

SEASONAL VARIATION IN SOIL CO₂ FLUX IN SUB-TROPICAL FOREST ECOSYSTEM WITH FLUCTUATING ABIOTIC VARIABLES.

M.Dineswori Devi and Asha Gupta

Ecology Laboratory, Department of Life Sciences Centre of Advanced study in Life Sciences, Manipur University, Canchipur Imphal 795003, India

ABSTRACT

The temporal and seasonal variation in soil CO2 flux in sub-tropical forests of Manipur, N.E. India was determined in relation to the changes in abiotic variables viz. soil temperature and soil water content. The soil CO₂ flux rate shows significant positive corelation with abiotic factors viz., soil moisture and soil temperature. The variability in soil CO₂ flux was recorded to be 88.1% and 82.0% due to soil temperature and soil moisture respectively in forest stand I and 88.3% and 72.4% due to soil moisture and soil temperature respectively in forest stand II. The soil CO₂ flux ranged from 67.69 to $382.35mgCO_2m^{-2}hr^{-1}$ and 74.60 to $394.88mgCO_2m^{-2}hr^{-1}$ for forest stands I and II respectively in different months throughout the year. Maximum soil CO₂ flux rate was observed during rainy season and minimum during winter season.

Keywords: Soil CO₂ flux, abiotic variables, Multiple Regression, Seasonal Variation, N.E. India.

Introduction:

Human activities such as burning of fossil fuels and land use have led to the increase of CO_2 in the atmosphere resulting into the warming up of the earth and affecting the climate. Atmospheric carbon dioxide has increased from 280 ppm in the preindustrial era to 390 ppm in 2011 (WMO, 2012). In the study of climate change and carbon cycling interaction, there are two main natural carbons sinks namely the ocean and terrestrial biosphere that have

absorbed nearly half of all artificial carbon dioxide emissions (Zheng et. al., 2013). Soil is a major carbon (C) reserve in terrestrial ecosystems (Adachi et. al., 2009). Soil contains 2700Gt of Carbon. This amount is more than the sum of carbon in atmosphere (780Gt) and biomass (575Gt) as per Lal (2008). Carbon dioxide is released from the soil through soil respiration which involves three biological processes namely faunal respiration, microbial respiration and root respiration. Root respiration is one of the main fluxes in the global carbon cycle as soil is a major carbon reserve in the terrestrial ecosystems. Since soil respiration is directly related to both microbial and root activities, its temporal and spatial variations are largely controlled by environmental factors such as precipitation, soil moisture and temperature (Hanpattanakit et. al., 2009). The soil microbial communities are generally related to the soil organic matter (Wu et. al., 2015), soil nutrients (Allison and Maitiny, 2008), and other properties such as pH and soil texture (Lauber et. al., 2009; Carson et. al., 2010). The seasonal variability of soil CO_2 flux is greatly explained by soil temperature and soil water content. A primary source of variability of soil CO₂efflux is temporal heterogeneity. Accordingly, soil CO₂ efflux is known to exhibit a diurnal cycle, due in part to a diurnal soil temperature cycle (Shi et. al., 2012) Seasonal changes in soil microclimate play a key role in defining seasonal differences in soil carbon dioxide emission within sites and climatic differences generate different soil respiration rates among distant sites (Raich and Potter, 1995). Chen et. al., 2015 have shown correlation among the spatial variations in the climate, vegetation, soil factors and ecosystem CO₂ fluxes.

For the present study two forest stands situated at Sauntak Molnom at 25⁰03'N latitude and 93⁰55'E longitude at an altitude of 988 m above mean sea level (Stand-I) and Stand-II located at 24⁰55'N latitude and 93⁰48'E longitude at an altitude of 1294 m above mean sea level at Konshram Konshakhul in Senapati district of Manipur, N.E. India were earmarked. The climate of the area is monsoonic with warm moist summer and cool dry winter. The mean maximum temperature varied from 21.83^oC (January) to 29.68^oC (August) and mean minimum temperature ranged from 5.04^oC (January) to 22.33^oC (July). The mean annual rainfall is 1428.49 mm. The average relative humidity of air varied between 62.94% (March) to 82.76% (July). The study was conducted during the 2011-2012. Soils of the study area were sandy loam in texture and reddish in colour in forests stand I and blackish brown in forest stand I is dominated by *Quercus serrata* and *Schima wallichii* and is situated at the base of the hill. Forest stand II is dominated by *Ficus virens* and *Cinnamomum zeylanicum*.

Materials and Methods

Soil samples were collected from the two study sites randomly at monthly intervals from April 2011 to March 2012 for the analysis of soil physico-chemical characteristics. Soil bulk density is weight of oven dry soil per unit volume which is usually expressed in gcm³.Soil pH was determined by (1:5; soil water suspension) by a pH meter (Systronics). The soil texture was analysed by International pipette method of mechanical analysis (Gee and Bauder 1986). The soil organic carbon was estimated by Walkley- Black method. Total soil nitrogen was measured using 2100 Kjeltec system and available soil phosphorus was determined following the method given by Bray and Kurtz (1945).Soil CO₂ emission was measured by alkali absorption method using an open ended aluminium cylinder (25cm tall and 13cm diameter) as per Anderson and Ingram (1993).Leaf litter were collected by laying down randomly 10 plots of $1m^2$ size quadrat in each forest sites on monthly interval.

Results and Discussion

The soil was sandy loam in texture in both the forest stand. In forest stand I 68.83% sand, 18.66% silt and 12.26% clay where as in forest stand II 72.63% sand, 16.6% silt and 10.6% clay was reported. Soil temperature varied from 13.36° C to 22.68° C in stand I and 11.34° C to 21.36° C in stand II. Soil pH ranged from 4.35 to 4.71 and 5.17 to 5.57 in forest stand I and II respectively. Soil moisture varied from 19.88% to 46.76% and 17.98% to 36.89% in forest stand I&II respectively.

Abiotic variables	Stand-I	Stand-II
Soil temperature(0C)	18.92	17.59
Soil Moisture (%)	31.58	28.515
Soil texture	Sandy loam	Sandy loam
Sand (%)	68.83	72.73
Silt (%)	18.66	16.66
Clay (%)	12.26	10.66
Bulk Density(gcm-3)	1.279	1.33
Soil pH	4.8-5.16	5.17-5.57
Organic Carbon(%)	1.41	1.56
Total Nitrogen (%)	0.277	0.305
Available Phosphorus(%)	0.03	0.051
C/N Ratio	5.31	5.13

Table 1: Abiotic variables of soils in forest stand I and stand II.

Litter fall rate varies from 23.58gm⁻² (July) to 138gm⁻² (February) and 28.7gm⁻² (August) to 137.08gm⁻² (February) in sites I and II respectively. The total litter fall rate was recorded to be 7.89t ha⁻¹ yr⁻¹ for site I and 7.49t ha⁻¹ yr⁻¹ for site II as shown in Fig 1. The litter fall rate was found to be maximum in the month of February in both the forest stands. Then the rate of litter fall decreased consistently upto July in stand I leading to minimum litter fall which then increased thereafter. In forest stand II the minimum litter fall was observed in the month of August which thereafter increased until become maximum. The difference in the two stands might be due to difference in species composition.

The soil CO₂ flux ranged from 67.69 to 382.35 mgCO₂m⁻²hr⁻¹ and 74.60 to 394.88 mgCO₂m⁻²hr⁻¹in forest stands I and II respectively. Maximum CO₂ flux rate were recorded in the month of August in both the forest stands which then decreased consistently till January and thereafter increased (Fig 2). Seasonally, the mean CO₂ flux rate was recorded maximum during rainy season followed by summer season and winter season. The soil CO₂ flux rate correlated positively and significantly with abiotic factors viz., soil moisture, soil temperature, relative humidity, mean air temperature and rainfall in both the forest stands I and II (Table3). The variability in soil CO₂ flux was recorded to be 88.1% and 82.0% due to soil temperature and soil moisture respectively in forest stand I and 88.3% and 72.4% due to soil moisture and soil temperature respectively in forest stand II.

The relationship between rate of soil CO_2 flux (mg CO_2 m⁻²hr⁻¹) and soil properties, i.e. soil temperature (X₁), soil moisture (X₂) and soil organic carbon (X₃) has been analysed by multiple regression in both the study sites and is summarized as follows:

Site-I

 $\label{eq:Y} \begin{array}{l} Y=-655.568+11.29X_1+2.804X_2+402.179X_3,\\ (r_1=0.93;\,r_2=0.90;\,r_3=0.52) \text{ at } P\!< 0.05.\\ \end{array}$ Site-II

 $Y = -794.313 + 3.892X_1 + 3.116X_2 + 532.890X_3,$ (r₁ = 0.85; r₂ = 0.93; r₃ = 0.51) at P< 0.05.

The study shows that there is significant positive relationship between soil CO_2 flux rates and abiotic variables. Soil moisture, soil temperature and soil organic carbon has strong influence on the release of CO_2 into the atmosphere from the soil in both the ecosystems. Similar findings have also been reported in different ecosystems by several workers.

Table 2. Annual soil CO_2 flux (g CO_2 m⁻² year⁻¹) in the two forest stands

Site	Annual soil CO2 flux		
Stand I	1929.48		
Stand II	1877.86		

Table 3. Annual organic carbon input as litter fall (g C m⁻² year⁻¹) and soil CO₂ flux rate as output (g C m⁻² year⁻¹) in the two forest stands.

Site	Input	Output
Stand I	424.21	525.12
Stand II	374.83	511.51

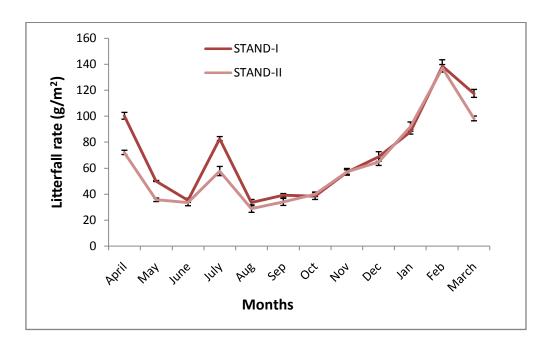


Fig. 1 Monthly variation of litter fall rate in Forest stand-I and Forest stand-II.

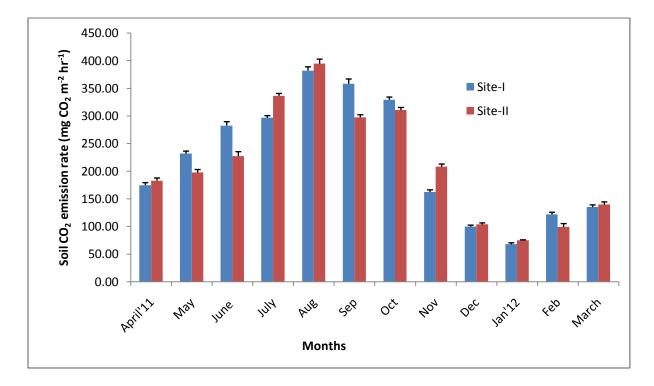


Fig.2. Monthly variation of soil CO₂ emission rate (mg CO₂ m⁻² hr⁻¹) in Forest stand-I and Forest stand

Table 4: Seasonal variation in soil CO₂ emission rate (mg CO₂ m⁻² hr⁻¹) in Forest stand-I and Forest stand-II.

Season	Stand I	Stand II
Summer (March – May)	180.58	173.5
Rainy (June – October)	392.9	313.32
Winter(November-February)	112.96	121.32
Mean Annual	220.26	214.37

Sources of variation	SS	df	MSS	F	Р
Summer					
Between the months	23705.824	2	11852.912		
				118.981	P<0.01
Within the months	1195.443	12	99.620		
Total	24901.267	14			
Rainy					
Between the months	34416.474	4	8604.119		
				40.093	P<0.01
Within the months	4292.075	20	214.604		
Total	38708.549	24			

Winter					
Between the months	23705.638	3	7901.879		
				138.901	P<0.01
Within the months	910.218	16	56.889		
Total	24615.856	19			
Annual					
Between the months	636235.40	11	57839.582		
				433.950	P<0.01
Within the months	6397.735	48	133.286		
Total	642633.134	59			

Table 6: ANOVA of Soil CO_2 emission rate in forest stand II

Sources of variation	SS	df	MSS	F	Р
Summer					
Between the months	9023.431	2	4511.715		
				35.326	P<0.01
Within the months	1532.618	12	127.718		
Total	10556.049	14			
Rainy					
Between the months	72843.409	4	18210.852		
				90.154	P<0.01
Within the months	4039.930	20	201.996		
Total	38708.549	24			
Winter					
Between the months	52453.490	3	17484.497		
				185.292	P<0.01
Within the months	1509.792	16	94.362		
Total	53963.282	19			
Annual					
Between the months	578759.127	11	52614.466		
				357.286	P<0.01
Within the months	7068.550	48	147.261		
Total	585827.677	59			

Table 7: Correlation coefficient (r) for the relationship of soil CO2 emission rate with
the abiotic variables measured in the two forest stands.

Stand I	Stand II	
0.829	0.871	
0.938	0.850	
0.828	0.798	
0.880	0.825	
0.647	0.586	
	0.829 0.938 0.828 0.880	

NS- not significant; P<0.05

Table8: Soil CO₂ emission rate (mg CO₂ m⁻² hr⁻¹) in different ecosystems of theworld

Sl.	Type of forest	Place	Rate	Author
No.				
1.	Primary forest	Malaysia	769	Adachi et.al.,2005
2.	Secondary forest	Malaysia	708	Adachi et. al., 2005
3.	Oil palm plantation	Malaysia	815	Adachi et. al., 2005
4.	Rubber plantation	Malaysia	450	Adachi et. al., 2005
5.	Tropical forest	Costa Rica	430-675	Schwedenmann et. al., 2003
6.	Tropical forest	Brazil	216-510	Fernandes et. al., 2002
7.	Dry Dipterocarpus forest	Thailand	200-700	Hanpattanakit et. al., 2009
8.	Sitka spruce forest	Ireland	699.2	Olajuyigbe et. al., 2012
9	Pinus wallichiana forest	India	182-646	Sundarapandian et. al., 2013
10	Abies pindrow forest	India	126-427	Sundarapandian et. al., 2013
11.	Sub tropical evergreen	South China	477.9	Yi et. al.,2007
	broad leaf forest			
12.	Pine forest	South China	429.5	Yi et. al.,2007
13.	Pine and broad leaf	South China	435.4	Yi et. al.,2007
	mixed forest			
14.	Mix oak forest	Manipur,India	138-250	Devi &Yadava 2006
15.	Natural mixed oak forest	Manipur,India	102-320	Pandey et. al., 2010
16.	Oak plantation	Manipur,India	99-543	Pandey et. al., 2010
17.	Mixed oak forest	Manipur,India	67.6-	Present study
			382.35	
18.	Sub tropical mixed	Manipur,India	74.6-	Present study
	evergreen forest		394.88	

The soil CO_2 flux shows negative relationship with the litter fall in different months in both the forest stands. There is a significant high litter fall during the dry and cool winter

season as compared to the rainy season. But on the contrary soil CO_2 emission is minimum during winter and maximum during rainy season. Thus this shows that monthly plant litter fall does not show any effect on soil CO_2 emission.

The rate of soil CO₂ flux was recorded to be maximum in the month of August in both the forest stands as the micro flora and micro fauna becomes active due to availability of higher soil moisture coupled with soil temperature. The decomposition of plant litter enhanced during this period thereby increasing the rate of soil CO_2 flux. The rate of soil CO_2 flux was recorded to be minimum in the month of January in both the forest stands which may be due to low moisture content of soil and temperature thereby inhibiting the microbial activity and decomposition (Devi and Yadava, 2006) thus leading to low carbon dioxide emission. Chen et. al., (2012) also found precipitation as an important factor influencing inter-annual variability in soil CO₂ flux. Thereafter there is a consistent increase in the soil CO₂ flux till August which may be due to high temperature and soil moisture with the onset of summer season. The difference in the rate of soil CO₂ flux in the two forests stands may be due to the difference in the diversity of micro flora, micro fauna and tree species. The mean soil CO₂ emission rate was found to be higher in the forest stand I as compared to forest stand II which may be due to higher soil moisture and higher soil temperature thereby enhancing the rate of higher microbial activity. A maximum rate of soil CO₂ flux in either spring or early summer season has been reported by several workers (Davidson et. al., 2002, Laishram et. al., 2002, Rastogi et. al., 2002). On the contrary to their findings, we found a maximum rate of soil respiration in rainy season. Similar trend has also been reported by Devi and Yadava, 2008 in a Subtropical Mixed Oak Forest of Manipur, Northeastern India. Several reports on high soil respiration rate in wet season also exist (Kursar 1989, in a lowland moist forest Panama; Rajvansi and Gupta 1986 in Tropical Dalbergia sisoo forest; Savage and Davidson 2001 in Harvard forest; Saraswathi et. al., 2008, in a semi-arid soil of India; Shi et. al., 2012 on black soil in North East China) which are in conformity with our observations. An increasein soil respiration rate immediately after the rainfall events have also been reported (Holt et. al., 1990 and Law et. al., 2001). In both the forest stands a high correlation shows that soil CO₂ emission is positively affected by soil moisture, soil temperature, relative humidity, mean air temperature and rainfall. However soil temperature and air temperature have strong influence on soil CO₂ flux in comparison to other factors i.e. by soil moisture, relative humidity, and rainfall in forest stand I. In forest stand II soil moisture and air temperature have strong influence on soil CO₂ flux as compared to other factors.

Annual soil CO₂emission was the cumulative soil CO₂ flux rate from daily mean monthly values (Table 2). Annual soil CO₂emission was higher in stand I than in stand II. Annual carbon input was estimated from the annual litterfall rate and annual carbon output were estimated from annual CO₂ flux rate (g C m⁻² year⁻¹). The input and output values of CO₂ in the two forest stand shows that the output rate is higher than the input rate which may be due to root respiration, CO₂ emission by the root decomposition or underestimates of litter fall.

References:

- Adachi M., Bekku, Y. S., Konuma, A., Kadir, W. R., Okuda T. and Koizumi H. 2005. Required sample size for estimating soil respiration rates in a large area of two tropical forests and of two types of plantation in Malaysia. Forest Ecology and Management 210: 455-459.
- Adachi M., Ishida A., Bunyavejchewin S., Okuda T. and Koizumi H. 2009. Spatial and temporal variation in soil respiration in a seasonally dry tropical forest, Thailand. Journal of Tropical Ecology 25: 531-539.
- Allison SD andMartiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. PNAS 105:11512-11519.
- Anderson, J.M. and Ingram, J.S.I. 1993. Tropical Soil Biology and Fertility- A Handbook of Methods, Second Edition, CAB International, Wallingford, Oxford, UK. 221 pages.
- Carson, J.K., Gonzalez-Quinones, V., Murphy, D.V., Hinz, C., Shaw, J.A. and Gleeson, D.B. (2010) Low pore connectivity increase bacterial diversity in soil. Appl Environ Microbiol 76: 3936-3942.
- Chen, S.T., Huang, Y., Zou, J. W., Shi, Y.S., Lu, Y. Y., Zhang, W. and Hu, Z. H. 2012. Interannual variability in soil respiration from terrestrial ecosystems in China and its response to climate change. Science China Earth Sciences Vol. 55. No. 12: 2091-2098.
- Chen, Z., Yu, G., Ge J., Wang, Q., Zhu, X. andXu Z. 2015. Roles of climate, Vegetation and Soil in Regulating the Spatial Variations in Ecosystem Carbon Dioxide Fluxes in the Northern Hemisphere. Plos one Doi: 10.1371: 1-14.
- Davidson, E.A., Savage, K., Bolstad, P., Clark, D.A., Curtis P.S., Ellsworth, D.S., Hanson, P.J., Law, B.E., Luo, Y., Pregitzer, K.S., Randolph, J.C. and Zak, D. 2002.Belowground carbon allocation in forests estimated from litter fall and IRGAbased soil respiration measurements. Agricultural and Forest meteorology 113:39-51.

- Devi, N.B. and Yadava, P.S. 2006. Seasonal dynamics in soil microbial biomass C, N and P in a mixed oak forest ecosystem of Manipur, North-east India. Applied Soil Ecology 31:220-227.
- Devi, N.B. and Yadava, P.S. 2008. Emission of CO₂ from Soil in a Subtropical Mixed Oak Forest of Manipur, Northeastern India. International Journal of Ecology and Environmental Sciences 34(3): 293-297.
- Fernandes, S. A. P., Bernoux, M., Cerri, C. C., Feigl, J. and Piccolo, M. C. 2002. Seasonal variation of soil chemical properties and CO2 and CH4 flux in unfertilized and P- fertilized pasture in an ultisol of the Brazilian Amazon. Geodermatalogy 107: 227-241.
- Hanpattanakit, P., PanuthaiS. and Chidthaisong A. 2009. Temperature and Moisture Controls of Soil Respiration in a Dry Dipterocarp Forest, Ratchaburi Province. Kasetsart J. (Nat. Sci.) 43: 650-661.
- 13. Holt, J.A., Hodgen, M.J. and Lamb, D. 1990. Soil respiration in seasonally dry tropics near Townville, North-Queensland. Australian Journal of Soil Research 28: 737-745.
- Kursar, T.A. 1989. Evaluation of soil respiration and soil CO₂ concentration in a lowland moist forest in Panama. Plant and Soil 113: 21-29.
- Laishram, I.D., Yadava, P.S. and Kakati L.N. 2002. Soil respiration in a mixed oak forest ecosystem at Shiroy Hills, Manipur in north-eastern India. International Journal of Ecology and Environmental Sciences 28: 133-137.
- Lal, R. 2008. Sequestration of atmospheric CO₂in global carbon pools. Energy & Environment Science, 1(1), 86-100.
- 17. Lauber, C.L., Hamady, M., Knight, R. andFierer, N.2009.Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111-5120.
- Law,B.E., Kelliher, F.M., Baldocchi, D.D., Anthoni,P.M., Irvine, J., Moore, D. and Vantaul, S. 2001. Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agriculture and Forest Meteorology 110: 27-43.
- Olajuyigbe, S., Tobin, B., Saunders, M. and Nieuwenhuis, M. 2012. Forest thinning and soil respiration in a Sitka spruce forest in Ireland. Agricultural and Forest Meteorology 157: 86-95.
- Pandey, R.R., Sharma, G., Singh, T.B. and Tripathi, S. K. 2010. Factors influencing soil CO₂ efflux in a northeastern Indian oak forest and plantation. African Journal of Plant Science Vol. 4(8), pp.280-289.

- 21. Raich, J.W and Potter, C.S. 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles 9: 23-36.
- Rajvanshi, R. And Gupta, S.R. 1986. Soil Respiration and carbon balance in a tropical Dalbergiasisso forest ecosystem. Flora 178: 251-260.
- Rastogi, M., Singh, S. and Pathak, H. 2002. Emission of carbon dioxide from soil. Current Science 82: 510-517.
- Saraswathi, S.G., Lalrammawia, C. and Paliwal, K. 2008. Seasonal variability in soil surface CO₂ efflux in selected young tree plantations in semi –arid eco-climate of Madurai. Current Science 95: 94-99.
- 25. Savage, K.E. and Davidson, E.A. 2001. Inter annual variation of soil respiration in two New England forests. Global Biogeochemical Cycles 15: 337-350.
- Schwedenmann, L., Veldkamp, E., Brenes, T., O'Bien, J. and Backensen, J. 2003. Spatial and temporal variation in soil CO₂ efflux in an old-growth neotropical rainforest, La Selva, Costa Rica. Biogeochemistry 64: 111-128.
- Shi, X., Zhang, X., Yang, X., McLauhlin, N. B., Liang, A. and Fan, R. 2012. An appropriate time-window for measuring soil CO2 efflux: a case study on Black soil in north-east China. ActaagriculturaeScandinavica Section B- Soil and Plant Science 62: 449-454.
- Sundarapandian, S.M. and Dar, J.A. 2013. Variation in soil CO₂ efflux in Pinuswallichiana and AbiesPindrow Temperate Forests of Western Himalayas, India. Forest Res Vol.3: Issue 1.
- 29. Wu, T., Milner, H., Diaz-Perez, J.C. and Ji, P. 2015. Effects of soil management practices on soil microbial communities and development of southern blight in vegetable production. Appl Soil Ecol. 91: 58-67.
- 30. WMO. 2012. Greenhouse Gas Concentrations Reach New Record- WMO Bulletin highlights pivotal role of carbon sinks, edited by N.965, http://www.wmo.int/pages/mediacentre/press_releases/index_ en.html.
- Yi, Z., Fu, S., Yi, W., Zhou, G., Mo, J., Zhang, D., Ding, M., Wang, X., and Zhou, L.
 2007. Partitioning soil respiration of subtropical forests with different successional stages in south China. Forest Ecology and Management 243: 178-186.
- 32. Zheng-Hong, T., Yi-Ping, Z., Naishen, L., Qing-Hai, S., Yu-Hong, L., Guang-yong, Y., Lin-Hui, L., Lei, Y., Chuan-Shen, W., Zhi-Yun, L., Han-Dong, W., Jun-Fu, Z., Fu, G, Lia-Yan, Y., Liang, S., Yong-Jiang, Z., Teramoto, M. and li-Qing, S. 2013. Soil respiration in an old-growth subtropical forest: Patterns, components and controls. Journal of Geophysical Research; Atmospheres, Vol. 118, 1-10.