

International Research Journal of Natural and Applied Sciences Vol. 2, Issue 10, Oct 2015 IF- 2.818 ISSN: (2349-4077)

© Associated Asia Research Foundation (AARF)

Website: www.aarf.asia Email: editor@aarf.asia, editoraarf@gmail.com

XRD DIFFRACTION PATTERN OF THE ADDUCT OF ADIPIC ACID WITH [NP(OH)²]₃

Atul Gupta¹ and S.P.S. Jadon²

¹Department of Chemistry, S.V. College Aligarh/Dr. B.R.A. University, India ²Department of Chemistry, S.V. College Aligarh/Dr. B.R.A. University, India

ABSTRACT

The adduct of adipic acid with $[NP(OH)_2]_3$ assigned as $[P_3N_3(OH)_4][CH_2]_8$ is characterized by EPR and XRD spectra and resultst reveals that the adduct is paramagnetic in character having a triclinic geometrical structure.

KEYWORDS: Conductor, Geometrical, Paramagnetic, Synthesis, Triclinic.

INTRODUCTION

Synthesis of various adducts of $[NP(OH_2)]_3$ with a number of organic acid such as cinnamic acid, oleic acid, hippuric acid, salicylic acid, nicotinic acid, adipic acid and tannic acid etc. have been reported.¹⁻⁷

EXPERIMENTAL

 $[NP(Cl)_2]_3^8$ is used as starting material. When NaOH as hydroxide is treated on $[NP(Cl_2)]_3$ in a non aqueous solvent. $[NP(OH)_2]_3$ is formed and separated as palm coloured mass. To prepare the adduct, $[NP(OH)_2]_3$ and adipic acid in (1.1) ratio are refluxed for 6-8 hrs. at 140^0 - 160^0 C in presence of 1 ml. conc. H_2SO_4 using alcohol as solvent.

The adduct, obtained, was separated, washed, dried and stored in vacuum desiccator. EPR and XRD spectra were recorded on Varian's X-E-4 band spectrometer at RT and PW-1710 using Cuk_{α} as source of radiation($\lambda = 1.5418 \text{Å}$) in the 2θ range 0^0 to 80^0 .

RESULTS AND DISCUSSION

Its EPR spectrum⁹ consist a medium peak of high intensity (Figure-1) inferring its paramagnetic nature which is supported by the value of magnetic momentum $\mu_{eff} = 1.6850$

BM and magnetic susceptibility $\chi_A = 1.1833 \times 10^{-3}$ e.s.u. The value of $g_z = 2.1710 > 2$ indicate the presence of covalency in the adduct as well as ionic valency caused by the reaction of COOH group of adipic acid and P-OH group of hydroxyphosphazene forming $P-O^--C^+=O$ with the elimination of water molecules which are absorbed by conc. H_2SO_4 .

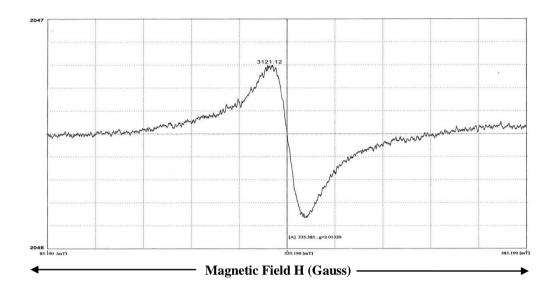


Figure-1: E.P.R Spectrum of Compound

The XRD graph (Figure-2) has a prominent peak of high intensity at 31.83⁰ having other peak in its right side at 33.5. This prominent peak is for the P-N bond which repeats again at 36⁰, 38⁰ and 59⁰ & 60⁰ with same pattern and low intensity. The peak at 24.33⁰ having another peak on its left side at 21.83 is for the C=O bands of adipic acid, which also repeats rights side of the prominent peak, inferring that one molecule of [NP(OH)₂]₃ has linked to both side with adipic acid as shown by its proton NMR spectrum (loc.cit.) conferming its reported structure.

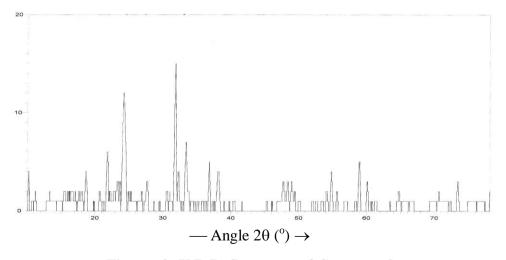


Figure -2: X.R.D. Spectrum of Compound

The values 10 of $\sin^2\theta$, milar indexes hkl and interplaner distance 'd'.

Table-1 XRD Pattern of Compound

S. No.	20 (degree)	Sin ² θ	$q(h^2 + k^2 + l^2)$	hkl	d(Å)		I / I _o
					Obs.	Theo.	%
1.	17.50	0.02314	0.02314 x (1)	100	5.0683	5.0633	20
2.	21.83	0.03585	0.01792 x (2)	110	4.0712	4.0678	30
3.	24.33	0.04440	0.0222 x (2)	110	3.6587	3.6552	60
4.	31.83	0.07519	0.02506 x (3)	111	2.8114	2.8089	75
5.	33.50	0.08305	0.02076 x (4)	200	2.6753	2.6727	35
6.	36.83	0.09979	0.01996 x (5)	210	2.4407	2.4382	25
7.	38.00	0.10599	0.01766 x (6)	211	2.3679	2.3659	20
8.	48.33	0.16758	0.02095 x (8)	220	1.8832	1.8815	15
9.	54.83	0.21199	0.02355 x (9)	300	1.6744	1.6729	20
10.	59.00	0.24248	0.02424 x (10)	310	1.5655	1.5642	25
11.	60.17	0.25128	0.02284 x (11)	311	1.5379	1.5365	15
12.	64.83	0.28734	0.02394 x (12)	222	1.4382	1.4369	10
13.	73.50	0.35799	0.02557 x (14)	321	1.2884	1.2873	15

 $q_{avg} = 0.28779$

Calculated, from its XRD spectrum are in close agreement to that of theortical ones. The values of axial distances a_o 1.4370Å, b_o 0.7869Å, c_o 1.8175Å and axial angles α 65.91°, β 150.01°, γ 135° are corresponding to triclinic geometrical packing of the molecule.

CONCLUSIONS

From the results it is evident that the adduct has ionic as well as covalent bond with formation of P-O-C=O linkage showing good conductivity due to presence of unpaired electrons in it, supported by its paramagnetism. The published (loc.cite) structure as (Figure-3).

Figure-3: Structure of Compound

Acknowledgement

Authors wish to thanks to, Director SAIF, IIT Bombay, Director ACMS IIT Kanpur to provide instrumental facilities.

REFERENCES

- 1. Rani I., and Jadon S.P.S. Jadon, 2008, Synthesis and Spectral Characterization of Hexahydroxy Tris-Cyclophosphazene Hexaacrylate *Asian Journal of Chemistry*, 20(7), 5711-5716.
- 2. Rani I., and Jadon S.P.S.,2008, Spectral Characterization of reaction product of Oleic acid and Hexahydroxycyclophosphazene, *International Journal of Chemical Sciences*, *6*(2), 519-525.
- 3. Gupta A., and Jadon S.P.S.,2009,Mass and I.R Spectral Characterization of the reaction product of Hexahydroxycyclotriphosphazene with Hippuric acid, *International Journal of Chemical Sciences*, 7(4), 2867-2871.
- 4. Gupta A., and Jadon S.P.S., 2012, Mass and I.R. Spectral Characterization of the reaction product of Hexahydroxycyclotriphpsphazene with Salicylic acid, *International Journal of Chemical Sciences*, 10(1), 159-165.
- 5. Gupta A., and Jadon S.P.S.,2012,Removal of Nicotinic acid by [NP(OH)2]3 and Identification of product by its Mass,,I.R.and NMR spectra, *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, *3*(4), 11-19.
- 6. Gupta A., and Jadon S.P.S.,2014,Spectral and Antibacterial Characterization of the adduct of Adipic acid with [NP(OH)2]3, *American International Journal of Research in Formal, Applied & Natural Sciences*, 7(1), 2014, 97-103.
- 7. Gupta A., and Jadon S.P.S., 2014, Investigations of Hexahydroxyphosphazene Tannate, *American International Journal of research in Formal, Applied & Natural Sciences*, 8(1), 81-88.
- 8. Jadon S.P.S., 2003 Asian Journal of Chemistry, 15(1), 151-154.
- 9. G.E. Pake, *The Physical principles of Electron paramagnetic Resonance*, (W.A. Binjamin, Inc., 1973).
- 10. M.M. Woolfson, *An Introduction to X-ray Crystallography* (Vikas Publishing House Pvt. Ltd., Cambridge University Press, 1978).