

ON b*g^- CLOSED SETS IN TOPOLOGICAL SPACES

¹K. Bala Deepa Arasi and ²G. Subasini

1. Assistant Professor of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi, TN

2. M.Phil Scholar, A.P.C.Mahalaxmi College for Women, Thoothukudi, TN

ABSTRACT

In this paper, we have introduced a new class of sets called $b*g^{\wedge}$ - closed sets in topological spaces. A subset A of X is said to be $b*g^{\wedge}$ - closed if $b*cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^-open in X. Also we study some of its properties and investigate the relationship with other existing closed sets in topological spaces. As an application, we introduce a new space namely $T_{b*g^{\wedge}}$ -space.

Keywords: b*g^ - closed sets, g^ - open sets, b* - closure, b* - closed sets

1. Introduction

D. Andrijevic[2] introduced b-open sets in topology and studied its properties. b*-closed sets have been introduced and investigated by Muthuvel[9]. N. Levine[8] introduced generalized closed (briefly g-closed) sets and studied their basic properties. M.K.R.S.Veerakumar[16] defined g^-closed sets in topological space and studied their properties.

Now, we introduce the concept of $b*g^{-closed}$ sets and $b*g^{-open}$ sets in topological space and study some of their properties. Applying these sets we obtain new space namely $T_{b*g^{-}}$ space.

2. Preliminaries

Throughout this paper (X,τ) (or simply X) represents topological spaces on which no separation axioms are assumed unless otherwise mentioned for a subset A of (X,τ) , cl(A), Int(A) and A^c denote the closure of A, interior of A and the complement of A respectively. We are giving some definitions.

Definition: 2.1

A subset A of a topological space (X,τ) is called

- a) a semi-open[7] set if $A \subseteq cl$ (int (A))
- b) an α -open set[12] if $A \subseteq int (cl (int (A)))$
- c) a b-open set[2] if $A \subseteq cl$ (int (A)) U int (cl (A))
- d) a regular open[14] set if A = int (cl(A))

The complement of a semi- open (resp. α - open, b - open, regular open) set is called semi-closed (resp. α -closed, b-closed, regular closed) set.

The intersection of all semi-closed (resp. α - closed, b-closed, regular- closed) sets of X containing A is called the semi-closure (resp. α - closure, b-closure, regular closure) of A and is denoted by scl(A) (resp. α cl(A), bcl(A), rcl(A)). The family of all semi-open (resp. α -open, b-open, regular-open) subsets of a space X is denoted by SO(X) (resp. α O(X), bO(X), rO(X)).

Definition: 2.2

1) a generalized closed set (briefly g-closed)[8] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. 2) a gs-closed set[3] if $sCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. 3) a gb-closed set[1] if $bCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. 4) a rb-closed set[11] if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is b-open in X. 5) a gr*-closed set[6] if $rCl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X. 6) a g^-closed set[16] if Cl(A) whenever $A \subseteq U$ and U is semi-open in X. 7) a bg^-closed set[15] if $bCl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^-open in X. 8) a g*s-closed set[13] if $sCl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs-open in X. 9) a (gs)*-closed set[5] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs-open in X. 10) a r*bg*-closed set[4] if $rbCl(A) \subseteq U$ whenever $A \subseteq U$ and U is b-open in X.

Definition: 2.3 A space (X,τ) is called a

- a) T_b-space[3]], if every gs-closed set in it is closed.
- b) T_{gs}-space[1], if every gb-closed set in it is b-closed.
- c) T_{bg}-space[15], if every bg^-closed set in it is b-closed.
- d) T^{*}_{bg^}-space[15], if every bg^-closed set in it is closed.

3. b*g^ - closed sets

We introduce the following definition.

Definition: 3.1 A subset A of a topological space (X,τ) is called a b^*g^{-1} -closed set if $b^*cl(A) \subseteq U$ whenever $A \subseteq U$ and and U is g^-open in X. The family of all b^*g^{-1} -closed sets of X are denoted by b^*g^{-1} .

Definition: 3.2 The complement of a $b*g^{-closed}$ set is called $b*g^{-open}$ set. The family of all $b*g^{-open}$ sets of X are denoted by $b*g^{-O}(X)$.

Example: 3.3 Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a\}, \{b,c\}\}$ then $\{X, \Phi, \{a\}, \{b,c\}\}$ are b^*g^- closed sets and $\{X, \Phi, \{b,c\}, \{a\}\}$ are b^*g^- open sets in X.

Proposition: 3.4 Every closed set is b*g^-closed set.

Proof: Let A be any closed set in X and U be any g[^]-open set such that $A \subseteq U$. Since A is closed, cl(A)=A. Therefore, $b^*cl(A) \subseteq cl(A) = A \subseteq U$. Hence A is $b^*g^-closed$ set.

The following example shows that the converse of the above proposition need not be true.

Example: 3.5 Let $X = \{a, b, c\}, \tau = \{X, \Phi, \{a\}, \{b\}, \{a,b\}\}$

 $C(X) = \{X, \Phi, \{b,c\}, \{a,c\}, \{c\}\}\$

 $b^*g^{-}C(X) = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{b,c\}, \{a,c\}\}.$

Here $\{a\}, \{b\}$ are $b^*g^{-closed}$ sets but not closed sets in X.

Proposition: 3.6

- i) Every semi-closed set is b*g^-closed
- ii) Every α -closed set is b*g^-closed.

iii) Every regular-closed set is b*g^-closed.

Proof: i) Let A be any semi-closed set in X such that $A \subseteq U$ where U is g[^]-open. Since A is semi-closed, $b^*cl(A) = scl(A) \subseteq U$. Therefore, $b^*cl(A) \subseteq U$. Hence, A is $b^*g^-closed$.

ii) Let A be any α -close set in X such that $A \subseteq U$ where U is g^-open. Since A is α -closed, $b^*cl(A) \subseteq \alpha cl(A) \subseteq U$. Therefore, $b^*cl(A) \subseteq U$. Hence A is $b^*g^-closed$.

iii) Let A be any regular-closed set in X such that $A \subseteq U$. Where U is g[^]-open. Since, A is regular-closed b*cl(A) \subseteq rcl(A) \subseteq U. Therefore, b*cl(A) \subseteq U. Hence, A is b*g[^]-closed.

The converse of the above proposition need not be true as shown in the following example.

Example: 3.7 Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a\}\}$ S-C(X)={X, Φ , {b,c}, {c}, {b}} α -C(X)={X, Φ , {b,c}, {c}, {b}} r-C(X)={X, Φ } b*g^-C(X)={X, Φ , {b}, {c}, {a,b}, {b,c}, {a,c}}. Here, {a,b}, {a,c} are b*g^-closed sets but not semi-closed, α -closed, regular-closed.

Proposition: 3.8 Every b*g^-closed set is gs-closed.

Proof: Let A be any b*g^-closed set and U be any open set such that $A \subseteq U$. Since "Every open set is g^-open set" we have $scl(A) \subseteq b*cl(A) \subseteq U$. Therefore, $scl(A) \subseteq U$ where U is open in X. Hence, A is gs-closed.

The converse of the above proposition need not be true as shown in the following example.

Example: 3.9 Let $X = \{a, b, c\}, \tau = \{X, \Phi, \{a, b\}, \{c\}\}$

 $b*g^{-C}(X) = \{X, \Phi, \{a,b\}, \{c\}\}$

gs-C(X)={X, Φ , {a}, {b}, {c}, {a,b}, {b,c}, {a,c}}.

Here $\{a\}, \{b\}, \{b,c\}, \{a,c\}$ are gs-closed sets but not $b*g^{-}$ -closed sets.

Proposition: 3.10 Every b*g^-closed set is bg^-closed.

Proof: Let A be any b*g^-closed set in X and U be any g^-open set such that $A \subseteq U$. Now $bcl(A) \subseteq b*cl(A) \subseteq U$. Therefore, $bcl(A) \subseteq U$ where U is g^-open in X. Hence A is bg^-closed set.

The converse of the above proposition need not be true as shown in the following example.

Example: 3.11 Let $X=\{a, b, c\}, \tau=\{X, \Phi, \{a,c\}\}\$ $b*g^-C(X)=\{X, \Phi, \{b\}, \{a,b\}, \{b,c\}\}\$ $bg^-C(X)=\{X, \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}.\$ Here $\{a\}, \{c\}$ are $bg^-closed$ sets but not $b*g^-closed$ sets.

Proposition: 3.12 Every b*g^-closed set is gb-closed set.

Proof: Let A be any b*g^-closed set in X and U be any open set such that $A \subseteq U$. Since "Every open set is g^-open set" we have $bcl(A) \subseteq b*cl(A) \subseteq U$ where U is open in X. Hence A is gb-closed set.

The converse of the above proposition need not be true as shown in the following example.

Example: 3.13 Let $X = \{a, b, c\}, \tau = \{X, \Phi, \{a\}, \{b,c\}\}$ gb-C(X)= $\{X, \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}\}$ b*g^-C(X)= $\{X, \Phi, \{a\}, \{b,c\}\}.$

Here $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$ are gb-closed sets but not $b*g^{-closed}$ sets.

Proposition: 3.14 Every r*bg*-closed set is b*g^-closed set.

Proof: Let A be any r*bg*-closed set in X and U be any g^-open set in X such that $A \subseteq U$. Now, $b^*cl(X) \subseteq rbcl(A) \subseteq U$. Therefore, $b^*cl(A) \subseteq U$. Hence, A is $b^*g^-closed$ set.

The converse of the above proposition need not be true as shown in the following example.

Example: 3.15 Let $X = \{a, b, c\}, \tau = \{X, \Phi, \{a\}, \{a,b\}\}$ b*g^-C(X)= $\{X, \Phi, \{b\}, \{c\}, \{b,c\}, \{a,c\}\}$ r*bg*-C(X)= $\{X, \Phi, \{b,c\}\}.$

Here $\{b\}$, $\{c\}$, $\{a,c\}$ are $b*g^{-closed}$ sets but not $r*bg*{-closed}$ sets.

Proposition: 3.16 Every gr*-closed set is b*g^-closed set.

Proof: Let A be any gr*-closed set and U be any g^-open set such that $A \subseteq U$. Since "Every g^-open set is g-open" we have $b*cl(A) \subseteq rcl(A) \subseteq U$. Therefore, $b*cl(A) \subseteq U$ where U is g^-open in X. Hence, A is $b*g^-closed$ set.

The converse of the above proposition need not be true.

Example: 3.17 Let $X = \{a, b, c\}, \tau = \{X, \Phi, \{b\}\}$

 $b*g^-C(X) = \{X, \Phi, \{a\}, \{c\}, \{a,c\}\}$

 $gr^*-closed = \{ X, \Phi, \{a,c\} \}.$

Here $\{a\}, \{c\}$ are $b*g^{-closed}$ sets but not $gr*{-closed}$ sets.

Proposition: 3.18 Every g*s-closed set is b*g^-closed set.

Proof: Let A be any g*s-closed set in X and U be any g^-open set such that $A \subseteq U$. Since, "Every g^-open is gs-open" we have $b*cl(A) = scl(A) \subseteq U$. Therefore, $b*cl(A) \subseteq U$. Hence A is $b*g^-closed$ set.

The converse of the above proposition need not be true.

Example: 3.19 Let $X=\{a, b, c, d\}, \tau=\{X, \Phi, \{b\}, \{a,b\}, \{b, c, d\}\}$ $b*g^-C(X)=\{X, \Phi, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$ $g*s-C(X)=\{X, \Phi, \{a\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{c,d\}, \{a, c, d\}\}.$ Here, $\{a, b, c\}, \{a, b, d\}$ are $b*g^-$ -closed sets but not g*s-closed sets.

Proposition: 3.20 Every (gs)*-closed set is b*g^-closed set.

Proof: Let A be any $(gs)^*$ -closed set and U be any g^-open set such that $A \subseteq U$. Since, "Every g^-open is gs-open" we have $b^*cl(A) \subseteq cl(A) \subseteq U$. Therefore, $b^*cl(A) \subseteq U$. Hence A is $b^*g^-closed$.

The converse of the above proposition need not be true as shown in the following example.

Example: 3.21 Let $X = \{a, b, c, d\}, \tau = \{X, \Phi, \{a\}, \{a, c\}, \{a, b, d\}$

 $b*g^{-}C(X) = \{X, \Phi, \{b\}, \{c\}, \{d\}, \{b,c\}, \{c,d\}, \{b,d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$

 $(gs)^*\text{-}C(X) = \{X, \Phi, \{c\}, \{b, c, d\}, \{b, d\}\}.$

Here $\{b\}, \{d\}, \{b,c\}, \{c,d\}, \{a, b, c\}, \{a, c, d\}$ are $b*g^{-closed}$ sets but not (gs)*-closed sets.

Proposition: 3.22 Every rb-closed set is b*g^-closed set.

Proof: Let A be any rb-closed set and U be any g^-open set such that $A \subseteq U$. Now, $b^*cl(A) \subseteq rcl(A) \subseteq U$. Therefore, $b^*cl(A) \subseteq U$. Hence A is $b^*g^-closed$ set.

The converse of the above proposition need not be true as shown in the following example.

Example: 3.23 Let $X = \{a, b, c\}, \tau = \{X, \Phi, \{a\}, \{a, b\}, \{a, c\}\}$

 $rb-C(X)=\{X, \Phi, \{c\}, \{b,c\}\}$

 $b^*g^{-}C(X) = \{X, \Phi, \{b\}, \{c\}, \{b,c\}\}.$

Here {b} are b*g^-closed sets but not rb-closed sets.

Proposition: 3.24 Every r*g*-closed set is b*g^-closed set.

Proof: Let A be any r*g*-closed and U be any g^-open set such that $A \subseteq U$. Since, "Every g^-open set is g-open set" we have $b*cl(A) \subseteq rcl(A) \subseteq U$. Therefore, $b*cl(A) \subseteq U$. Hence, A is $b*g^-closed$ set.

The converse of the proposition need not be true as shown by the following example..

Example: 3.25 Let X={a, b, c}, τ= {X, Φ, {b}}
b*g^-C(X)={X, Φ, {a}, {c}, {a,c}}
r*g*-C(X)={X, Φ, {a,c}}.
Here {a}, {c} are b*g^-closed sets but not r*g*-closed sets.

Remark: 3.26 The following diagram shows the relationship of $b*g^{-closed}$ sets with other known existing sets $A^{-}B$ represents A implies B but not conversely.

1. $b*g^{-}$ closed set	2. closed	3.semi-closed	4. α -closed	
5. regulr closed	6. gs-closed	7. bg^-closed	8.gb-closed	
9. r*bg*-closed	10. gr*-closed	11. g*s-closed	12.(gs)*-closed	
13. rb-closed	14. r*g*-closed	14. r*g*-closed		

4. CHARACTERIZATION

Lemma: 4.1 The finite union of b*g^-closed set need not be b*g^-closed set.

Example: 4.2 Let $X = \{a, b, c\}, \tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}\}$ b*g^-closed= {X, Φ , {a}, {b}, {c}, {a, c}, {b, c}}. Here {a} \cup {b}={a,b} is not b*g^-closed set. Lemma: 4.3 The finite intersection of any two b*g^-closed set need not be b*g^-closed set.

Example: 4.4 Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a\}\}$ b*g^-closed= {X, Φ , {b}, {c}, {b,c}, {a, b}, {a,c}} Here {a,b} \cap {a,c}= {a} is not b*g^-closed set.

Proposition: 4.5 Let A be a $b*g^{-closed}$ set of X. Then b*cl(A)-A does not contain a non-empty $g^{-closed}$ set.

Proof: Suppose A is a b*g^-closed set. Let F be a g^-closed set contained in b*cl(A)-A. Now, F^c is a g^-open set of X such that $A \subseteq F^c$. Since, A is b*g^-closed set we have $b*cl(A) \subseteq F^c$. Hence $F \subseteq (b*cl(A))^c$. Also $F \subseteq b*cl(A)$ -A. Therefore, $F \subseteq b*cl(A) \cap (b*cl(A))^c = \Phi$. Hence, F must be empty.

Proposition: 4.6 If A is g^-open and b*g^-closed set of X, then A is b*-closed.

Proof: Since A is g^-open and b*g^-closed. We have $b*cl(A) \subseteq A$. Hence, A is b*-closed.

Proposition: 4.7 The intersection of a b*g^-closed set and a b*-closed set of X is always b*g^-closed set.

Proof: Let A be a b*g^-closed set and B be a b*-closed set. Since, A is b*g^-closed, b*cl(A) \subseteq U whenever U is g^-open. Let B be such that $A \cap B \subseteq U$ where U is g^open. Now, b*cl(A \cap B) \subseteq b*cl(A) \cap b*cl(B) \subseteq U \cap B \subseteq U. Hence A \cap B is b*g^-closed set. Therefore, intersection of any b*g^-closed set and a b*-closed set of X is always b*g^closed set.

5. APPLICATIONS

As an application of b^*g^- -closed sets, we introduce a new space namely $T_{b^*g^-}$ - space.

Definition: 5.1

A space (X,τ) is called a $T_{b*g^{-}}$ space, if every $b*g^{-}$ -closed set in X is closed.

Proposition: 5.2

Every T_b - space is $T_{b*g^{-}}$ space.

Proof:

Let (X,τ) be T_b - space. Let A be b*g^-closed set in X. By proposition: 3.8, "Every b*g^-closed set is gs-closed", A is gs-closed. Since (X,τ) is T_b - space, A is closed. Hence (X,τ) is $T_{b*g^{\Lambda_{-}}}$ space.

The converse of the above proposition need not be true as shown in the following example.

Example: Let $X = \{a, b, c\}, \tau = \{X, \Phi, \{a, b\}, \{c\}\}$

 $b*g^{-C}(X) = \{X, \Phi, \{c\}, \{a,b\}\}$

 $gs-C(X)=\{X, \Phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}\}$

 $C(X) = \{X, \Phi, \{c\}, \{a,b\}\}$

Hence (X, τ) is $T_{b^*g^{-}}$ space but not T_{b^-} space.

Proposition: 5.3

Every $T_{bg^{-}}^{*}$ - space is $T_{b*g^{-}}$ space

Proof:

Let (X,τ) be $T^*_{bg^{\wedge}}$ - space. Let A is b*g^-closed. Since "Every b*g^-closed set is bg^-closed". Since, X is $T^*_{bg^{\wedge}}$, A is closed. Therefore, (X,τ) is $T_{b^*g^{\wedge}}$ - space.

The converse of the above proposition need not be true as shown by the following example.

Example: Let $X = \{a, b, c\}, \tau = \{X, \Phi, \{a\}, \{b,c\}\}$ b*g^-C(X)= {X, Φ , {a}, {b,c}} bg^-C(X)= {X, Φ , {a}, {b}, {c}, {a,b}, {b,c}, {a,c}}

 $C(X) = \{X, \Phi, \{a\}, \{b,c\}\}$

Hence (X, τ) is $T_{b^*g^{-}}$ space but not $T^*_{bg^{-}}$ space.

Proposition: 5.4

Every $T_{b*g^{-}}$ space is $T_{gs^{-}}$ space.

Proof:

Let (X,τ) be $T_{b^*g^{-}}$ space. Let A be b^*g^{-} -closed set in (X,τ) . By proposition: 3.12, "Every b^*g^{-} -closed set is gb-closed", A is gb-closed. Since "Every closed set is bclosed", A is b-closed set in X. Therefore, (X,τ) is T_{gs} -space.

The converse of the above proposition need not be true as shown in the following example.

Example: Let $X = \{a, b, c\}, \tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}\}$ $b^*g^{-}C(X) = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ $gb^{-}C(X) = \{X, \Phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ $C(X) = \{X, \Phi, \{c\}, \{b, c\}, \{a, c\}\}$ Hence, (X, τ) is $T_{gs^{-}}$ space but not $T_{b^*g^{-}}$ space.

Proposition: 5.5

Every $T_{b*g^{-}}$ space is $T_{bg^{-}}$ space.

Proof:

Let (X,τ) be $T_{b^*g^{\wedge}}$ -space. Let A be b^*g^{\wedge} closed set in (X,τ) . By Proposition: "Every closed set is bg^-closed set, A is bg^-closed. Since, "Every closed set is b-closed set". A is b-closed set in X. Therefore, (X,τ) is $T_{bg^{\wedge}}$ -closed.

The converse of the above proposition need not be true as shown in the following example.

Example: Let $X = \{a, b, c\}, \tau = \{X, \Phi, \{a, c\}\}$ b*g^-C(X)= {X, Φ , {b}, {a,b}, {b,c}} b-C(X)= { X, Φ, {a}, {b}, {c}, {b,c}, {a,b}} C(X)= { X, Φ, {b}}

Hence, (X,τ) is $T_{bg^{-}}$ space but not $T_{b^*g^{-}}$ space.

REFRERENCES

[1] Ahmad Ai. Omari and Mohd. SalmiMD. Noorani, On generalized b-closed sets, *Bult. Malaysian Mathematical Sciences Society*, (2) 32(1) (2009), 19-30.

[2] D. Andrijevic, On b-open sets, Mat. Vesnik., 48(1996), no. 1-2, 59-64.

[3] S.P. Arya and T.M. Nour, Characterizations of S-normal spaces, *Indian J.Pure Appl. Math.*, *Vol 21(990)*.

[4] M. Elakkiya, N. Sowmya, N. Balamani, r*bg*-closed sets in topological spaces. *International Journal of Advance Foundation and Research in Computer*, vol.(2), issue 1, January 2015.

[5] Elivina Mary, Myvizhi, (gs)*-closed sets in topological spaces. International Journal of Mathematics Trends and Technology, vol.7, no.2, Maech 2014.

[6] K. Indirani, P. Sathishmohan and V. Rajendran, On gr*-closed sets in topological spaces. *International Journal of Mathematics Trends and Technology*, vol.6, Feb-2014.

[7] N. Levine, Semi-open sets and Semi-continuity in topological spaces Amer.Math.Monthly, 70(1963), 36-41

[8] N. Levine, Generalised closed sets in topology Rend.Circ.Mat.Palermo, 19(1970) 89-96.

[9] Muthuvel, Parimelazhagan, b*-closed sets in topological spaces, *Int. Journal of Math. Analysis*, vol.6, 2012. no.47, 2317-2323.

[10] N.Meenakumari and T.Indira, r*g*-closed sets in topological spaces, *Annals of Pure* and *Applied Mathematics* vol.6, no.2, 2004, 125-132.

[11] N. Nagaveni and A. Narmatha, On regular b-closed sets in topological spaces, *Int.Journal of Math. Analysis*, 7(19) (2013) 937-948.

[12] ONjasted, On some classes of nearly open sets, Pacific J Math., 15(1965).

[13] Pusbalatha and K. Anitha, g*s-closed sets in topological spaces, *Int.J.Contemp.Math.Sciences*, vol.6, 2011, no.19, 917-929.

[14] Stone.M, Application of the theory of Boolean rings to general topology, *Trans. Anrer. Maths. Soc.*, *41*(1937)374-481.

[15] R. Subasree and M. MariaSingam, On bg[^]-closed sets in topological spaces, *IJMA*, 4(7) 2013, 68-173.

[16] M.K.R.S, Veerakumar, (2003), g[^]-closed sets in topological space, *Bult.Allahabad*. *Math. Soc.*, vol.18, 99-112.