
INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 17

SOFTWARE TESTING–A STUDY

Avinash H.Hedaoo

1
, Mrs. Abha Khandelwal

2

1
Deptt of Comp. Sci, Dr. Ambedkar College, India

2
Deptt of Comp. Sci, Hislop College, India

ABSTRACT

Software testing provides a means to reduce errors, cut maintenance and overall

software costs. Numerous software development and testing methodologies, tools, and

techniques have emerged over the last few decades promising to enhance software quality.

While it can be argued that there has been some improvement it is apparent that many of the

techniques and tools are isolated to a specific lifecycle phase or functional area. One of the

major problems within software testing area is how to get a suitable set of cases to test a

software system. This set should assure maximum effectiveness with the least possible number

of test cases. There are now numerous testing techniques available for generating test cases.

KEYWORDS: SOFTWARE TESTING, LEVEL OF TESTING, TESTING TECHNIQUE, TESTING PROCESS,

TEST MANAGEMENT

1. INTRODUCTION

Software testing comprises a major part of software development lifecycle. In past

those software not tested resulted in social problems and financial losses. By one estimate

defective software causes approximately US $ 50 B losses to USA each year [1]. This

estimate suggests industry-wide deficiency in testing. According to Bertolino [2] testing is a

general validation approach in industry, but it is still largely ad hoc, expensive, and its

effectiveness is not predictable. Exhaustive testing is not possible as we face lack of time and

resources. As there are limited resources available for testing we should select effective and

efficient testing techniques. The lack of sufficient information about effectiveness, efficiency

and cost of testing techniques makes difficult selection of a testing technique. Assessing

effectiveness and efficiency of a testing technique is not easy as there are various operations

involved in testing which depends on the subject that applies it, the programming language,

software under test, the type of faults etc. Some advances have been made in evaluating

effectiveness, efficiency of testing techniques but there is still a long way to go as results are

very inconclusive.

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 18

2. THE HISTORY OF TESTING TECHNIQUES

2.1 CONCEPT EVOLUTION

Software has been tested as early as software has been written. The concept of testing

itself evolved with time. The evolution of definition and targets of software testing has

directed the research on testing techniques. The concept evolution of testing using the testing

process model proposed by Gelperin and Hetzel [3] is as follows :

Phase I. Before 1956: The Debugging-Oriented Period – Testing was not separated from

debugging

Phase II. 1957~78: The Demonstration-Oriented Period – Testing to make sure that the

software satisfies its specification

Phase III. 1979~82: The Destruction-Oriented Period – Testing to detect implementation

faults

Phase IV. 1983~87: The Evaluation-Oriented Period – Testing to detect faults in

requirements and design as well as in implementation

Phase V. Since 1988: The Prevention-Oriented Period – Testing to prevent faults in

requirements, design, and implementation

2.2 DEFINITION OF TESTING

The definition of testing according to the ANSI/IEEE 1059 standard is that testing is

the process of analysing a software item to detect the differences between existing and

required conditions (that is defects/errors/bugs) and to evaluate the features of the software

item.

3. SOFTWARE TESTING TECHNIQUES

Testing technique is a method or approach that systematically describes how set of

test cases should be created (with what intention and goals) keeping into consideration

possible rules for applying test cases. Testing techniques aids in limiting the number of test

cases that can be created [4].

Software testing techniques can be classified into two main categories based on the

criteria whether the technique requires actual execution or not [5]:

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 19

3.1 Static Testing

3.2 Dynamic Testing

3.1 STATIC TESTING TECHNIQUES

Static techniques are concerned with the analysis and checking of system

representations such as the requirements documents, design diagrams and the program source

code, either manually or automatically, without actually executing the code [6].

Static techniques can be grouped under two categories:

3.1.1 Reviews

3.1.2 Analysis

3.1.1 REVIEWS

A software review is "A process or meeting during which a software product is

examined by a project personnel, managers, users, customers, user representatives, or other

interested parties for comment or approval"[7].

According to IEEE 1028 Phases of formal review [8] are : Planning, Kick-off,

Individual Preparation, Review Meeting Rework and Follow-up. Roles and responsibilities

are : Manager ,Moderator, Reviewers and Scribe (Recorder)

Reviews can be of following types :

3.1.1.1 INFORMAL REVIEW

A review done by peers in an informal fashion without any documented findings or

process. An informal review involves two or more people looking through a document or

codes that one or the other of them has written. The purpose is still to detect defects, but there

are usually no check-lists used and the result does not need to be documented [9].

3.1.1.2 WALKTHROUGH

In software engineering, a walkthrough or walk-through is a form of software peer

review "in which a designer or programmer leads members of the development team and

other interested parties through a software product, and the participants ask questions and

make comments about possible errors, violation of development standards, and other

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 20

problems"[10]. The general goals of a walkthrough are : to present the document to

stakeholders; knowledge transfer; to establish a common understanding and to establish

consensus.

3.1.1.3 TECHNICAL REVIEW

A software technical review is a form of peer review in which "a team of qualified

personnel examines the suitability of the software product for its intended use and identifies

discrepancies from specifications and standards. Technical reviews may also provide

recommendations of alternatives and examination of various alternatives".

3.1.1.4 INSPECTION

Inspection in software engineering of any work product is looking for defects using a

well defined process, it is also called as peer review and done by trained individuals. An

inspection might also be referred to as a Fagan inspection after Michael Fagan, the creator of

a very popular software inspection process.

3.1.1.5 MANAGEMENT REVIEW

A systematic evaluation of a software acquisition, supply, development, operation, or

maintenance process performed by or on behalf of management that monitors progress,

determines the status of plans and schedules, confirms requirements and their system

allocation, or evaluates the effectiveness of management approaches used to achieve fitness

for purpose [11].

3.1.1.6 AUDIT

Audit is the most formal static testing technique. They are conducted by personnel

external to a project to evaluate compliance with specifications standards contractual

agreements or other criteria [12]. There are two types of Audit internal and external.

3.1.2 ANALYSIS

Static analysis is performed on requirements, design or code without actually

executing the software artifact being examined. It is ideally performed before the types of

formal review and unrelated to dynamic properties of the requirements, design and code, such

as test coverage. The goal of static analysis is to find defects, whether or not they may cause

failures. As with reviews, static analysis finds defects rather than failures. Static Analysis can

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 21

reduce defects by up to a factor of six [12]. Static Analysis is done using approaches like

Coding Standards, Code Metric and Code Structure.

3.2 DYNAMIC TESTING TECHNIQUES

Dynamic execution based techniques focus on the range of ways that are used to

ascertain software quality and validate the software through actual executions of the software

under test. We test the software with real or simulated inputs, both normal and abnormal,

under controlled and expected conditions to check how a software system reacts to various

input test data. It is essential to test the software in controlled and expected conditions as a

complex, non deterministic system might react with different behaviors to a same input,

depending on the system state. Dynamic testing techniques are generally divided into the two

broad categories block box testing and white box testing [13][14].

3.2.1 BLACK BOX TESTING

Black box testing is based on the requirements specifications and there is no need to

examining the code. This is purely done based on customers view point only tester knows the

set of inputs and predictable outputs. Black box testing is done on the completely finished

product [15] [16]. Black box testing techniques are Equivalence Class Partitioning,

Boundary Value Analysis, Decision Tables, State Transition Diagrams, Orthogonal Arrays

and All Pairs Technique

3.2.2 WHITE BOX TESTING

White box testing mainly focus on internal logic and structure of the code. White-box

is done when the programmer has full knowledge of the program structure. With this

technique it is possible to test every branch and decision in the program [17] [18] [9]. White

box testing techniques are Static white box testing and Structural White box testing. Static

white box testing further divided into Desk checking, Code walkthrough and Formal

Inspections. Structural White box testing further divided into Control flow/ Coverage testing,

Basic path testing, Loop testing and Data flow testing

4 TESTING LEVELS

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 22

Whichever the process adopted, we can at least distinguish in principle between unit,

integration and system test [19], [20] that are distinguished by the test target without

implying a specific process model. Other test levels are classified by the testing objective.

4.1 UNIT TESTING

Unit testing or component testing is used to ensure that if the unit is working as per

its functional specification and/or that its design matches the intended design or not [19],

[20]. Unit tests can also be applied to check interfaces, local data structure or boundary

conditions[21]. These types of tests are usually written by developers as they work on code

(white-box style). One function might have multiple tests, to catch corner cases or other

branches in the code. Unit testing is used to ensure that units are working independently of

each other or not, unit testing alone cannot verify the functionality of a piece of software.

Unit testing is used to make development and QA process efficient and to increase quality of

the software by eliminating errors while software is in construction before the code is

promoted to QA. Depending on the organization's expectations for software development,

unit testing might include static code analysis, data flow analysis metrics analysis, peer code

reviews, code coverage analysis and other software verification practices[22]. The unit

testing helps by three ways. First, attention is focused initially on smaller units of the

program. Second, when an error is found, it is known to exist in a particular module. Finally,

multiple modules can be tested simultaneously[18]. Tools for unit testing are Debug, Re-

structure, Code Analyzers, Path/statement coverage tools.

4.2 INTEGRATION TEST

In Integration testing (sometimes called integration and testing, abbreviated I&T)

individual software modules which have been unit tested are combined as larger aggregates

and tested as a group as per the integration test plan . Integration testing delivers as its output

the integrated system ready for system testing. It occurs after unit testing and before

validation testing[23].

In this testing major design items are tested to ensure their functional, performance,

and reliability status against requirements. Black box testing, success and error cases being

simulated via appropriate parameter and data inputs are used to exercise these "design items",

i.e. assemblages (or groups of units) through their interfaces. Simulated usage of shared data

areas and inter-process communication is tested and individual subsystems are exercised

http://en.wikipedia.org/wiki/System_testing
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Verification_and_validation_(software)
http://en.wikipedia.org/wiki/Verification_and_validation_(software)
http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Black_box_testing
http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Subsystem

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 23

through their input interface. The overall idea is a "building block" approach, in which

verified assemblages are added to a verified base which is then used to support the integration

testing of further assemblages.

Some different types of integration testing are big bang, top-down, and bottom-up.

Other Integration Patterns[24] are: Collaboration Integration, Backbone Integration, Layer

Integration, Client/Server Integration, Distributed Services Integration and High-frequency

Integration.

4.3 SYSTEM TEST

In system testing software under test is implemented in its actual hardware environment

and tested to verify that the system behaves according to the user requirements. Goals of

system testing can be [25]:

 to discover system level failures which were not detected during unit or integration

testing;

 to make sure that developed product correctly implements the required capabilities;

 to gather data useful for deciding the release of the product.

System testing should therefore ensure that each system function works as expected, any

failures are exposed and analyzed, and additionally that interfaces for export and import

routines behave as required. Generally system testing includes testing for performance,

security, reliability, stress testing and recovery [19]. In particular, test and data collected

applying system testing can be used for defining an operational profile necessary to support a

statistical analysis of system reliability [26].

A further test level, called Acceptance Test, is often added to the above subdivision.

It is mainly focuses on the usability requirements.

4.4 REGRESSION TEST

Properly speaking, regression test is not a separate level of testing, but may refer to

the retesting of a unit, a combination of components or a whole system (see Fig. 1 below)

after modification, in order to ascertain that the change has not introduced new faults [19].

http://en.wikipedia.org/w/index.php?title=Big_Bang_(project_management)&action=edit&redlink=1
http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
http://en.wikipedia.org/wiki/Integration_testing#cite_note-2

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 24

 Figure 1. Logical Schema of Software Testing Levels

Selective regression test techniques [27] help in selecting a (minimized) subset of the

existing test cases by examining the modifications (for instance at code level, using control

flow and data flow analysis).

5 TESTING TYPES

Following are the types of testing:

5.1 INSTALLATION TESTING

An installation test assures that the system is installed correctly and working at actual

customer's hardware.

5.2 COMPATIBILITY TESTING

Compatibility testing is one of the test types performed by testing team. Compatibility

testing checks if the software can be run on different hardware, operating system, bandwidth,

databases, web servers, application servers, hardware peripherals, emulators, different

configuration, processor, different browsers and different versions of the browsers etc.,

5.3 SMOKE AND SANITY TESTING

Initial effort to determine if a new software version is performing well enough to accept it for

a major testing effort.

5.4 REGRESSION TESTING

As discussed in section 4.4.

5.5 ACCEPTANCE TESTING

Acceptance testing can mean one of two things:

i. A smoke test is used as an acceptance test prior to introducing a new build to the main

testing process, i.e. before integration or regression.

http://www.softwaretestingsoftware.com/tag/compatibility-testing/
http://en.wikipedia.org/wiki/Smoke_testing#Software_development
http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/Regression_testing

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 25

ii. Acceptance testing performed by the customer, often in their lab environment on their

own hardware, is known as user acceptance testing (UAT). Acceptance testing may be

performed as part of the hand-off process between any two phases of development.

5.6 ALPHA TESTING

Alpha testing is simulated or actual operational testing by potential users/customers or

an independent test team at the developers' site. [28]

5.7 BETA TESTING

Beta testing comes after alpha testing and can be considered a form of external user

acceptance testing.

5.8 FUNCTIONAL VS NON-FUNCTIONAL TESTING

Functional testing refers to activities that verify a specific action or function of the

code. Functional tests tend to answer the question of "can the user do this" or "does this

particular feature work."

Non-functional testing refers to aspects of the software that may not be related to a

specific function or user action, such as scalability or other performance, behavior under

certain constraints, or security.

5.9 DESTRUCTIVE TESTING

Destructive testing attempts to cause the software or a sub-system to fail. It verifies

that the software functions properly even when it receives invalid or unexpected inputs,

thereby establishing the robustness of input validation and error-management routines.

5.10 SOFTWARE PERFORMANCE TESTING

Performance testing is generally executed to determine how a system or sub-system

performs in terms of responsiveness and stability under a particular workload. It can also

serve to investigate, measure, validate or verify other quality attributes of the system, such as

scalability, reliability and resource usage.

There is little agreement on what the specific goals of performance testing are. The

terms load testing, performance testing, scalability testing, and volume testing, are often used

interchangeably.

http://en.wikipedia.org/wiki/User_acceptance_testing
file:///D:/backupfromhome/computersciphd/selected/2chapter%202%20study%20of%20software%20testing%20techniques/3.1.3%20testing%20levels/software%20testing%20wikki.htm%23cite_note-34%23cite_note-34
http://en.wikipedia.org/wiki/User_acceptance_testing
http://en.wikipedia.org/wiki/User_acceptance_testing
http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Performance
http://en.wikipedia.org/wiki/Constraint_%28mathematics%29
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Robustness_%28computer_science%29
http://en.wikipedia.org/wiki/Software_performance_testing
http://en.wikipedia.org/wiki/Scalability_testing

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 26

5.11 USABILITY TESTING

Usability testing is needed to check if the user interface is easy to use and understand.

It is concerned mainly with the use of the application.

5.12 ACCESSIBILITY TESTING

Accessibility testing may include compliance with standards such as: Americans with

Disabilities Act of 1990, Section 508 Amendment to the Rehabilitation Act of 1973 and Web

Accessibility Initiative (WAI) of the World Wide Web Consortium (W3C)

5.13 SECURITY TESTING

Security testing is essential for software that processes confidential data to prevent

system intrusion by hackers.

6. STRATEGIES FOR TEST CASE SELECTION

Strategies are used to increase effectiveness of testing in terms of thoroughness on

one side and reducing times and costs on the other. It is very important that how the test cases

are selected, as there are limited test resources.

6.1 SELECTION CRITERIA BASED ON CODE

During the late 70's and the 80's the trend was dominated by Code-based testing, also

called “structural testing”, or “white box” testing in software testing research. For designing

test cases for white-box testing an internal view of the system, as well as programming skills

are used . The tester selects inputs to exercise paths through the code and find out the

appropriate outputs.

White-box testing is generally done at the unit level, it can be applied at the unit,

integration and system levels of the software testing process. It can check paths within a unit,

paths between units during integration, and between subsystems during a system–level test.

This method of test design uncover many errors or problems, but unimplemented parts of the

specification or missing requirements might left undetected. Techniques used in white-box

testing include: API testing, Code coverage, Fault injection, Mutation testing methods and

Static testing methods .

6.2 SELECTION CRITERIA BASED ON SPECIFICATIONS

http://en.wikipedia.org/wiki/Usability_testing
http://en.wikipedia.org/wiki/Accessibility
http://en.wikipedia.org/wiki/Americans_with_Disabilities_Act_of_1990
http://en.wikipedia.org/wiki/Americans_with_Disabilities_Act_of_1990
http://en.wikipedia.org/wiki/Section_508_Amendment_to_the_Rehabilitation_Act_of_1973
http://en.wikipedia.org/wiki/Web_Accessibility_Initiative
http://en.wikipedia.org/wiki/Web_Accessibility_Initiative
http://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://en.wikipedia.org/wiki/Security_testing
http://en.wikipedia.org/wiki/Backdoor_%28computing%29
http://en.wikipedia.org/wiki/Hacker_%28computer_security%29
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/System_testing
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Fault_injection
http://en.wikipedia.org/wiki/Mutation_testing
http://en.wikipedia.org/wiki/Static_testing

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 27

In specification-based testing, documentation relative to program specifications is

generally used to derive reference model RM[29].

In Specification-based testing functionality of software is checked according to the applicable

requirements.[30] In this testing detailed test cases should be provided to the tester, who then

can simply apply the test cases to check that for a given input, whether the output value (or

behavior), "is" or "is not" the same as the expected value specified in the test case. Test cases

are designed based on specifications and requirements, i.e., what the application is supposed

to do. To derive test cases it uses external descriptions of the software, including

specifications, requirements, and designs. These tests can be functional or non-functional,

though usually functional.

Using Specification-based testing correct functionality may be assured, but it is not sufficient

to watch against complex or high-risk situations.[31]

This method of test can be useful in all levels of software testing: unit, integration, system

and acceptance. It typically uses in most of the testing at higher levels, but can also dominate

unit testing as well.

6.3 OTHER CRITERIA

Some other important strategies for test selection are briefly overviewed as follows :

6.3.1 BASED ON TESTER’S INTUITION AND EXPERIENCE

The testing technique based on tester’s intuition and experience is ad-hoc testing

techniques it is most widely practiced technique [32] in which tests are developed based on

the tester’s skill, intuition, and experience with similar programs. The special tests not easily

captured by formalized techniques might be identified by Ad hoc testing. The testing

technique in which test cases are developed during testing not before, is called Exploratory

testing. A subset of exploratory testing is so-called guerilla testing. In this testing experienced

tester tests limited section of program exhaustively for short period of time[33].

6.3.2 MUTATION BASED TEST CASE GENERATION

In testing for reliability evaluation, Mutation adequacy is the main fault-based test

adequacy criterion. The competent programmer hypothesis and the coupling effect are two

assumptions upon which the idea of a mutation adequate test suite is based [34]. The

file:///D:/backupfromhome/computersciphd/static%20testing/softwaretestingbooksep13/software%20testing%20wikki.htm%23cite_note-23%23cite_note-23
http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Functional_testing
http://en.wikipedia.org/wiki/Non-functional_testing
file:///D:/backupfromhome/computersciphd/static%20testing/softwaretestingbooksep13/software%20testing%20wikki.htm%23cite_note-24%23cite_note-24
http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/System_testing
http://en.wikipedia.org/wiki/Acceptance_test

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 28

competent programmer hypothesis assumption states that competent programmers develop

code that compile and very nearly correct as per their specification. The coupling effect

assumes that tests that detect simple faults are likely to also detect complex faults [34].

6.3.3 BASED ON OPERATIONAL USAGE

In testing for reliability evaluation, the test environment must reproduce the

operational environment of the software as closely as possible (operational profile). It is done

for assessing future reliability of the software when in actual use from the observed test

results. To do this, inputs are assigned a probability distribution, or profile, as per their

occurrence in actual operation.[35]

7. TEST DESIGN

Test design is a important phase of software testing, in which test suites for the

objectives and the features to be tested are defined. Testing levels are planned and kind of

approach for each level and for each feature to be tested is decided . Stopping criteria for

testing also decided in test design. It is also decided that which part of the software should be

tested more keeping in view time or budget constraints. [35].

8. TEST EXECUTION

There are various types of difficulties in executing the Test cases specified in test

design. The various tasks involved in launching the test and deciding the outcome of the test

are discussed below. Tools for testing activities automation also given below.

8.1 LAUNCHING THE TESTS

Test cases can be executed manually or automatically.

8.2 TEST ORACLES

The “test oracle” is a concept describing a method that is used to recognize correct

and incorrect test output during software testing. When a test case is inputted to the system

under test output comes, tester compares this output with the output specified in test oracle to

ensure that the output is expected output or not. The term was first used and defined in

William Howden's Introduction to the Theory of Testing. Additional work on different kinds

of oracles was explored by Elaine Weyuker. [36].

 8.3 TEST TOOLS

http://en.wikipedia.org/w/index.php?title=William_Howden&action=edit&redlink=1
http://en.wikipedia.org/wiki/Elaine_Weyuker

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 29

Program testing and fault detection can be done using testing tools and debuggers.

Testing/debug tools contains features such as: Program monitors - performs full or partial

monitoring of program code including: Instruction set simulator- performs complete

instruction level monitoring and trace facilities, Program animation- performs step-by-step

execution and conditional breakpoint at source level or in machine code and Code coverage

reports, Formatted dump or symbolic debugging, tools performs inspection of program

variables on error or at chosen points. Automated functional GUI testing tools are used to

repeat system-level tests through the GUI Benchmarks, allowing run-time performance

comparisons to be made. Performance analysis (or profiling tools) that can help to highlight

hot spots and resource usage Some of these features may be incorporated into an Integrated

Development Environment (IDE)[7]. In the following of this section we present a list of

typologies of most commonly used test tools:

Test harness (drivers, stubs): Test Harness contains two main parts: the test execution

engine and the test script repository. Test harnesses is used to automate tests. It helps in

integration testing. In integration testing test stubs are typically module of the software under

development and are replaced by working module as the application is developed (top-down

design), test harnesses are external to the application being tested and simulate services or

functionality not available in a test environment. [37].

Test generators: It is used to generate tests.

Capture/Replay: this tool can automatically re-executes, or replays, previously run tests, on

the basis recorded inputs and outputs (e.g., screens).

Oracle/file comparators/assertion checking: By using these types of tool we can decide

whether a test is pass or fail;

Coverage analyzer/Instrumenter: A coverage analyzer is used to assess which and how

many components of the program flowgraph have been exercised. The program

instrumenters insert probes into the code which helps in analysis.

Tracers: It shows the history of execution of a program;

Reliability evaluation tools: Using this tool we can analyse test results graphically. Using

these test results we can assess reliability related measures according to selected models.[35]

9. TEST DOCUMENTATION

http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Instruction_set_simulator
http://en.wikipedia.org/wiki/Program_animation
http://en.wikipedia.org/wiki/Breakpoint
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Symbolic_debugging
http://en.wikipedia.org/wiki/Benchmark_%28computing%29
http://en.wikipedia.org/wiki/Profiling_%28computer_programming%29
http://en.wikipedia.org/wiki/Hot_spot_%28computer_science%29
http://en.wikipedia.org/wiki/Integrated_Development_Environment
http://en.wikipedia.org/wiki/Integrated_Development_Environment
http://en.wikipedia.org/wiki/Test_execution_engine
http://en.wikipedia.org/wiki/Test_execution_engine
http://en.wikipedia.org/w/index.php?title=Test_script_repository&action=edit&redlink=1
http://en.wikipedia.org/wiki/Test_automation
http://en.wikipedia.org/wiki/Test_stubs

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 30

A summary of the ANSI/IEEE Standard 829-1983 describes a test plan as: “A

document depicting the scope, approach, resources, and schedule of intended testing

processes. It recognizes test items, the units to be tested, the testing tasks, who will do each

task, and any proactive strategy for risks.” This standard describes the following test plan

outline: Test Plan Identifier, Introduction, Test Items, Features to be Tested, Features Not to

Be Tested, Approach, Item Pass/Fail Criteria, Suspension Criteria and Resumption

Requirements, Test Deliverables, Testing Tasks, Environmental Needs, Responsibilities,

Staffing and Training Needs, Schedule, Risks and Contingencies and Approvals[38].

10. TEST MANAGEMENT

Test management manages the computer software testing process such as organizing

test assets and artifacts such as test requirements, test plans, test cases, test scripts and test

results to enable easy accessibility and reusability . Test artifact and resource organization is

necessary part of test management.

11. TEST MEASUREMENTS

In the field of software engineering test measurement helps in generating description

of important processes and products quantitatively, and accordingly controlling software

behavior and results. Also nature and impact of proposed changes can be understood by using

measurement as baseline. In addition, managers and developers use measurement to monitor

effects of tasks and changes on all facets of development. In this way whether or not final

product meets plans can be checked as early as possible and accordingly actions can be taken

[39]. In case of testing phase, measurement can be used for evaluation of the program under

test, or the selected test set, or even for monitoring the testing process itself [40].

12. CONCLUSIONS

In this paper we have presented a detailed study of software testing. The approaches

overviewed include more traditional techniques, e.g., code-based criteria, as well as more

modern ones, such as model checking. We have tried to contribute to the best of our

knowledge by putting into all the possible details about software testing discipline, through

this paper we have tried to demonstrated that testing is a very complex activity and should be

given importance in software development. Through this paper, we have tried to attract

interest from academy and industry. However, what we can and must pursue is to transform

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 31

testing from “trial-and-error” to a systematic, cost-effective and predictable engineering

discipline.

REFERENCES

1. NIST-Final Report “The Economic Impacts of Inadequate Infrastructure for Software Testing”, Table

8-1, National Institute of Standards and Technology, May 2002.

2. Bertolino, A. (2007). , “Software testing research: Achievements, challenges, dreams.”, In FOSE ’07:

2007 Future of Software Engineering, pages 85–103, Washington, DC, USA. IEEE Computer Society.

3. D. Gelperin and B. Hetzel, “The Growth of Software Testing”, Communications of the ACM, Volume

31 Issue 6, June 1988, pp. 687-695

4. Eldh 2011

5. Roper 1995

6. Sommerville, I, “Software Engineering”, Pearson, 2008, 864 pages, ISBN 978-81-317-2461-3

7. IEEE Std . 1028-1997, "IEEE Standard for Software Reviews", clause 3.5

8. Fagan, Michael E: "Design and Code Inspections to Reduce Errors in Program Development", IBM

Systems Journal, Vol. 15, No. 3, 1976; "Inspecting Software Designs and Code", Datamation, October

1977; "Advances In Software Inspections", IEEE Transactions in Software Engineering, Vol. 12, No. 7,

July 1986

9. Weinberg, Gerald M., "The psychology of computer programming", Dorset House Pub.,1998, 292

pages

10. IEEE Std. 1028-1997, IEEE Standard for Software Reviews, clause 3.8

11. IEEE Std 1028-1997, “IEEE Standard for Software Reviews, IEEE Computer Society, ISBN 1-55937-

987-1

12. Software Audit Review, http://en.wikipedia.org/wiki/Software_audit_review, Accessed on 12 Oct 2013

13. Sommerville, 2007

14. Beizer , 1995

15. P. Mitra, S. Chatterjee, and N. Ali, “Graphical analysis of MC/DC using automated software testing,”

in Electronics Computer Technology (ICECT), 2011 3rd International Conference on, 2011, vol. 3, pp.

145 –149.

16. T. Murnane and K. Reed, “On the effectiveness of mutation analysis as a black box testing technique,”

in Software Engineering Conference, 2001. Proceedings. 2001 Australian, 2001, pp. 12 –20

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 32

17. P. Mitra, S. Chatterjee, and N. Ali, “Graphical analysis of MC/DC using automated software testing,”

in Electronics Computer Technology (ICECT), 2011 3rd International Conference on, 2011, vol. 3, pp.

145 –149.

18. Glenford J. Myers ; Revised and updated by Tom Badgett and Todd The Art of Software Testing,

Second Edition Thomas, with Corey Sandler.—2nd ed. p. cm. ISBN 0-471-46912-2

19. S.L. Pfleeger, Software Engineering Theory and Practice, Prentice Hall, 2001.

20. B. Beizer, Software Testing Techniques 2nd Edition, International 13 Thomson Computer Press, 1990.

21. IEEE Standard for Software Unit Testing IEEE Std. 1008-1987 (R1993).

22. Wikipedia, Software testing

23. Martyn A Ould & Charles Unwin (ed), Testing in Software Development, BCS (1986), p71. Accessed

31 Oct 2014

24. Binder, Robert V.: Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison Wesley

1999. ISBN 0-201-80938-9

25. Sevinç Ozkara, Cryptographic Techniques- Essential Applications In Network Administration,

Scholedge International Journal Of Multidisciplinary & Allied Studies, Vol.1, Nov. Issue;

www.scholedge.org

26. R.V. Binder Testing Object-Oriented Systems - Models, Patterns, and Tools, Addison-Wesley, 1999.

27. M.R Lyu, eds., Handbook of Software Reliability Engineering, McGraw-Hill, 1996.

28. G. Rothermel. and M.J. Harrold, “Analyzing Regression Test Selection Techniques”, IEEE

Transactions on Software Engineering, vol. 22, no. 8, pp. 529 – 551, 1996.

29. Van Veenendaal, Erik. "Standard glossary of terms used in Software Testing". Retrieved 4 January

2013

30. P. C Jorgensen, Software Testing a Craftsman’s Approach. CRC Press, 1995.

31. Laycock, G. T. (1993). The Theory and Practice of Specification Based Software Testing (PostScript).

Dept of Computer Science, Sheffield University, UK. Retrieved 2008-02-13.

32. Bach, James (June 1999). "Risk and Requirements-Based Testing" (PDF). Computer 32 (6): 113–114.

Retrieved 2008-8-19.

33. Ram Chillarege ,“Software Testing Best Practices” , IBM Technical Report RC 21457 Log 96856

April 26, 1999.

34. Manfred Ratzmann and Clinton De Young, Galelio Computing Software Testing and

Internationalization 2003. DeMillo et al., 1988

35. Antonia Bertolino, Eda Marchetti, A Brief Essay on Software Testing

http://books.google.co.uk/books?id=utFCImZOTEIC&pg=PA73&dq=integration+test&hl=en&sa=X&ei=4EpTVOvJMayu7Aak5YCIDA&ved=0CDwQ6AEwAg#v=onepage&q=integration%20test&f=false
http://en.wikipedia.org/wiki/Special:BookSources/0201809389
http://www.scholedge.org/
http://www.astqb.org/get-certified/istqb-syllabi-the-istqb-software-tester-certification-body-of-knowledge/
http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz
http://en.wikipedia.org/wiki/PostScript
http://en.wikipedia.org/wiki/James_Bach
http://www.satisfice.com/articles/requirements_based_testing.pdf

INTERNATIONAL RESEARCH JOURNAL OF MATHEMATICS, ENGINEERING & IT

VOLUME-2, ISSUE-1 (January 2015) ISSN: (2349-0322)

 A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

 International Research Journal of Mathematics, Engineering & IT (IRJMEIT)
 Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

 Page 33

36. Http://en.wikipedia.org/wiki/Oracle_(software_testing)

37. Http://en.wikipedia.org/wiki/Test_harness

38. Www.sqatester.com/documentation/.../IEEEStandardTestPlans.doc IEEE Standard for Software Test

Documentation (ANSI/IEEE Standard 829-1983)

39. N.E. Fenton, and S.L Pfleeger Software Metrics - A Rigorous and Practical Approach”. Second ed.

London: International Thomson Computer Press, 1997

40. A. Bertolino, P. Inverardi, H. Muccini, and A. Rosetti, “An approach to integration testing based on

architectural descriptions,” Proceedings of the IEEE ICECCS- 97, pp. 77-84

http://en.wikipedia.org/wiki/Test_harness
http://www.sqatester.com/documentation/.../IEEEStandardTestPlans.doc

