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ABSTRACT 

The majority of problems came across in practice include the optimization of multiple criteria. 

Usually, few of them are at variance like that no single solution is concomitantly optimal with a 

particular aspect to all criteria, but alternatively numerous inimitable compromise solutions 

subsist. At the same time, the search space of such like problems is often very large and complex, 

so that traditional optimization techniques are not applicable or cannot solve the problem within 

reasonable time. The process of optimization methodically and concomitantly a collection of 

objective function are known as multiobjective optimization (MOO) or vector optimization. 

Optimization mentions to detecting one or numerous attainable solutions which corresponds to 

utmost values of one or numerous objectives. Necessity for Optimization arrives mostly from the 

utmost motive of either designing a solution for minimal viable cost of fabrication, or for 

maximal viable constancy, or others. This paper is a contemplate of different methods for Multi 

Objective Optimization. 

 

Keywords: Optimization, Multi Objective, Multiple Criteria, Search Space, Pareto Optimal Set,          

Pareto Optimal Front. 

 

 

1. Introduction 

Optimization 
1
 mentions to detecting one or numerous realizable solutions which corresponds to 

utmost values of one or numerous objectives. Necessity for optimization mostly arrives from the 

utmost motive of either designing a solution for minimal viable cost of fabrication, or for 
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maximal viable constancy, or others. When an optimization problem modeling 
2
 a physical 

system includes only one objective the task of detecting the optimal solution is known as single 

objective optimization. 

When an optimization problem modeling a physical system involves more than one objective 

function, the task of detecting the one or more optimal solutions is known as multi-objective 

optimization
 3
. 

Virtually, there subsist an infinite number of similar problems. In practice, real-world decision 

making problems with only one objective are rare. Despite of that, solving single objective 

optimization 
2
 problems is far more common than solving multiobjective problems, since there 

appears to be no generally effective and efficient method 
4
 available for solving multiobjective 

problems directly as they are. Typically a multiobjective problem is to be effectively converted 

to a single objective problem before applying an optimization algorithm. This conversion can be 

done easily by first deciding the relative importance for each objective a priori. Then, for 

example, the decision-maker may combine the individual objective functions into a scalar cost 

function (linear or nonlinear combination), which effectively converts a multiobjective problem 

into a single objective one.  

Anyway, single objective problems are only a subclass of multiobjective problems 
5
. Thus 

finding a method for solving the multiobjective problems as multiobjective problems, without 

any a priori preference decisions, and without first converting the problem into a single objective 

one, is one of the most important optimization research objectives at the moment. Justifying 

more practically, the decision-makers (having multiple objectives), are willing to perform 

unbiased searches in general.  

A wide variety of approaches have been applied for attacking multiobjective optimization 

problems. A multiobjective optimization problem and its globally optimal solution(s) can be 

defined in many ways. The most important underlying question is, on how the tradeoff between 

the conflicting and mutually independent objectives should be done. Which objective should be 

favored over the others? This report concentrates on the concept of Pareto-optimization 

originated by the engineer/economist Valfred Pareto 
6
. He made one of the most important 

findings in the field of multiobjective optimization by finding that:  



 GE-INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH 

VOLUME -2, ISSUE -4 (JUNE 2014)                          ISSN: (2321-1717) 

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.                                                                                                                                            

GE- International Journal of Engineering Research (GE-IJER)                                                        

Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia              Page 14   Page 14 

Page 14 

Multiple criteria solutions could be partially ordered without making any preference choices a 

priori. 

 

2. Background and Objectives 

 

The procedure of optimizing methodically and concomitantly a group of objective function is 

known as multiobjective optimization (MOO) or vector optimization. This paper is a 

contemplate of procedure for MOO. In opposite, this contemplates excluded numerous of the 

technical details and, alternatively, offers a roadmap of presently obtainable ceaseless nonlinear 

methods and literary text. Generally conceptions are concisely described, and references are 

contained for further inspection. In addendum, this paper combines apparently contrasting 

concepts, procedures, and terminology stemming from different uses. 

 

Description 

Most optimization problems encountered in practice involve multiple criteria that need to be 

considered. These so-called objectives are thereby mostly conflicting. The decision on a laptop 

purchase, for instance, amongst other things, maybe influenced by battery life, performance, 

portability, and the price. None of the lone solution is usually concomitantly optimal with a 

particular aspect to each these objectives, but rather numerous different designs subsist which is 

incomparable. 

 

Problem Definition  

A multi-objective optimization problem has many objective functions which are to be 

minimized. Similar single objective optimization problem at this place furthermore the problem 

normally has numerous limitations which any attainable solution must gratify.  

 

Basic Concepts  

Definition 1 (Pareto-optimal set) : The Pareto-optimal set(or Pareto set for short) of the decision 

space X corresponds to the set of minimal elements of (X,≼par), i.e., the Pareto set consists of all 

elements in u ∈ X, for which no x ∈ X exists with x ≺par u 
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Definition 2(Pareto-optimal front): The Pareto-optimal front (or Pareto front for short) for a 

decision space X corresponds to the objective values of the Pareto set—which corresponds to the 

minimal set of values. 

 

General Form of MOOP   

Minimize/Maximize            fm(x), m=1, 2,….., M                                                                             

subject to                              gi(x)>= 0 j=1, 2, ….., J                                                                              

                                              hk(x) =0, k=1,2,……,K                                                                               

                                              Xi
(L)

 ≤ Xi ≤ Xi
(u)

               i=1,2,…..,n                                                   

A solution x is a vector of n decision variables: X= X1, X2 , ,......., Xn
T
  

The endmost set of constraints are called variable bounds, restricting every decision Variable Xi 

to take a value inside a lower Xi
(L) 

and an upper Xi
(u)

 bound. These Bounds form a decision 

variables space D, or simply the decision space. 

 

Linear and Nonlinear MOOP 

If each of objective functions and restrictions are linear, the resulting MOOP is known as a 

multi-objective linear problem (MOLP). If some of the objective or limitation functions are 

nonlinear, the resulting problem is known as a nonlinear multi-objective problem. 

 

Convex and Non Convex MOOP 

Convex function is defined as for each of  

 

F(λx
(1)

+(1- λ x
(2) 

) ≤
  
λ

 
f (x

(1)
)+ (1- λ)f(x

(2)
)                         for all 0≤ λ≤  1 (5) 

 

For a convex function, a local minimal is always a global minimal. The Hessian matrix of fx is 

positive definite for each of  x. A function gratifying the inequality shown above with > sign 

alternatively is known as a non convex function. 

 

Objectives in Muti-Objective Optimization 

Basic goal in a multi-objective optimization are: 
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1. To detect a set of linear solutions as close as viable to the pareto optimal front. 

2. To detect a set of solutions as diverse as viable.  

 

3. Classification for Multiobjective Optimization Approaches  

 

As discussed, in case of a multiobjective optimization problem, there subsists no single seldom-

justified definition of the optimum solution. Basically, the problem is on how the individual 

objective functions should be weighted in relation to each other. In case of a lone objective 

problem there is no such problem, since there is only one objective. Because the objective 

function weighting problem is characteristic property of multiobjective problems, the solution for 

the weighting problem is a natural basis for the classification. Sooner or later, the decision-maker 

should finally decide the relative importance of each objective function in order to get a lone 

unique solution to be used as a solution of his original multidisciplinary decision making 

problem. This decision can be done applying one of the following approaches 
7
:  

1. A Priori Preference Articulation: The decision-maker selects the weighting before 

running the optimization algorithm. In practice it means that the decision-maker 

combines the individual objective functions into a scalar cost function (linear or 

nonlinear combination). This effectively converts a multiobjective problem into a 

single objective one.  

2. Progressive Preference Articulation: Decision-maker interacts with the 

optimization program during the optimization process. Typically the system 

provides an updated set of solution and let the decision-maker consider whether or 

not change the weighting of individual objective functions.  

3. A Posteriori Preference Articulation: No weighting is specified by the user before 

or during the optimization process. The optimization algorithm provides a set of 

efficient candidate solution from which the decision-maker choose the solution to be 

used.  
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Currently, in connection with evolutionary algorithms, there exist clearly two mainstream 

approaches for appropriate definition of multiobjective optimization problem also in case of 

conflicting objectives:  

1. Weighted Sum of Objective Functions: Converting the multiobjective problem to a 

single objective one by using weighted sum of objective functions as a 

representative objective function, and then solve the problem as a single objective 

one. Represents a priori preference articulation.  

2. Pareto Optimization: Solving the multiobjective problem by applying Pareto-

optimization approach. Decision-maker selects the solution from the resulting 

Pareto-optimal set. Represents a posteriori preference articulation.  

 

4. Methods with a priori articulation of preferences 

 

The procedure in this section allows the use to specify preferences, which may be articulated in 

terms of goals or the relative importance of contrast objectives. The majority of these methods 

incorporate parameters, which are coefficients, exponents, restriction limits, etc. That can be 

either being set to reflect decision-maker preferences, or be ceaselessly altered in an effort to 

represent the complete Pareto optimal set.  

 

Considerations of more than single objective function in an optimization problem introduce 

addendum level of independence. Unless these levels of independences are restricted, 

mathematical conjecture indicates a set of solution points quite than a lone optimal point. 

Preferences prescribed by the DM offer restriction. The majority of usual approach to foist like 

restrictions to grow a useful function as defined priory. Thus the majority of the formulation in 

this segment is founded on contrasting useful functions. 

 

Weighted global criterion method 

 

One of the most usual common scalrization procedures for multi objective optimization is the 

global criterion procedure in which each of objective function are integrated to formation a lone 



 GE-INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH 

VOLUME -2, ISSUE -4 (JUNE 2014)                          ISSN: (2321-1717) 

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.                                                                                                                                            

GE- International Journal of Engineering Research (GE-IJER)                                                        

Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia              Page 18   Page 18 

Page 18 

function. The word global Criterion technically can mention to any scalarized function but it 

frequently is retain for the formulations presented in this subsection. In spite of the fact a global 

criterion may be a mathematical function with no association to predilection, a weighted global 

criterion is a sort of useful function in which a procedure parameter are employed to model 

predilections. One of the majorities of common useful function is convey in its easiest shaped as 

the weighted exponential sum: 

 

The most common extensions 
8, 9 

of these equations are: 

 
 

At this spot w is a vector of weights typically set by the decision maker such that and 

w> 0. As with the mejority of procedures that include objective function weights, setting one or 

to a greater extent of the weights to zero can result in weak Pareto optimality where Pareto 

optimality may be achievable. Generally, the relative value of  the weights reflects the ralative 

importance of the objectives. Therefore,global criterion procedures are frequently called utopia 

point procedures or compromising programming procedure as the DM  customarilyhas to settle 

between the last solution and the utopia point. For computational efficiency or in case where a 

function’s independent minimal may be unachieveable one may imprecisethe utopia point by z, 

which is called an aspiration point 
10, 11

 reference point 
12

 or target point 
13

 . The solution to these 

approaches contingents on the value of p. Customarily,p is proportionate to the quantity of 

emphasis putted on minimizing the function with the immense contrastbetween Fi(x) and F◦I 
14

. 

Nevertheless differing only p ( with each of the alternate parameter constants)  customarily 

produce only a finite number of Pareto optimal points in a comparatively little vicinity. One 
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customarily chooses a fixed value for p. Then the user either sets w to reflect predilections a 

priori or methodically change w t produce a set of Pareto points. 

 

Weighted Sum Method  

The most useful approach to multi objective optimization is the weighted sum procedure: 

 

 
If each of the weights are positive the minimal of this is Pareto optimal ; i.e. minimizing this is 

enough for Pareto optimality. Nevertheless the formulation does not offer a obligatory stipulation 

for Pareto optimality 
15

. 

Misinterpretation of the theoretical and practical meaning of the weights can make the process of 

intuitively selecting non-arbitrary weights an inefficient chore. With ranking methods 
16

, the 

contrast objective functions are ordered by significance. The minimum important objective 

collect a weight of one and integer weights with constant increments are allocate to objectives 

that are of greater importance. The same approach is employed with categorization procedures in 

which contrasting objectives are grouped in wide groups analogous as highly important and 

moderately important. With grading procedure DM allocate independent values of relative 

importance to every objective function. 

Initially, despite the numerous procedure for determining weights a gratify,a priori choice of 

weights does not obligatory guarantee that the last solution will be adequate ; one may have to 

fix the problem with novel weights. In fact weights must be functions of the original objectives, 

not constants, in order for a weighted sum to mimic a predilection function precisely
17

. 

The second problem with the weighted sum approach is that it is not possible to acquire points 

on non convex part of the Pareto optimal set in the criterion space 
18

. In spite of the fact non 

convex Pareto optimal sets are comparatively unusual 
19, 20, and 21

. The final strenuous with the 

weighted sum procedure is that differing the weights constantly and ceaselessly may not 

obligatory outcome in an even distribution of Pareto o[timal points and an precise, entire 

depiction of the Pareto optimal set. 

 

Lexicographic Method 
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With the lexicographic method the objective functions are ordered in order of importance. Then 

the pursuing optimization problems are solved single at the juncture:  

 

 
At this spot i represent a function’s position in the preferred sequence, and Fj represents the 

optimum of the jth objective function, found in the jth iteration. Some authors distinguish the 

hierarchical procedure from the lexicographic appproach, as having the pursuing restrictions 
22

 : 

 

 
In this instance, δj are positive tolerance determined by the DM, and as they enlarge, the 

attainable region prescribed by the objective functions enlargs. This lesson the sensitivity of the 

final solution to the initial objective function grading procedure. δj need not be less than 100 
23

. 

 

Weighted min-max method 

 

Weighted min-max formulation or weighted Tchebycheff procedure is stated as pursue: 

 

 
A usual approach for serving is to introduce an addendum not known parameter  λ: 

Minimize 

 



 GE-INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH 

VOLUME -2, ISSUE -4 (JUNE 2014)                          ISSN: (2321-1717) 

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.                                                                                                                                            

GE- International Journal of Engineering Research (GE-IJER)                                                        

Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia              Page 21   Page 21 

Page 21 

Nevertheless, enlarging the number of restrictions can enlarge the complexity of the problem. As 

discussed before incresing the value of p can enlarge the efficaciousness of the weighted global 

criterion procedure in offering the entire pPareto optimal set.  

It is viable to alter the weighted min-max procedure in order to reduce the potential for solutions 

that are only weakly Pareto optimal using the large weighted Tchebycheff procedure
24

 or the 

altered weighted Tchebycheff procedure
25

 as displayed in equations: 

 

 

 

ρ, is an adequate little positive scalar allocated by theDM. Minimizing above equations is 

obligatory and adequate for Pareto optimality with discreet problems and with problems 

including only linear restrictions
 25

. For general problems the two formulations are obligatory 

and adequate for actual Pareto optoimality 
26

. 

The following modifiction to first modified equation of weighed min max method also offers an 

obligatory and adequate stipulation for actual Pareto optimality.   

 

 
Sufficient for actual Pareto optimality implies adequacy for Pareto optimality. The lexicographic 

weighted Tchiebycheff procedure offer one more alteration that invariably produce Pareto 

optimal points. This approach stems from first modified equation weighed min max method and 

optimality in the min-max sense. 

In this manner the algorithm remove the viability of non unique solutions and the use of ρ come 

to be unneeeded. This approach is obligatory and adequate for Pareto optimality. 
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Exponential weighted criterion 

In response to the lack of ability of the weighted sum procedure to captured points on non 

convex part of the Pareto optimal surface, proposed the exponential weighed criterion
27

, as 

follows: 

 

Where the argument of the summation depicts a single usefull functionfor F1 (x). In spite of the 

fact large values of p can lead to numerical overflow minimizing the equation given in 

exponential weighted criteria offers a obligatory and adequate stipulation Pareto optimality. 

 

Weighted product method 

To permit function with contrast orders of magnitude to have alike importance and to avoid 

having to modify objective functions one may consider the pursuing formulation: 

 

 

 
 

Where wi are weights designate the comparative importance of the objective function.  

 

Goal programming methods 

The optimization problem is formulated as follows : 
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In the non appearance of  any alternate, bj=F 

o
 j, in which instance above equation is is 

theoretically alike to settle programming and can be consider a kind of global criterion method. 

This is mainly seeming when  a desired  point is employed  with absolute values signs in 

equations second, third and  fourth in weighted global criteria method. Nevertheless, 

notwithstanding  its popularity and broad  range of application, there is no assurance  that it 

priovides a Pareto optimal solution. In addendum ,above equation has addendum variables and  

nonlinear equality restrictions, both of which can be annoying with greater problems. 

Archimedean goal programming (or weighted goal programming) compose a subclass of goal 

programming, in which weights are allocated to the divergence of every objective from its 

perspective goal. The preemptive (or lexicographic) goal programming approach is alike to the 

lexicigraphic method  in that the divergence |dj |=d+j+d-j for  the objective are sequenced  in 

terms of priority and minimized lexicographically. Archimedean goal programming and 

preemptive goal programming offer Pareto optimal solutions if the goals form a Pareto optimal 

point or if each of divergence variables, d+j for functions being enlarged and d-j for functions 

being lessen, have positive values at the optimum. The latter condition propose that each of  the 

goals must be unachievable. Normally, nevertheless, Archemedean and preemtive goal 

programming can outcome in non-optimal solutions
28

. The goal attainment method which is 

computationally speedy than classic goal programming methods. it is founded on the weighted 

min-max approach and is formulated as follows : 
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where wi are weights specifying the comparitive significance of every objective function and λ is 

an unrestricted scalar, alike to that which is employed  in equation given in weighted sum 

method. 

   

Bounded objective function method 

The bounded objective function method minimizes the lone most salient objective function 

Fs(x). Each of alternate objective functions are employed to formation addendum restriction like 

that li ≤Fi (x) ≤ ai, I = 1,2………, k, I _ =s. li and ai are the lower and upper bound for the 

objective function Fi (x), respectively. li is outdated the purpose is to attain a goal or drop within 

a range of values  for fi(x), preferably than to determine a minimum. If  it subsist, a solution to 

the a-constraint formulation is weakly Pareto optimal and an weakly Pareto optima; point can be 

acquired  if the attainable region is convex and if each of the objective functions are explicitly 

quasi-convex. If the solution is unique, then it is Pareto optimal. of course, uniqueness can be 

difficult to verify, although if the problem is convex and if Fs(x) is strictly convex, then the 

solution is necessarily unique
29

.  Solutions with active  a- constraints(and non-zero Langrange 

multipliers) are necessary Pareto optimal. 

 

Physical programming 

Physical programming maps general classifications of goals and objectives, and verbally 

expressed preferences to a utility function. It provides a means of incorporating preferences 

without having to conjure relative weights. 

Objective functions, restrictions, and goals are treated equivalently as design metrics. In general, 

the decision maker customizes an individual utility function, which is called a class function Fi   

[Fi (x)] , for each design metric. 

Specifically, each type of design metric is first associated with a type of individual utility 

function distinguished by a general form, such as a monotonically increasing, monotonically 

decreasing, or unimodal function. Then, for each metric the decision-maker specifies the 
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numerical range that corresponds to different degrees of preference (desirable, tolerable, 

undesirable, etc.) 
30

. 

The requirement that the decision maker quantitatively classify different range of values for each 

metric can be viewed in two ways. On one hand, it suggests that physical programming requires 

significant familiarity with each objective and restriction. On the other hand, in a more positive 

light, it implies that physical programming allows one to make effective use of variable 

information. The individual utility functions, as non-dimensional unimodal transformations, are 

combined into a utility function as follows : 

 

where dm represents the number of design metrics being considered. 

 

Methods for a posteriori articulation of preference  

In some case it is difficult for a decision maker to express an explicit approximation of the 

preference function. Therefore, it can be effective to allow the decision maker to choose from a 

palette of solutions. To this end, an algorithm is used to determine a representation of the pareto 

optimal set. Such methods incorporate a posteriori articulation of preferences, and they are called 

cafeteria or generate-first-choose-later approaches. The use of weighted method is a common 

means of providing the Pareto optimal set ( or subset) . These methods all depend on the solution 

of multiple sequential optimization problems with a consistent variation in method parameters. 

When these methods are used to provide only a lone Pareto optimal point, the decision maker’s 

preferences are presumably embedded in the parameter set. On the other hand, when the 

decision-maker desires a set of Pareto optimal points, the parameters very simply as a 

mathematical device. In such cases, it is important for the formulation to provide a necessary 

condition for Pareto optimality, encompassing the ability to yield all of the Pareto optimal points. 

 

Physical programming 

Although it was initially developed for a priori articulation of preferences, physical programming 

can be effective in providing Pareto optimal points that accurately represent the complete Pareto 
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optimal set, even when the Pareto optimal surface is non convex. As explained earlier, when 

physical programming is used for a priori articulation of preferences, the decision maker 

specifies a set of constants that delineates numerical ranges of objective function and constraint 

values. These ranges are associated with different degree of preferences ( desirable, tolerable, 

undesirable, etc). This is done for each metric, resulting in a unique utility function. 

 

Normal boundary intersection (NBI) method 

 

In response to deficiencies in the weighted sum approach there presented the NBI method. This 

method provides a means for obtaining an even distribution of Pareto optimal points for a 

consistent variation in the user supplied parameter vector w, even with a non convex Pareto 

optimal set. The approach is formulated as follows: 

 

 
Φ is a Kxk pay off matrix in which the ith column is composed of the vector F(xi) is the vector 

of objective functions evaluated at the minimum of the ith objective function. the diagonal 

elements of Φ are zero. w is a vector of scalar. Since each component of Φ is positive, the 

negative sign ensure that n points towards the origin of the criterion space. As w is 

systematically modified, the solution yields an even distribution of Pareto optimal points 

representing the complete Pareto set. However, the method may yield non Pareto points; it does 

not provide a sufficient condition for Pareto optimality  

 

Normal constraint (NC) method 

 

The NC method provides an alternative to the NBI method with some improvements. When used 

with normalized objective functions and with a Pareto filter, which eliminates non Pareto optimal 

solutions, this approach provides a set of evenly spaced Pareto optimal points in the criterion 
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space. In fact, it always yields Pareto optimal solutions. Its performance is independent of design 

objective scales. The method as follows: 

First the utopia point is determined and its components are used to normalize the objectives with 

transforming objective functions. The individual minima of the normalized objective functions 

form the vertices of what is called the utopia hyper plane. A sample of evenly distributed points 

on the utopia hyper plane is determined from a linear combination of the vertices with 

consistently varied weights in the criterion space. The user must specify how many points are 

needed to accurately represent the Pareto optimal set. Then, each sample point is projected onto 

the Pareto optimal surface by solving a separate single objective problem. This problem entails 

minimizing one of the normalized objective functions with addendum inequality restrictions.   

 

Methods with no articulation of preferences 

 

Often the decision maker cannot concretely define what they prefer. Consequently, this section 

describes methods that do not require any articulation preferences. 

 

Global criterion methods 

The fundamental idea behind most global criterion methods is the use of an exponential sum, 

which is formed by setting all of the weights in first and second equations in weighted global 

criterion method to one. This yields a single function Fg(F). 

 

Techniques for order preference by similarity to ideal solution when forming a measure of 

distance, it is possible and often necessary to seek a point that only is as close as possible to the 

utopia point but also is as far away as possible from some detrimental point. The technique for 

order preference by similarity to ideal solution (TOPSIS) takes this approach and is a form of 

compromising programming. The utopia point is the positive ideal solution and the vector in the 

criterion space that is composed of the worst or most undesirable solutions for the objective 

functions is called the negative ideal. Similarity is developed as a function that is inversely 

proportional to the distance from the positive ideal and directly proportional to the distance from 

negative ideal. Then the similarity is maximized.   
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Objective sum method 

 

When equation of weighted sum method is used with p=1 and w=1 the result is simply the sum 

of the objective functions. Not only is this a special case of a global criterion method, it is a 

special case of the weighted sum method and it always provides a Pareto optimal solution.   

Min Max method 

A basic min-max formulation is derived by excluding the weights in first and second equations 

in weighted global criterion method and using p=∞. Assuming the weights are excluded in third 

equation in weighted global criterion method yields an L∞-norm which does not necessarily 

yield a Pareto optimal point. However, in accordance with the definition of optimality in the 

min-max sense, if the minimum of the L∞-norm is unique then it is Pareto optimal. If the 

solution is not unique, the definition of optimality in the min-max sense provides additional 

theoretical criteria for r min-max algorithm to eventually yield a Pareto optimal point. The basic 

min-max formulation is posed as follows: 

 

 
In order to avoid additional constraints and the discontinuity the following smooth 

approximations are developed: 

 
c>0 is called the controlling parameter. Although the physical significance of c is unclear. 

 

Nash arbitration and objective product method 
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The Nash arbitration scheme is an approach that is derived from game theory. Based on 

predetermined axioms of fairness suggests that the solution to an arbitration problem be the 

maximum of the product of the player’s utilities. In this case the utility functions always have no 

negative values and have a value of zero in the absence of cooperation. In terms of a 

mathematical formulation in which individual objective functions are minimized, the method 

entails maximizing the following global criterion: 

 

Where si≥Fi(x). si may be selected as an upper limit on each function guaranteeing that F(x)<s. 

This ensure that above equation yields a Pareto optimal point, considering that if any component 

of the product in above equation becomes negative the result can be a non Pareto optimal 

solution. Alternatively si may be determined as the value of objective I at the starting point, in 

which case the constraint Fi(x) ≤ si must be added to the formulation to ensure Pareto optimality. 

On fundamental level the Nash arbitration approach simply entails minimizing the product of the 

objective functions. It is equivalent to equation of weighted product method with w=1. 

With a product even objective function values with relatively small orders of magnitude can have 

a significant effect on the solution. However, a caveat of any product type global criterion is that 

it can introduce unwieldy nonlinearities. 

 

Rao’s method 

 

The following work is based on the use of a product type global criterion shown in equation 

given in Nash arbitration and objective product method. First, the following super criterion is 

minimized: 

 

 

articulation of preferences, which allows one to design a utility function, depends on the type of 

preferences that the decision maker wishes to articulate and on the amount of preference 

information that the decision maker has. Where form I (x) is a normalized objective function, 

with values between zero and one, like that form i=1 is the vanquish viable value. Next, one 
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shaped the Pareto optimal objective FC, which is a bit of  scalarized objective function that 

produce a Pareto optimal solution. The procedure parameters that are absorbed in the scalarized 

objective function are indulged as design variables. Then, a new objective function, OBJ= FC-

SU, is minimized  

 

Conclusion 

In general, multi objective optimization needs extra computational endeavour than single-

objective optimization. Unless likings are irrelevant or entirely comprehended, solution of 

various single objective problems may be requisite to acquire an acceptable final solution. 

Solutions acquired with no articulation of preferences are arbitrary respective to the Pareto 

optimal set. In this category of methods, the objective sum method is one of the most 

computationally systematic, easy-to-use, and usual approaches. Therefore, it provides a 

benchmark approach to multiobjective optimization. Methods with priori articulation of 

preferences need the user to specify preferences only in terms of objective functions.  
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