. The users have to take the result printouts and read the complex data for doing the comparative study. The well-equipped BIA machines are very costly[2]. In the case of pregnant women, pacemaker holders, sick, obese or bedridden people, these machines have limited applicability. The followingpicture (Fig.2) shows a powerful 8-electrode BIA machine (InBody 770). Here, you can find the price of this BIA device.

A) Why shouldyou use this Izana Measuring Tape

1.It helps you know whether you are Malnourished (Undernourished or Overnourished) or not; to what extent you are Malnourished.

2.It helps you know whether you are Overfat or not; to what extent you are Overfat.

3.It helps you know whether you have Healthy Water Balance in your body or not.

4. It shows your Metabolically Active Cell Mass (BCM).

5.It helps you know the amount of Skeletal Muscle which helps perform Body Movements.

6. This Flexible tape, very Light in weight, is Easy to Use. You can use and carry it Anywhere.

7. You don't need Battery, Electricity or any other Power Supply, to use it.

8. Youcan Instantly see your Results and Compare these at the same time with the Results of other people.

9. It helps you fight against Obesity.

10.It helps you achieve your goal to become Fit & Healthy.

© Association of Academic Researchers and Faculties (AARF)

B) What you find while you use this tape

- **1**.It shows your Belly Fat.
- 2.It shows the comparative view of Body Fat.
- **3**.It shows the amount of Water in your body.
- 4.It shows total amount of Protein in your body.

5. It shows the amount of Energy needed for your Life-sustaining Functions.

6.It shows your amount of Skeletal Muscle that helps you perform different Body Movements.

_

COMPARISON OF MEASURED VALUES

•

At first the body composition values of different groups of people are determined through Izana Measuring Tape. Their body height, body weight, age, gender, physical activities, body type, diet, and health conditions are recorded. The body composition values are recorded and tabulated. Then, more than hundred reputed journals are accessed to take help and analyze such results. In the journals, the body composition values were measured as per the subjects' physical status and features. InBody 770, DXA and other devices/methods were used to achieve the data.

After comparing the data of those people with the data of different subjects published in the journals, it is found that somespecific physical features have very important rolein the determination of body composition values. When such physical features remain same, the people and the subjects showalmost same body composition.

The body composition values of those people, whose specific features showed similarity with the subjects'specific features, seemed remarkable. Soon, such body composition values (achieved through Izana Measuring Tape) are compared with the body composition values published in those reputed journals. InBody 770, DXA and other devices/methods were used to achieve those body composition values.

The values are presented through tables and charts. Such comparison is made to know how accurate Izana Measuring Tape is. In the case of a group of subjects, the average values are used as the data for a single subject. The physical status and features of subject helped determine Percentage Body Fat (PBF).

In this paper, it is not possible to include all the compared cases/subjects. So only some cases are being included. Along with each topic (TBW, DLM, TBN, SMM, ASMM, PV, etc.), the data source is being provided.

1) Total Body Water (TBW)

Look at Fig.3.	Use the data[3] for verification.	Compare it	with Fig.3(a),	Fig.3(b)	and
----------------	----------------	---------------------	------------	----------------	----------	-----

			GHD ad	dults				Contr	ols	
Subject no.	Age (yr)	Ht (cm)	Wt (kg)	BMI (kg/m ²)	Body fat ^b (%)	Age (yr)	Ht (cm)	Wt (kg)	BMI (kg/m ²)	Body fat ^b
Females					1		(-
/1	30	157.5	65.1	26.2	41.9	30	170.1	69.2	23.9	33.6
2	45	173.1	90.1	30.1	42.6	43	172.0	96.1	32.5	37.3
8	44	170.9	61.2	21.0	38.0	46	170.6	60.5	20.8	24.3
A	56	167.3	63.5	22.7	36.2	55	170.4	68.9	23.7	31.9
15	53	164.1	72.3	26.8	38.2	67	162.1	61.3	23.3	35.8
Mean (SD)			-		$39.4(2.8)^a$			-		32.6 (5.1)
Males										
6	28	174.5	61.0	20.0	30.4	32	178.3	66.0	20.8	12.7
7	46	179.2	77.1	24.0	29.4	44	185.0	72.9	21.3	25.5
-8	54	166.9	61.4	22.0	27.3	55	171.1	62.4	21.3	22.1
9	63	176.4	71.5	23.0	22.9	67	179.3	80.1	24.9	12.0
10	58	178.4	79.5	25.0	26.4	60	182.6	77.3	23.2	24.0
Mean (SD)					27.3 (2.9) ^a					19.3 (6.4

There were no significant differences in physical characteristics between the groups, with the exception of percent body fat. ^a Statistically significant difference between GHD patients and controls (P < 0.05).

6/2TA BS

-			_			-					112	. 2	1		
	In	60	By d	ilution	-0	0		1	_	By bio	impedance	e spectro	ometry		
-	- GHD	adults		-	Matcheo	l control	s	\square	GHD	adults		0	Matched	l control	s
TBW	ECW	ICW	ECW/ ICW	TBW	ECW	ICW	ECW/ ICW	TBW	ECW	ICW	ECW/ ICW	TBW	ECW	ICW	ECW/ ICW
				-								1			
27.2	10.9	16.3	0.67	33.0	12.6	20.4	0.62	24.9	10.5	14.4	0.73	32.0	12.8	19.2	0.67
37.3	16.9	20.4	0.83	43.4	17.8	25.6	0.70	34.5	16.4	18.09	0.91	44.4	18.7	25.7	0.73
27.3	11.4	15.9	0.71	33.0	13.2	19.8	0.66	28.2	12.3	15.9	0.77	30.2	12.9	17.4	0.74
29.2	13.3	15.9	0.83	33.8	13.8	20.0	0.69	25.3	12.0	13.3	0.90	31.9	14.2	17.7	0.81
32.2	13.9	18.3	0.75	28.3	11.8	16.5	0.71	32.9	14.1	18.8	0.75	26.6	11.0	15.7	0.70
			0.76 ^a	1.000.000			0.68"				0.81^{a}	1.000			0.73ª
			0.07				0.04				0.09				0.05
30.6	11.2	19.3	0.58	41.5	15.3	26.2	0.58	29.5	12.0	17.5	0.68	37.8	15.3	22.5	0.68
39.2	16.4	22.8	0.72	39.1	15.6	23.5	0.66	38.6	17.8	20.8	0.86	37.4	16.3	21.1	0.77
32.1	13.8	18.3	0.75	35.0	13.7	21.3	0.65	29.3	13.3	16.1	0.83	35.7	14.8	20.9	0.71
39.7	15.0	24.7	0.61	50.8	17.9	32.9	0.54	38.4	15.5	22.9	0.68	46.6	18.3	28.3	0.65
- 42.1	17.1	25.0	0.68	42.3	15.7	26.6	0.59	40.3	18.2	22.1	0.82	41.8	18.0	23.8	0.76
10.1		2010	0.67^{a}	10		- 310	0.61ª	1310	2.018		0.77^{a}	1.10	2010	- 510	0.17
			0.07				0.05				0.09				0.05
)			0.716		•		0.64	-			0.79				0.72
50 C			0.08				0.06				0.08				0.05
	TBW 27.2 37.3 27.3 29.2 32.2 30.6 39.2 32.1 39.7 42.1	GHD TBW ECW 27.2 10.9 37.3 16.9 27.3 11.4 29.2 13.3 32.2 13.9 30.6 11.2 39.2 16.4 32.1 13.8 39.7 15.0 42.1 17.1	GHD adults GHD adults TBW ECW ICW 27.2 10.9 16.3 37.3 16.9 20.4 27.3 11.4 15.9 29.2 13.3 15.9 32.2 13.9 18.3 30.6 11.2 19.3 39.2 16.4 22.8 32.1 13.8 18.3 39.7 15.0 24.7 42.1 17.1 25.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 3. TBW, ECW, ICW, and ECW/ICW of GHD adults and controls

Fig.3

Fig.3(c

			5011		5011
Body	Body		ECW	ECW	ECW
(kg)	(%)		(L)		
(0/			Measured by	Exp/Lab	Measured by
			Izana	Values	BIS/BIA
			Measuring		Machine
			Таре		
		GHD			
		Adults			
65.1	41.9		12.3	10.9	10.5
90.1	42.6		17.1	16.9	16.4
61.2	38.0		11.6	11.4	12.3
63.5	36.2		12.7	13.3	12.0
72.3	38.2		13.7	13.9	14.1
61.0	30.4		12.8	11.2	12.0
77.1	29.4		16.2	16.4	17.8
61.4	27.3		12.9	13.8	13.3
71.5	22.9		15.7	15.0	15.5
79.5	26.4		17.4	17.1	18.2
		Matched			
		Controls			
69.2	33.6		13.8	12.6	12.8
96.1	37.3		18.3	17.8	18.7
60.5	24.3		13.3	13.2	12.9
68.9	31.9		14.3	13.8	14.2
61.3	35.8		12.2	11.8	11.0
66.0	12.7		15.8	15.3	15.3
72.9	25.5		15.9	15.6	16.3
62.4	22.1		14.3	13.7	14.8
80.1	12.0		20.8	17.9	18.3
77.3	24.0		17.0	15.7	18.0

Fig.3(a)

2) Extracellular Water (ECW)

[©] Association of Academic Researchers and Faculties (AARF)

3) Intracellular Water (ICW)

Body	Body		ICW	ICW	ICW
Wt	Fat		(L)	(L)	(L)
(kg)	(%)				
			Measured by	Exp/Lab	Measured by
			Izana	Values	BIS/BIA
			Measuring		Machine
			Таре		
		GHD			
		Adults			
65.1	41.9		16.1	16.3	14.4
90.1	42.6		22.5	20.4	18.1
61.2	38.0		15.3	15.9	15.9
63.5	36.2		17.1	15.9	13.3
72.3	38.2		18.1	18.3	18.8
61.0	30.4		18.3	19.3	17.5
77.1	29.4		23.1	22.8	20.8
61.4	27.3		18.4	18.3	16.1
71.5	22.9		23.4	24.7	22.9
79.5	26.4		26.0	25.0	22.1
		Matched			
		Controls			
69.2	33.6		19.1	20.4	19.2
96.1	37.3		24.0	25.6	25.7
60.5	24.3		20.0	19.8	17.4
68.9	31.9		20.4	20.0	17.7
61.3	35.8		16.4	16.5	15.7
66.0	12.7		25.1	26.2	22.5
72.9	25.5		23.7	23.5	21.1
62.4	22.1		22.2	21.3	20.9
80.1	12.0		32.0	32.9	28.3
77.3	24.0		25.5	26.6	23.8

Fig.3(c)

© Association of Academic Researchers and Faculties (AARF) A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

4) Total Body Proteins (TBPro)

Compa	.s TBPro	- Saved	(j)				
Body Fat (%)		TBPro (kg)	TBPro (kg) Total Body Protein	TBPro (kg)			
		Measured by <u>Izana</u> Measuring Tape	Exp./Lab Values	Measured by Theoretical Model			
	Healthy Women						
∼30% by Izana Measuring Tape		9.1	8.9	8.2			
	Healthy Men						
~20% by Izana Measuring Tape		11.1	11.1	11.0			
	Men with AIDS						
65.5; ~15% by 11.3 10.9 10.5 ⁶⁸ Calibration Number 149: The available clinical data help perform calibration. Izana Tape measures PBF (Body Fat %) as per subjects' physical features & health parameters. The values of Total Body Protein (TBPro) measured through Izana Measuring Tape remain close to the Lab Values. This tape remains more accurate than the time-consuming theoretical model, which remains based on many							
	Compa Body Fat (%) ~30% by Izana Measuring Tape ~20% by Izana Measuring Tape ~15% by rotion Nun Measuring Tape ~15% by rotion Nun Measuring Tape Calfeature Body Prote suring Tape	Compas TBPro	Body Fat (%) TBPro (kg) Body Fat (%) TBPro (kg) Measured by Izana Measuring Tape Measured by Izana Measuring Tape Healthy Women 9.1 ~30% by Izana Measuring Tape 9.1 Measuring Tape 11.1 Measuring Tape 11.1 ~20% by Izana Measuring Tape 11.3 ~15% by 11.3 ~15% by 11.3 ~15% by 11.3 ration Number 149: Masuring Tape 11.3 Measuring Tape 11.3 Coll features & health parameter Body Protein (TBPro) measured suring Tape remain close to the remains more accurate than th	Body Fat (%) TBPro (kg) TBPro (kg) TBPro (kg) Body Fat (%) Image: Second			

Fig.4

Look at Fig.4(a). For verification, see the data[4]. Compare it with Fig.4.

© Association of Academic Researchers and Faculties (AARF)

Protein in extracellular solids

The ECS compartment consists of 2 parts: organic and inorganic. Organic ECS include 3 types of protein (collagen, reticular, and elastic), whereas the inorganic ECS of bone mineral includes calcium hydroxyapatite as the major constituent. ECS are distributed in several tissues and organs, including cortical and trabecular bone, cartilage, periarticular tissue, tendons, and fascia. In the reference man, the ECS protein is 2.08 kg (ie, 1.0 kg in cortical bone, 0.24 kg in trabecular bone, 0.18 kg in cartilage, 0.14 kg in periarticular tissue, and 0.52 kg in tendons and fascia), and the ECS bone mineral content is 2.84 kg (ie, 2.2 kg in cortical bone, 0.50 kg in trabecular bone, 0.045 kg in cartilage, 0.037 kg in periarticular tissue, and 0.057 kg in tendons and fascia) (1). Assuming that the ratio of ECS

MODELS

TABLE 1

Baseline characteristics and body composition of the 3 subject groups¹

	Healthy women	Healthy men	Men with AIDS
	(n = 183)	(n = 24)	(n = 84)
Age (y)	50.3 ± 12.8	49.3 ± 17.6	39.7 ± 9.1
Body mass (kg)	64.3 ± 7.9^2	71.3 ± 9.5	65.5 ± 6.6^2
Height (m)	1.64 ± 0.06^{3}	1.73 ± 0.09	1.75 ± 0.05
BMI (kg/m ²)	23.9 ± 2.8	23.7 ± 2.0	21.5 ± 2.1^3
TBN (kg)	1.42 ± 0.15^{3}	1.77 ± 0.26	1.75 ± 0.19
TBK (mmol)	2485 ± 281^3	3531 ± 591	3340 ± 396
TBW (kg)	31.7 ± 3.1^3	41.1 ± 6.2	41.2 ± 4.5
Bone mineral (kg)4	2.62 ± 0.42^3	2.85 ± 0.54	2.90 ± 0.30
TBPro (kg)	8.9 ± 0.9^{3}	11.1 ± 1.6	10.9 ± 1.2
By IVNA ⁵			
By new model ⁶	8.2 ± 0.9^3	11.0 ± 1.8	10.5 ± 1.1

 ${}^{I}\bar{x} \pm$ SD. IVNA, in vivo neutron activation; TBK, total body potassium measured by whole-body 40 K counting; TBN, total body nitrogen measured by prompt- γ in vivo neutron activation analysis; TBPro, total body protein; TBW, total body water measured by 3 H₂O dilution.

^{2,3} Significantly different from healthy men (Student's *t* test with Bonferroni adjustment): ² $P \le 0.02$ ³ $P \le 0.002$

Fig.4(a)

MODELS

981

TABLE 1

Baseline characteristics and body composition of the 3 subject groups¹

	Healthy women $(n = 183)$	Healthy men $(n = 24)$	Men with AIDS $(n = 84)$
Age (y)	50.3 ± 12.8	49.3 ± 17.6	39.7 ± 9.1
Body mass (kg)	64.3 ± 7.9^2	71.3 ± 9.5	65.5 ± 6.6^2
Height (m)	1.64 ± 0.06^{3}	1.73 ± 0.09	1.75 ± 0.05
BMI (kg/m ²)	23.9 ± 2.8	23.7 ± 2.0	21.5 ± 2.1^{3}
TBN (kg)	1.42 ± 0.15^3	1.77 ± 0.26	1.75 ± 0.19
TBK (mmol)	2485 ± 281^3	3531 ± 591	3340 ± 396
TBW (kg)	31.7 ± 3.1^3	41.1 ± 6.2	41.2 ± 4.5
TThe measurer Izana Measuri with 64.3 kg B remains about	nent of Total Boo ng Tape: In t ody Weight, the t 30%. Subject's p The value of Ti	ly Nitrogen (1 the case of ty value of PBF ohysical statu 3N is measure	BN) through pical subject measured ¹ is helps y potas- ed about incern
2.3% (or 1.46 k value with the The experime 1.42 kg. Thus, t -1.42)/ (1.42)}*1	g): For verification value highlight ntal findings sho the % difference 0025 × TBN (kg)	n, you can m ed in the Jour w that the vo is merely ~ 3 mol) + 0.732 ×	atch this nal's table. ilue of TBN is %, i.e., {(1.46 bone mineral (kg).
Ξ		<	J

6)Dry Lean Mass (DLM)

© Association of Academic Researchers and Faculties (AARF)

Look at Fig.6(a). See the data[2] for verification.

	ea 🗘	
Gender: Female; Body Height: 62"; Body Weight: 59.1 kg		
Body Type: Non Athlete;	<mark>Izana</mark>	InBody 770
WHR: 0.97	Measuring Tape	
Percentage Body Fat (PBF)	35%	36.8%
Trunk Fat Mass	11.4 kg	11.6 kg
Fat-Free Mass (FFM)	38.4 kg	37.3 kg
Total Body Water (TBW)	28.0 kg	27.5 kg
Extracellular Water (ECW)	11.8 kg	10.9 kg
Intracellular Water (ICW)	16.2 kg	16.6 kg
Dry Lean Mass (DLM)	10.4 kg	9.84 kg
Proteins	7.3 kg	7.3 kg
Minerals	3.1 kg	2.54 kg
Total Body Nitrogen (TBN)	1.16 kg	
Body Cell Mass (BCM)	23.5 kg	23.8 kg
Bone Mass (BM)	2.1 kg	2.2 kg
Soft Lean Mass (SLM)	36.3 kg	35.1 kg
Skeletal Muscle Mass (SMM)	18.7 kg	19.7 kg
Appendicular Skeletal Muscle Mass (ASMM)	14.1 kg	
Basal Metabolic Rate (BMR)	1195 kcal	1176 kcal
BMI	24.3	24 kg/m^2

0

.

siter adjusted herr

Fig.6

7) Body Cell Mass (BCM)

Fig.6(a)

See Fig.6 and Fig.6(a), and compare the values.

8) Fat-Free Mass (FFM)

[©] Association of Academic Researchers and Faculties (AARF)

See this Fig.7. Look at a bar diagram. It remains divided into many parts through the different colours. If thered or pink part (shown as PBF) is excluded, then the remaining partsdepict the Fat-Free Mass (FFM).

Fig.7

9) Basal Metabolic Rate (BMR)

See Fig.6 and Fig.6(a), and compare the values. **10)BMI Equivalent Value**

See Fig.6 and Fig.6(a), and compare the values.

11) Skeletal Muscle Mass (SMM)

[©] Association of Academic Researchers and Faculties (AARF)

Weight (kg); Body Height (inch)	Body Fat (%)		SMM (kg)	SMM (kg) Skeletal Muscle Mass
			Measured by Izana Measuring Tape	Measured by DXA
		Women		
68; 64 79; 69	About 40% (Measured through Izana Measuring Tape) About 25%	Men	32	31.4
	(Measured through Izana Measuring Tape)			
alibratior uscle Ma ana Mea easured ıbject he	through Izana Measuring Tape) Number 150 ss): The value suring Tape re by clinical DX p determine	(Measure es of SMM emain clos (A. The ph the value	ment of Skel measured th se to the valu ysical feature of Body Fat (etal nroug les es of %). F

Fig.8

Look at Fig.8(a) and Fig.8(b). For verification, see the data[5]. Compare these with Fig.8.

© Association of Academic Researchers and Faculties (AARF) A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

$\begin{array}{cccc} kg \\ MM_{KN} & 19.9 \pm 3.3 \\ MM_{DXA} & 19.6 \pm 3.6 \\ FM_{DXA} & 37.4 \pm 5.9 \\ FM_{TBK} & 41.1 \pm 7.1^3 \\ FM_{SKF} & 41.3 \pm 5.1^3 \\ FM_{BIA} & 41.6 \pm 5.3^3 \\ FM_{4C} & 42.6 \pm 4.6^3 \end{array}$	31.7 ± 4.0 31.4 ± 4.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	31.7 ± 4.0 31.4 ± 4.4
$\begin{array}{cccc} MM_{DXA} & & 19.6 \pm 3.6 \\ FM_{DXA} & & 37.4 \pm 5.9 \\ FM_{TBK} & & 41.1 \pm 7.1^3 \\ FM_{SKF} & & 41.3 \pm 5.1^3 \\ FM_{BIA} & & 41.6 \pm 5.3^3 \\ FM_{4C} & & 42.6 \pm 4.6^3 \end{array}$	31.4 ± 4.4
$\begin{array}{ll} {\rm FM}_{\rm DXA} & 37.4 \pm 5.9 \\ {\rm FM}_{\rm TBK} & 41.1 \pm 7.1^3 \\ {\rm FM}_{\rm SKF} & 41.3 \pm 5.1^3 \\ {\rm FM}_{\rm BIA} & 41.6 \pm 5.3^3 \\ {\rm FM}_{\rm 4C} & 42.6 \pm 4.6^3 \end{array}$	570+67
FM_{TBK} 41.1 ± 7.1^3 FM_{SKF} 41.3 ± 5.1^3 FM_{BIA} 41.6 ± 5.3^3 FM_{4C} 42.6 ± 4.6^3	51.9 ± 0.1
FM_{SKF} 41.3 ± 5.1^3 FM_{BIA} 41.6 ± 5.3^3 FM_{4C} 42.6 ± 4.6^3	58.8 ± 7.9
FM_{BIA} 41.6 ± 5.3^3 FM_{4C} 42.6 ± 4.6^3	57.6 ± 6.4
FM_{4C} 42.6 ± 4.6 ³	57.3 ± 7.0
	59.4 ± 6.6
${}^{1}\overline{x} \pm$ SD. SMM, skeletal muscle mass; FFM, fat-free mas	s; KN, tota
ody potassium and nitrogen; DXA, dual-energy X-ray abs	orptiometry
BK, total body potassium; SKF, skinfold thicknesses; BIA, bi	oimpedance

Fig.8(a)

TABLE 1 Subject characteristics ¹	~	1
	Women ²	Men
	(n = 50)	(n = 25)
Age (y)	63 ± 7 (54–84)	64 ± 7 (51–76)
Height (cm)	162 ± 6 (153–175)	174 ± 7 (160–187)
Weight (kg)	68 ± 12 (47–94)	79 ± 10 (49-95)
Percentage body fat (%)	38 ± 5 (28–48)	26 ± 4 (17–36)
Truncal fat:lean soft tissue ³	$0.9 \pm 0.24 (0.33 - 1.5)$	0.41 ± 0.13 (0.19-0.69)

 ${}^{l}\overline{x} \pm$ SD; range in parentheses. Percentage body fat was determined from the sum of 4 skinfold thicknesses.

² All values, except for age, were significantly different from those in men, P < 0.001 (Student's *t* test for unpaired data).

³From dual-energy X-ray absorptiometry regional analysis.

Fig.8(b)

12) Appendicular Skeletal Muscle Mass (ASMM)

Look at Fig.9(a).For verification, see the data[6].Compare it with Fig.9.

spine and soft tis combinations of approach to DX₄ weighted linear fa of the fat content

Truncal, abdor the scan image by Heymsfield et al culated from the and FFST. As an fat to lean tissue (put by dividing t sions of total BN 1.4%. 2%. and 29

© Association of Academic Researchers and Faculties (AARF)

	21:32 n	cbi.ı	nlm.n	ih.q	ov/pm	nc/o	rticho		(74)
←	You	7.70		9			☆	-	:
	T.24 May, 1	5:58					15-1		-
	maximum values a	tudy part re given i	in brackets.	ressed as	frequencies o	r means	. Minimum :	and	
	Weight, kg	125	75.84 ± 17.08 (43.80 - 124.30)	40	86.31 ± 16.54 (62.30 - 124.30)	85	70.91 ± 15.07 (43.80 - 122.80)	<0.001	
	BMI, kg/m ²	125	28.16 ± 5.69 (16.73 - 44.28)	40	29.25 ± 5.19 (19.44 - 40.87)	85	27.65 ± 5.86 (16.73 - 44.28)	ns	
	FM _{BIA} , %	125	35.55 ± 8.81 (14.70 - 53.70)	40	29.52 ± 7.90 (14.70 - 46.50)	85	38.39 ± 7.75 (16.90 - 53.70)	<0.001	
	FM _{DXA} , %	125	39.50 ± 7.55 (18.52 - 58.48)	40	35.51 ± 6.84 (18.52 - 49.05)	85	41.38 ± 7.15 (19.74 - 58.47)	<0.001	
	ASMM _{DXA} , kg	125	18.35 ± 4.60 (9.41 - 33.53)	40	22.61 ± 3.86 (15.30 - 33.53)	85	16.34 ± 3.40 (9.41 - 26.76)	<0.001	
	ASMM _{BIA} , kg	125	17.63 ± 3.56 (11.71 - 27.11)	40	21.46 ± 2.33 (17.62 - 27.11)	85	15.83 ± 2.43 (11.71 - 23.27)	<0.001	
	Physical Function								
	Grip strength, kg	125	19.08 ± 8.82 (1 - 38.5)	40	26.88 ± 8.21 (10 - 38.5)	85	15.41 ± 6.40 (1 - 33.7)	<0.001	
	Gait Speed, m/s	123	0.65 ± 0.27 (0.14 - 1.55)	40	0.69 ± 0.30 (0.18 - 1.55)	83	0.63 ± 0.26 (0.14 - 1.26)	ns	
	Antropoimetric Measures								
	Tricep Skinfold, mm	75	14.78 ±	23	12.54 ± 10.21	52	15.77 ±	ns	
	Calibration Nun keletal Muscle atients/ For ide arcopenia): T ur invented Ize	nber Mas entif he vo ana N	152 (N s in th ying th alues a Measu	leas e ho ne po of AS ring	uremer spitaliz atients SMM m Tape re	nt of ed g at ri easi ema	Appe geriatr sk for ured th in clos	ndicu ic nrougł e to tł	lar n ne
h h	elps determine dentify those p	e Boo atier	dy Fat nts wh	(%). o rei	The va main at	lues t the	of AS	MM he or	elp
S	arcopenia. In t ssessed	his c	hart, t 23.15 ±	he v	alues o 25.75 ±	of Cr 83	eatinir 21.90 ±	ne car	be
Fig.9			13.82 (5		13.90 (5		13.69.(2		
	mg/dL		0.95		1.43		0.55		

Fig.9(a)

© Association of Academic Researchers and Faculties (AARF) A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

••••

Body	Body Fat		ASMM	ASMM	ASMM
Weight	(%)		(kg)	(kg)	(kg)
(kg);				Appendicular	
Body				Skeletal	
Height				Muscle Mass	
(inch)					
			Measured	Lab/DXA	Measured
			by Izana	Values	by BIA
			Measuring		Machine
			Таре		
		Men			
71.8;	30% by		19.7	19.9	22.1
66.4	Izana				
	Measuring				
	Tape;				
	26.9% by				
	BIA				
	Machine				
		Women			
60.9;	35% by		14.5	13.5	15.3
61.2	Izana				
	Measuring				
	Tape;				
	36.4% by				
	BIA				
	Machine				

The calibration is important to ensure Accuracy & Validity of a measuring instrument. The values of ASMM (Appendicular Skeletal Muscle Mass) measured through Izana Measuring Tape remain close to the Lab/ DXA-measured values. The physical features and other health parameters of subjects help determine PBF (Body Fat Percentage).

Fig.10

Now look at Fig.10(a). For verification, see the data[7].Compare it with Fig.10.

	Men (n = 213)	Women (n = 294)
Age (years)	64.1 ± 1.3	63.4 ± 10.3
Height (cm)	168.6 ± 5.8	155.4 ± 5.6
Weight (kg)	71.8 ± 11.0	60.9 ± 10.2
BMI (kg/m^2)	25.2 ± 3.1	25.2 ± 3.8
Waist circumference (cm)	88.9 ± 6.3	84.9 ± 8.9
SBP (mmHg)	128.4 ± 13.7	127.2 ± 13.9
DBP (mmHg)	74.7 ± 10.1	75.2 ± 9.1
Laboratory findings		
FPG (70-110 mg/dL)	135.0 ± 41.5	117.6 ± 33.9
HbA1c (4.0-6.4%)	7.1 ± 1.4	6.6 ± 1.2
WBC $(4-10 \times 10^3 / \mu L)$	6.4 ± 1.7	5.6 ± 1.6
Hemoglobin (13-17 g/dL)	14.6 ± 1.5	13.2 ± 1.0
Hematocrit (39-52%)	43.1 ± 4.1	39.7 ± 3.0
Platelet (130–400 × $10^3/\mu$ L)	211.5 ± 52.9	243.4 ± 53.9
Total cholesterol (0-240 mg/dL)	161.1 ± 36.1	180.8 ± 40.2
Triglycerides (0-200 mg/dL)	139.2 ± 90.5	132.4 ± 65.6
HDL-cholesterol (35-55 mg/dL)	47.5 ± 10.5	54.9 ± 11.9
LDL-cholesterol (0-130 mg/dL)	91.6 ± 27.3	102.1 ± 29.9

Table 1. Anthropometric and biochemical characteristics and comorbidity of the study (n = 507).

Nutrients 2018, 10, 738

Table 1. Cont.

	Men (n = 213)	Women ($n = 294$)
BUN (10-26 mg/dL)	17.4 ± 11.4	15.0 ± 4.3
Creatinine (0.70-1.40 mg/dL)	0.9 ± 0.2	0.7 ± 0.1
eGFR (mL/min/1.73 m ²)	85.3 ± 18.8	90.5 ± 19.3
Total protein (6.0-8.0 g/dL)	7.2 ± 0.4	7.3 ± 0.4
Albumin (3.3-5.2 g/dL)	4.4 ± 0.3	4.4 ± 0.2
AST (1-40 IU/L)	25.7 ± 8.3	27.2 ± 15.0
ALT (1-40 IU/L)	27.1 ± 13.8	26.1 ± 20.1
Muscle mass by DXA		
Whole body lean mass (kg)	46.8 ± 6.5	34.0 ± 4.8
Appendicular skeletal muscle mass (kg)	19.9 ± 3.2	13.5 ± 2.2
Muscle mass by BIA		
Whole body muscle mass (kg)	49.3 ± 6.6	36.1 ± 4.7
Appendicular skeletal muscle mass (kg)	22.1 ± 3.3	15.3 ± 2.5
Fat mass by BIA		
Fat mass (kg)	19.6 ± 5.7	22.5 ± 6.8
Fat percent (%)	26.9 ± 5.7	36.4 ± 6.3

Data are expressed as the mean ± SD. BMI, body mass index; WC, waist circumference; SBP, systolic bi DBP, diastolic blood pressure; WBC, white blood cell; FPG, fasting plasma glucose; LDL, low-densit HDL, high-density lipoprotein; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; *i* transaminase; ALT, alanine transaminase; DXA, dual-energy x-ray absorptiometry; BIA, bioelectric analysis. * *p* values by Student's *i*-test between men and women.

3.2. Comparison of Muscle Mass Estimated by BIA with That Measured by DXA (Table 2)

The WBMM and ASMM values estimated by BIA were highly correlated with t by DXA in the entire study group (both r > 0.97, p < 0.01). We then investigated whe between muscle masses measured by DXA and BIA were associated with anthr biochemical parameters. Using ANOVA, the differences in WBMM between the two

Fig.10(a)

13) ASMI

© Association of Academic Researchers and Faculties (AARF)

\leftarrow	Compari.	s ASMI - S	aved	φ ,¢)
Body Weight (kg); Body Height (inch)	Body Fat (%)	BMI (equivalent)		ASMM (kg) & ASMI (equivalent)	ASMM (kg) & ASMI (kg / m^2)
				Measured through Izana Measuring Tape	Measured through clinical DXA
			Male		
61.65; 65.2	About 25% (Measured through Izana Measuring Tape)	22.8 (Measured through Izana Measuring Tape)		18.9 & 7	19.5 & 7.1
		24	Female	10.0	10.0
54.1; 60	About 35% (Measured through Izana Measuring Tape)	24 (Measured through Izana Measuring Tape)		& 5.7	& 5.6
lzanc a cur samp	a Measuring rse for old a ples is disclo	g Tape can b ge people. To osed. You car	e used to oday, one n see the	o detect Sarc e of the calib e comp Rec	copenia, pration 1 d more
1	-ig.11				

Look at Fig.11(a). For verification, see the following data[8].Compare it with Fig.11.

ncbi.nlm.nih.gov/pmc/article

Table 3

1

Demographic data of the study subjects

	Male	Female	P-value
Age (year)	71.7±0.3	71.6 ± 0.4	0.706
BMI	22.5 ± 0.2	23.5 ± 0.2	0.063
ASM (kg)	19.5 ± 0.1	12.9 ± 0.2	0.000
SMI (%)	31.8±0.3	24.5±0.3	0.000
ASM/Ht ² (kg/m ²) ASI	7.1±0.1	5.6 ± 0.1	0.000
LESM (kg)	14.4 ± 0.1	9.8±0.1	0.000
LESMI (%)	75.9 ± 0.4	62.6 ± 0.6	0.000
LESM/Ht ² (kg/m ²)	5.2 ± 0.1	4.3 ± 0.1	0.000

The data is presented as mean±standard error.

BMI, body mass index; ASM, appendicular skeletal muscle mass; SMI, skeletal muscle mass index; Ht, height; LESM, lower extremity skeletal muscle mass; LESMI, lower extremity skeletal muscle mass index.

Prevalence of sarcopenia

ased on the cut-off value set by the reference

Fig.11(a)

••••

Gait Speed: 1.3 m/ s Covered the Dzire Car length with normal walk in 3 seconds

A few days ago, I performed Sarcopenia Test on myself. And this table shows my result. Here, you can compare the data of Izana Tape with OMRON BIA Scale.

© Association of Academic Researchers and Faculties (AARF)

Now look at Fig.13(a). For verificat	tion, see the data[9].	Compare it with Fig.13.
--------------------------------------	------------------------	-------------------------

••••

Izana Tape Plasma Volum 🖓 🔎 \leftarrow

Body Weight (kg); Body Fat (%) Plasma Volume (L) Plasma Volume (L) Measured through Height (inch) Izana Measuring approx. Measured through Izana Measuring Tape Measured through Izana Measuring Tape 73.5; ~30% 2.92 2.85 67 7 7 3.0% 3.48 3.30 74; 69 ~20% 3.2 3.0 3.0 65.5; ~15% 2.98 2.85 69 67; 67 ~15% 3.05 3.05 3.05 80; 74 ~10% 3.95 3.60 3.40 64 - - - - 77.5; ~30% 2.95 3.05 3.05 66.4; ~30% 2.65 2.55 - 67 - - - - 77.5; ~35% 2.95 3.05 - 66.4; ~30% 2.65 2.55 - 67 -15% 3.51 3.50 3.50 85.5;				
Weight (kg); (%) Volume (L) Volume (L) Body Height (inch) Izana Measuring (L) (L) approx. Tape Measured through Measured through Jana Measured through Measured through Measured through Jana Measured through Measured through Measured through 73.5; ~30% 2.92 2.85 67	Body	Body Fat	Plasma	Plasma
(kg); Measured through through Lana (L) (L) Height (inch) approx. Izana Measuring Tape Measured through Izana Measured through Izana approx. Tape Measured through Izana Measuring Measuring Izana Measured through Izana 73.5; ~30% 2.92 2.85 67 7 7 7 87; 71 ~30% 3.48 3.30 74; 69 ~20% 3.2 3.0 65.5; ~15% 2.98 2.85 69 3.05 3.05 67; 67 ~15% 3.05 3.05 80; 74 ~10% 3.95 3.60 72.2; ~10% 3.56 3.40 64 - - - 77.5; ~35% 2.95 3.05 67 - - - 66.4; ~30% 2.65 2.55 67 - - - 77; 74 ~15% 3.51 3.50 85.5; ~15% 3.9 3.73 <td< td=""><td>Weight</td><td>(%)</td><td>Volume</td><td>Volume</td></td<>	Weight	(%)	Volume	Volume
Body Height (inch) approx. through Izana Measuring Tape Measured through Izana Measuring Measuring Tape Measured through Clinical Method 73.5; ~30% 2.92 2.85 67 2.92 2.85 67 3.48 3.30 74; 69 ~20% 3.2 3.0 65.5; ~15% 2.98 2.85 69	<mark>(kg);</mark>	Measured	(L)	(L)
Height (inch) approx. Izana Measuring Tape Measured through Izana Measuring Measuring Method 73.5; ~30% 2.92 2.85 67	Body	through		- A 14
Measuring Tape Measured through Izana Measuring Tape Measured through Clinical Method 73.5; ~30% 2.92 2.85 67	Height	Izana		
approx. Tape Measured through Izana Measured through Clinical Method 73.5; ~30% 2.92 2.85 67	(inch)	Measuring		
Measured through Izana Measured through Clinical Method 73.5; ~30% 2.92 2.85 67 2.92 2.85 67 3.48 3.30 74; 69 ~20% 3.2 3.0 65.5; ~15% 2.98 2.85 69 - - - 67; 67 ~15% 3.05 3.05 80; 74 ~10% 3.95 3.60 72.2; ~10% 3.56 3.40 64 - - - 77.5; ~35% 2.95 3.05 67 - - - 77.5; ~35% 2.95 3.05 67 - - - 77.5; ~35% 2.65 2.55 67 - - - 66.4; ~30% 3.51 3.50 85.5; ~15% 3.9 3.73 50bjects' physical status & features help determine Body Fat %.	<mark>approx.</mark>	Tape		
through through through Izana Measuring Method 73.5; ~30% 2.92 2.85 67			Measured	Measured
Izana Measuring Tape Clinical Method 73.5; ~30% 2.92 2.85 67 2.92 2.85 67 3.48 3.30 74; 69 ~20% 3.2 3.0 65.5; ~15% 2.98 2.85 69			through	through
Measuring Tape Method 73.5; ~30% 2.92 2.85 67			Izana	Clinical
Tape 73.5; ~30% 2.92 2.85 67			Measuring	Method
73.5; ~30% 2.92 2.85 67			Таре	
67	73.5;	~30%	2.92	2.85
87; 71 ~30% 3.48 3.30 74; 69 ~20% 3.2 3.0 65.5; ~15% 2.98 2.85 69	67			
74; 69 ~20% 3.2 3.0 65.5; ~15% 2.98 2.85 69	87; 71	~30%	3.48	3.30
65.5; ~15% 2.98 2.85 69	74; 69	~20%	3.2	3.0
69	65.5;	~15%	2.98	2.85
67; 67 ~15% 3.05 3.05 80; 74 ~10% 3.95 3.60 72.2; ~10% 3.56 3.40 64	69			
80; 74 ~10% 3.95 3.60 72.2; ~10% 3.56 3.40 64	67; 67	~15%	3.05	3.05
72.2; ~10% 3.56 3.40 64	80; 74	~10%	3.95	3.60
64 -35% 2.95 3.05 67 2.95 3.05 67 2.65 2.55 67 2.65 2.55 67 3.51 3.50 77; 74 ~15% 3.9 3.73 Subjects' physical status & features help determine Body Fat %.	72.2;	~10%	3.56	3.40
77.5; ~35% 2.95 3.05 67 2.65 2.55 66.4; ~30% 2.65 2.55 67 3.51 3.50 77; 74 ~15% 3.9 3.73 36bjects' physical status & features help determine Body Fat %.	64			
67 -30% 2.65 2.55 67 2.65 2.55 67 -15% 3.51 3.50 85.5; ~15% 3.9 3.73 30bjects' physical status & features help determine Body Fat %.	77.5;	~35%	2.95	3.05
66.4; ~30% 2.65 2.55 67 2.65 2.55 77; 74 ~15% 3.51 3.50 85.5; ~15% 3.9 3.73 Subjects' physical status & features help determine Body Fat %.	67			
67 67 77; 74 ~15% 3.51 3.50 85.5; ~15% 3.9 3.73 Subjects' physical status & features help determine Body Fat %.	66.4;	~30%	2.65	2.55
77; 74 ~15% 3.51 3.50 85.5; ~15% 3.9 3.73 Subjects' physical status & features help determine Body Fat %.	67			
85.5; ~15% 3.9 3.73 Subjects' physical status & features help determine Body Fat %.	77; 74	~15%	3.51	3.50
Subjects' physical status & features help determine Body Fat %.	85.5;	~15%	3.9	3.73
Body Fat %.	S Øbjects'	physical status	s & features heli	o determine
		Bod	y Fat %.	

Fig.13

© Association of Academic Researchers and Faculties (AARF) A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

Table 2

Plasma Volume, Extracellular Water, and Peripheral Plasma Renin Activity in Normal and Essential Hypertensive Subjects

			~			
No.	Weight (kg)	Height (cm)	PV (L)	ECW (L)	PV/IF	Renin (ng/ml/4 hr)
			Normotensi	ve Patients		
1.	73.5	171	2.85	15.2	0.231	0.44
2.	87	180	3.30	18.1	0.223	2.0
3.	74	175	3.00	16.5	0.223	1.5
4.	65.5	176.5	2.85	16.1	0.216	1.8
5.	67	171	3.05	16.7	0.223	1.0
6.	80	188	3.60	21.1	0.206	0.54
7.	72.2	163.7	3.40	18.8	0.221	—
8.	77.5	169.4	3.05	15.8	0.239	1.2
9.	66.4	170	2.55	13.9	0.224	2.5
10.	77	186.7	3.50	18.7	0.230	0.4
11.	85.5	193	3.73	21.4	0.211	
		Pati	ents with Esser	ntial Hyperten	sion	
		25.55 - 13 25.55 - 25.55		JP		

Fig.13(a)

15) APHV

_		
	BOYS	
Age	APHV Value	Experimental/
Group	Measured	Measured
(Years)	through	Value of APHV
	Izana	(Average value
	Measuring	for 1864 boys)
	Таре	
6 – 6.9	11.9	11.9
7 – 7.9	12.5	12.4
8 - 8.9	12.8	12.8
9 – 9.9	13.2	13.2
10 - 10.9	13.5	13.5
11 –11.9	13.8	14
12 –12.9	14.2	14.3
13 – 13.9	14.4	14.5
14 - 14.9	14.6	14.6
15 – 15.9	15	14.9
16 - 16.9	15.5	15.4
17 – 17.9	16.1	15.8
	GIRLS	(Average value
		for 734 girls)
8-8.9	11.1	11.5
9 – 9.9	11.4	11.5
10 - 10.9	11.7	11.5
11 - 11.9	11.9	11.4

Fig.14

© Association of Academic Researchers and Faculties (AARF) A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

Ages	N	Weigh	t (kg)	Stand Height	ling t (cm)	Sitting (cr	Height n)	BN	41	APH	IV	MEF (I	./min)
(years)		x	SD	x	SD	x	SD	x	SD	x	DE	x	SD
				1		Males				1			
6.0-6.9	59	26.7	5.5	121.4	5.3	64.8	4.0	18.1	3.2	-5.9	0.3	159.8	38.1
7.0-7.9	85	25.9	5.7	125.3	5.7	66.1	3.5	16.4	3.1	-5.4	0.3	171.7	45.4
8.0-8.9	136	30.4	7.3	129.3	5.5	69.0	3.4	18.1	3.8	-4.8	0.3	206.2	35.9
9.0-9.9	166	34.5	9.0	133.6	6.3	71.2	4.1	19.1	3.7	-4.2 *	0.4	214.1	48.2
10.0-10.9	194	39.5	9.6	139.7	6.9	74.1	4.4	20.1	4.0	-3.5 *	0.4	235.0	45.8
11.0-11.9	176	44.2	10.2	144.3	6.8	75.3	3.6	21.1	4.2	-3.0 *	0.4	263.0	50.0
12.0-12.9	166	44.0	10.1	148.2	8.0	77.1	4.3	19.9	3.6	-2.3 *	0.5	286.8 *	61.1
13.0-13.9	199	49.0	10.7	154.5	8.4	80.4	4.3	20.5	3.8	-1.5*	0.5	305.5 *	69.8
14.0-14.9	209	55.8 *	12.7	161.3 *	7.7	83.9	4.9	21.4	4.1	-0.6 *	0.7	329.4 *	84.8
15.0-15.9	211	60.5 *	12.8	165.6 *	6.7	85.5 *	4.6	22.0	4.1	0.1 *	0.6	344.2 *	102.3
16.0-16.9	192	59.9 *	11.5	166.9 *	6.1	86.3 *	3.9	21.5	3.7	0.6 *	0.6	354.3*	94.0
17.0-17.9	71	59.9 *	9.5	168.6 *	5.6	87.0 *	4.9	21.1 *	3.2	1.2 *	0.8	351.5 *	110.5
Total	1864	46.5	15.4	149.4	16.1	78.1	8.0	20.3	4.1	-2.1	2.1	284.3	94.2
						Female	s						
6.0-6.9	60	24.4	4.6	118.7	5.0	62.9	2.9	17.4	3.6	-5.3	0.3	133.2	45.6
7.0-7.9	76	25.7	5.3	124.2	7.0	65.4	4.0	16.7	3.4	-4.5	0.4	158.2	36.1
8.0-8.9	148	30.8	8.0	129.4	7.1	68.8	3.8	18.2	4.0	-3.5	0.5	191.2	43.3
9.0-9.9	179	33.5	9.0	134.5	7.6	71.2	4.3	18.4	3.8	-2.5	0.6	209.0	48.3
10.0-10.9	199	36.6	11.2	139.2	7.2	73.2	4.2	18.7	5.1	-1.5	0.7	226.7	50.7
11.0-11.9	208	44.3	9.8	145.1	6.4	75.5	4.7	21.0	4.3	-0.4	0.7	244.9	58.5
12.0-12.9	189	45.5	10.0	148.3	6.3	78.0	3.4	20.5	3.6	0.8	0.7	260.0	54.3
13.0-13.9	219	49.5	11.0	151.7	6.0	80.6	3.3	21.4	4.0	1.8	0.8	259.1	62.1
14.0-14.9	245	52.5	8.6	154.3	6.0	82.0	3.0	22.1	3.3	3.0	0.7	269.4	52.6
15.0-15.9	235	53.8	9.3	156.6	6.2	83.1	3.5	21.9	3.7	3.9	0.7	275.9	74.4
16.0-16.9	218	53.1	7.8	157.1	5.9	82.9	3.2	21.5	2.9	4.7	0.7	269.4	70.1
17.0-17.9	69	57.1	9.7	157.6	7.1	83.1	5.4	23.0	3.3	5.7	1.0	276.0	77.3
Total	2045	44.6	13.3	146.2	12.6	77.2	7.0	20.5	4.2	0.8	3.1	244.3	68.4

Legend: H: Height; X: Average; SD: Standard deviation; APHV: Age of Peak Velocity Growth; MEF: Maximum Expiratory Flow, (* = 0.005).

The comparisons between the curves of international studies are displayed in Figure 1. At all age ranges, the values of the curves (p50) for Spain and Italy are higher than those

Fig.14(a)

CONCLUSION

After making a comparison, it is found that the present invention 'Izana Measuring Tape' reproduces or measures the values that remain close to the values achieved through established devices/methods. The unique features of Izana Measuring Tapemake it comparatively more applicable, feasible and reliable. Its measurements can be compared with the 3-component or 4-component model data.

Acknowledgments

Remain grateful for your direct or indirect support:

- 1.World Health Organization
- 2. Centers for Disease Control and Prevention
- 3. National Institutes of Health
- 4. International Society for Clinical Densitometry
- 5.InBody, ACCUNIQ and OMRON
- 6. United States National Library of Medicine
- 7. Indian Council of Medical Research
- 8. The American Journal of Clinical Nutrition
- 9. academic.oup.com

© Association of Academic Researchers and Faculties (AARF)

- 10. www.hindawi.com
- 11. www.journals.elsevier.com
- 12. onlinelibrary.wiley.com
- 13. drc.bmj.com
- 14. journals.sagepub.com
- 15. Nature journals
- 16. National Center for Health Statistics

References:

[1]Shadab, KhwajaAhmad (2022). "Measuring Tape That Measures Body Water, Dry Lean Mass, Skeletal Muscle Mass and BMR". International Research Journal of Natural and Applied Sciences. Volume: 9, Issue: 3.

[2]<u>www.inbody.in</u>

[3]Lichtenbelt, W.D.M. et al.(1997). "Deuterium and Bromide Dilution, and Bioimpedance Spectrometry Independently Show That Growth Hormone-Deficient Adults Have an Enlarged Extracellular Water Compartment Related to Intracellular Water". The Journal of Clinical Endocrinology and Metabolism. Volume: 82, Issue: 3, Page: 907-911.

[4]Wang,Zimianet al.(2003). "Total body protein: A new cellular level mass and distribution prediction model". American Journal of Clinical Nutrition. 78(5):979-84.

[5]Hansen, Ross D. et al. (1999). "Determination of skeletal muscle and fat-free mass by nuclear and dual-energy X-ray absorptiometry methods in men and women". American Journal of Clinical Nutrition.70(2):228-33.

[6]Deer, Rachel R. et al. (2020). "Developing a Screening Tool for Sarcopenia in Hospitalized Geriatric Patients: Estimation of Appendicular Skeletal Muscle Mass using Bioelectrical Impedance". ClinNutr. 39(7):2233-2237.

[7]Lee,SeoYoung et al.(2018). "Comparison between Dual-Energy X-ray Absorptiometry and Bioelectrical Impedance Analyses for Accuracy in Measuring Whole Body Muscle Mass and Appendicular Skeletal Muscle Mass".Nutrients. 10, 738.

[8] ncbi.nlm.nih.gov/pmc/article

[9]Tarazi, Robert C. et al. (1969). "Relation of Plasma to Interstitial Fluid Volume in Essential Hypertension". Circulation.Volume XL.