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1. Introduction 

In 2011, Azam et. al. [1] introduced the notion of complex valued metric space which is a 

generalization of the classical metric space. They established some fixed point results for 

mappings satisfying a rational inequality. The idea of complex valued metric spaces can be 

expolited to define complex valued normed spaces and complex valued Hilbert spaces; 

additionally, it offers numerous research activities in mathematical analysis.  

A complex number z ∈  ℂ is an ordered pair of real numbers, whose first co-ordinate is called 

Re(z) and second coordinate is called Im(z). Thus a complex-valued metric d is a function from a 

set X ×X into ℂ, where X is a nonempty set and ℂ is the set of complex numbers. 

Let ℂ be the set of complex numbers and z1, z2 ∈  ℂ. Define a partial order ≾ on ℂ as follows: 

z1 ≾ z2 if and only if Re(z1) ≤ Re(z2) and Im (z1) ≤ Im (z2), that is z1 ≾ z2, if one of the following 

holds: 

(C1)  Re(z1) = Re(z2) and Im(z1) = Im(z2); 

(C2)  Re(z1) < Re(z2) and Im(z1) = Im(z2); 

(C3)  Re(z1) = Re(z2) and Im(z1) <Im(z2); 

(C4)  Re(z1) < Re(z2) and Im(z1) < Im(z2). 

In particular, we will write z1 ⋨ z2 if z1 ≠ z2 and one of (C2), (C3), and (C4) is satisfied 

and we will write z1 ≺ z2 if only (C4) is satisfied. 

Remark 1.1. We note that the following statements hold: 

(i) a, b ∈  ℝ and a ≤ b ⇒ az ≾ bz ∀z ∈ℂ. 
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(ii) 0 ≾ z1 ⋨ z2 ⇒ |z1| < |z2|, 

(iii) z1 ≾ z2 and z2 ≺ z3 ⇒ z1 ≺ z3. 

Definition 1.2.  Let X be a nonempty set. Suppose that the mapping d : X × X → ℂ satisfies the 

following conditions: 

(i) 0 ≾ d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y; 

(ii) d(x, y) = d(y, x) for all x, y ∈ X; 

(iii) d(x, y) ≾ d(x, z) + d(z, y), for all x, y, z ∈ X. 

Then d is called a complex valued metric on X and (X, d) is called a complex valued metric 

space. 

Example 1.3. Let X = ℂ. Define the mapping d : X × X → ℂ by 

d(z1, z2) = 2𝜄  𝑧1 −  𝑧2 , for all z1, z2 ∈ X . 

Then (X, d) is a complex valued metric space. 

Definition 1.4.  Let (X, d) be a complex valued metric space, {xn} be a sequence in X and x ∈ X. 

(i) If for every c ∈ ℂ, with 0 ≺ c there is k ∈ ℕ such that for all n > k, d(xn, x) ≺ c, then {xn} is    

said to be convergent, {xn} converges to x and x is the limit point of {xn}. We denote this by 

{xn} → x as n → ∞ or lim𝑛  → ∞ 𝑥𝑛  = x. 

(ii) If for every c ∈ ℂ, with 0 ≺ c there is k ∈ ℕ such that for all n > k, d(xn, xn+m) ≺ c, where  

m ∈ ℕ, then {xn} is said to be Cauchy sequence. 

(iii) If every Cauchy sequence in X is convergent, then (X, d) is said to be a complete 

complex valued metric space. 

Lemma 1.5. Let (X, d) be a complex valued metric space and let {xn} be a sequence in X. Then 

{xn} converges to x if and only if |d(xn, x)| → 0 as n → ∞. 

Lemma 1.6. Let (X, d) be a complex valued metric space and let {xn} be a sequence in X. Then 

{xn} is a Cauchy sequence if and only if |d(xn, xn+m)| → 0 as n → ∞, where m ∈ ℕ. 

In 1996, Jungck [2] introduced the notion of weakly compatible maps as follows: 

Definition 1.7. Two self maps f and g are said to be weakly compatible if they commute at 

coincidence points. 

 

2. Main Results 
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Theorem 2.1. Let S, T and f be three self maps of a complex valued metric space (X, d) 

satisfying the following: 

(2.1) SX ∪ TX ⊆ fX, 

(2.2) d(Sx, Ty) ≾ h d(fx, fy), for all x, y in X, 

         where 0 ≤ h < 1, 

(2.3) fX is complete subspace of X. 

Then S, T and f have a unique coincidence point. Moreover, if (S, f) and (T, f) are weakly 

compatible, then S, T and f have a unique common fixed point. 

Proof. Let x0 ∈ X. Choose a point x1 in X such that fx1 = Sx0. This can be done, since SX ⊆ fX. 

Similarly, choose a point x2 in X such that fx2 = Tx1. Continuing this process and having chosen 

xn in X, we obtain xn+1 in X such that 

        fx2k+1 = Sx2k, fx2k+2 = Tx2k+1, k = 0, 1, 2, . . . . 

From (2.2), we have  

d(fx2k+1, fx2k+2) = d(Sx2k, Tx2k+1) 

                         ≾ h d(fx2k, fx2k+1). 

Similarly, 

d(fx2k+2, fx2k+3) ≾ h d(fx2k+1, fx2k+2). 

Now, by induction, we obtain for each k = 0, 1, 2, . . ., 

d(fx2k+2, fx2k+3) ≾ h d(fx0, fx1). 

Let yn = fxn, n = 0, 1, 2, . . . . 

Now, for all n, we have 

d(yn+1, yn+2)  ≾ h d(yn, yn+1) 

                     ≾ h
2
 d(yn-1, yn) ≾ . . . ≾ h

n+1
 d(y0, y1). 

Now, for any m > n, 

d(ym, yn) ≾ d(yn, yn+1) + d(yn+1, yn+2) + . . . + d(ym-1, ym) 

               ≾ [h
n
 + h

n+1
 + . . . + h

m-1
] d(y0, y1) 

               ≾ 
ℎ𝑛

1−ℎ
 d(y0, y1). 

Therefore, we have 
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 𝑑(𝑦𝑚 , 𝑦𝑛 )  ≤ 
𝑘𝑛

1−𝑘
  𝑑(𝑦0, 𝑦1) .  

Hence, 

lim𝑛→∞ 𝑑(𝑦𝑚 , 𝑦𝑛 )  = 0, 

which implies that {yn} is a Cauchy sequence. Since fX is complete, there exists u, v in X such 

that yn → v = fu. 

Choose a natural number N such that 

 d(yn, v) ≺ 
𝑐

2
 , for all n ≥ N. 

Hence, for all n ≥ N, using triangle inequality and (2.2), we have 

d(fu, Su) ≾ d(fu, y2n+2) + d(y2n+2, Su) 

    = d(v, y2n+2) + d(Tx2n+1, Su) 

               ≾ d(v, y2n+2) + h d(fx2n+1, fu) 

    ≾ d(v, y2n+2) + h d(y2n+1, v) ≺ 
𝑐

2
 + 

𝑐

2
 = c. 

Thus, d(fu, Su) ≾ 
𝑐

𝑚
 for all m ≥ 1, that is, 

 𝑑(𝑓𝑢, 𝑆𝑢)  ≤ 
𝑐

𝑚
. 

But, since m was arbitrary, so  

 𝑑(𝑓𝑢, 𝑆𝑢)  = 0, implies that, fu = Su. 

Similarly, by using 

d(fu, Tu) ≾ d(fu, y2n+1) + d(y2n+1, Tu), 

one can show that fu = Tu, it implies that, v is a common point of coincidence of S, T and f, that 

is, v = fu = Su = Tu. 

Now, we show that f, S and T have a unique point of coincidence. For this, assume that there 

exists another point w in X such that w = fz = Sz = Tz for some z in X. 

From (2.2), we have 

d(v, w) = d(Su, Tz) 

            ≾ h d(fu, fz) = h d(v, w), implies that, v = w.   

Now, since (S, f) and (T, f) are weakly compatible, we have  

Sv = Sfu = fSu = fv and Tv = Tfu = fTu = fv. 

It implies that Sv = Tv = fv = t (say). Then w is a point of coincidence of S, T and f.  
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Therefore, v = t, by uniqueness. 

Hence v is a common fixed point of S, T and f. 

 

Theorem 2.2. Let S, T and f be three self maps of a complex valued metric space (X, d) 

satisfying (2.1), (2.3) and the following: 

(2.4) d(Sx, Ty) ≾ h [d(fx, Sx) + d(fy, Ty)], for all x, y in X, 

         where 0 ≤ h < 
1

2
 . 

Then S, T and f have a unique coincidence point. Moreover, if (S, f) and (T, f) are weakly 

compatible, then S, T and f have a unique common fixed point. 

Proof. Let x0 ∈ X. Define a sequence of points in X, as in Theorem 2.1, given by the rule: 

fx2k+1 = Sx2k, fx2k+2 = Tx2k+1, k = 0, 1, 2, . . . . 

From (2.4), we have 

d(fx2k+1, fx2k+2) = d(Sx2k, Tx2k+1) 

                         ≾ h [d(fx2k, Sx2k) + d(fx2k+1, Tx2k+1)] 

                         = h [d(fx2k, fx2k+1) + d(fx2k+1, fx2k+2)], that is, 

d(fx2k+1, fx2k+2) ≾ 
ℎ

1−ℎ
 d(fx2k, fx2k+1). 

Similarly, it can be shown that 

d(fx2k+2, fx2k+3) ≾ 
ℎ

1−ℎ
 d(fx2k+1, fx2k+2) 

                          = p d(fx2k+1, fx2k+2), p = 
ℎ

1−ℎ
 < 1. 

Now, by induction, we obtain for each k = 0, 1, 2, . . . , 

d(fx2k+1, fx2k+2) ≾ p d(fx2k, fx2k+1) 

                          ≾ p
2
 d(fx2k-1, fx2k) ≾ . . . ≾ p

2k+1
 d(fx0, fx1). 

Let yn = fxn, n= 0, 1, 2, . . . . 

Now, for all n, we have 

d(yn+1, yn+2)  ≾ p d(yn, yn+1) 

                     ≾ p
2
 d(yn-1, yn) ≾ . . . ≾ p

n+1
 d(y0, y1). 

Now, for any m > n, 

d(ym, yn) ≾ d(yn, yn+1) + d(yn+1, yn+2) + . . . + d(ym-1, ym) 
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               ≾ [p
n
 + p

n+1
 + . . . + p

m-1
] d(y0, y1) 

               ≾ 
𝑝𝑛

1−𝑝
 d(y0, y1). 

Therefore, we have 

 𝑑(𝑦𝑚 , 𝑦𝑛 )  ≤ 
𝑝𝑛

1−𝑝
  𝑑(𝑦0, 𝑦1) .  

Hence, 

lim𝑛→∞ 𝑑(𝑦𝑚 , 𝑦𝑛 )  = 0, 

which implies that {yn} is a Cauchy sequence. 

Since fX is complete, there exists u, v in X such that yn → v = fu. 

Choose a natural number N such that 

 d(yn+1, yn) ≺ 
𝑐(1−ℎ)

2ℎ
 and d(yn+1, v) ≺ 

𝑐(1−ℎ)

2
, for all n ≥ N. 

Hence, for all n ≥ N, using triangle inequality and (2.4), we have 

d(fu, Su) ≾ d(fu, y2n+2) + d(y2n+2, Su) 

    = d(v, y2n+2) + d(Tx2n+1, Su) 

               ≾ d(v, y2n+2) + h [d(fu, Su) + d(fx2n+1, Tx2n+1)], that is, 

d(fu, Su) ≾ 
1

1−ℎ
 d(v, y2n+2) + 

ℎ

1−ℎ
 d(y2n+1, y2n+2) 

    ≺ 
𝑐

2
 + 

𝑐

2
 = c. 

Thus, d(fu, Su) ≾ 
𝑐

𝑚
 for all m ≥ 1, that is, 

 𝑑(𝑓𝑢, 𝑆𝑢)  ≤ 
𝑐

𝑚
. 

But, since m was arbitrary, so  

 𝑑(𝑓𝑢, 𝑆𝑢)  = 0, implies that, fu = Su. 

Similarly, by using 

d(fu, Tu) ≾ d(fu, y2n+1) + d(y2n+1, Tu), 

one can show that fu = Tu, it implies that, v is a common point of coincidence of S, T and f, that 

is, v = fu = Su = Tu. 

Now, we show that f, S and T have a unique point of coincidence. For this, assume that there 

exists another point w in X such that w = fz = Sz = Tz for some z in X. 

From (2.4), we have 
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d(v, w) = d(Su, Tz) 

             ≾ h [d(fu, Su) + d(fz, Tz)] 

             = h [d(v, v) + d(w, w)] = 0, that is, 

 𝑑(𝑣, 𝑤)  ≤ 0, implies that, v = w. 

Now, since (S, f) and (T, f) are weakly compatible, we have  

Sv = Sfu = fSu = fv and Tv = Tfu = fTu = fv. 

It implies that Sv = Tv = fv = t (say). Then w is a point of coincidence of S, T and f.  

Therefore, v = t, by uniqueness. 

Hence v is a common fixed point of S, T and f. 

Theorem 2.3. Let S, T and f be three self maps of a complex valued metric space (X, d) 

satisfying (2.1), (2.3) and the following: 

(2.5) d(Sx, Ty) ≾ h [d(fy, Sx) + d(fx, Ty)], for all x, y in X, 

         where 0 ≤ h < 
1

2
 . 

Then S, T and f have a unique coincidence point. Moreover, if (S, f) and (T, f) are weakly 

compatible, then S, T and f have a unique common fixed point. 

Proof. Let x0 ∈ X. Define a sequence of points in X, as in Theorem 2.1, given by the rule: 

fx2k+1 = Sx2k, fx2k+2 = Tx2k+1, k = 0, 1, 2, . . . . 

From (2.5), we have 

d(fx2k+1, fx2k+2) = d(Sx2k, Tx2k+1) 

                         ≾ h [d(fx2k+1, Sx2k) + d(fx2k, Tx2k+1)] 

                         = h [d(fx2k+1, fx2k+1) + d(fx2k, fx2k+2)] 

                         = h d(fx2k, fx2k+2) 

                         ≾ h [d(fx2k, fx2k+1) + d(fx2k+1, Tx2k+2)], that is, 

d(fx2k+1, fx2k+2) ≾ 
ℎ

1−ℎ
 d(fx2k, fx2k+1). 

Similarly, it can be shown that 

d(fx2k+2, fx2k+3) ≾ 
ℎ

1−ℎ
 d(fx2k+1, fx2k+2) 

                          = p d(fx2k+1, fx2k+2), p = 
ℎ

1−ℎ
 < 1. 

Now, by induction, we obtain for each k = 0, 1, 2, . . . , 
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d(fx2k+1, fx2k+2) ≾ p d(fx2k, fx2k+1) 

                          ≾ p
2
 d(fx2k-1, fx2k) ≾ . . . ≾ p

2k+1
 d(fx0, fx1). 

Let yn = fxn, n= 0, 1, 2, . . . . 

Now, for all n, we have 

d(yn+1, yn+2)  ≾ p d(yn, yn+1) 

                     ≾ p
2
 d(yn-1, yn) ≾ . . . ≾ p

n+1
 d(y0, y1). 

Now, for any m > n, 

d(ym, yn) ≾ d(yn, yn+1) + d(yn+1, yn+2) + . . . + d(ym-1, ym) 

               ≾ [p
n
 + p

n+1
 + . . . + p

m-1
] d(y0, y1) 

               ≾ 
𝑝𝑛

1−𝑝
 d(y0, y1). 

Therefore, we have 

 𝑑(𝑦𝑚 , 𝑦𝑛 )  ≤ 
𝑝𝑛

1−𝑝
  𝑑(𝑦0, 𝑦1) .  

Hence, 

lim𝑛→∞ 𝑑(𝑦𝑚 , 𝑦𝑛 )  = 0, 

which implies that {yn} is a Cauchy sequence. 

Since fX is complete, there exists u, v in X such that yn → v = fu. 

Choose a natural number N such that 

 d(yn+1, yn) ≺ 
𝑐(1−ℎ)

3
, for all n ≥ N. 

Hence, for all n ≥ N, using triangle inequality and (2.5), we have 

d(fu, Su) ≾ d(fu, y2n+1) + d(y2n+1, Su) 

    = d(v, y2n+1) + d(Tx2n+1, Su) 

               ≾ d(v, y2n+1) + h [d(fu, Tx2n+1) + d(fx2n+1, Su)] 

               = d(v, y2n+1) + h [d(v, y2n+2) + d(y2n+1, Su)], that is, 

d(fu, Su) ≾ d(v, y2n+1) + h [d(v, y2n+2) + d(y2n+1, v) + d(v, Su)], implies that, 

d(fu, Su) ≾ 
1

1−ℎ
 d(v, y2n+1) + 

ℎ

1−ℎ
 [d(v, y2n+2) + d(y2n+1, v)] 

    ≺ 
𝑐

3
 + 

𝑐

3
 + 

𝑐

3
 = c. 

Thus, we have 
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d(fu, Su) ≾ 
𝑐

𝑚
 , for all m ≥ 1, that is, 

 𝑑(𝑓𝑢, 𝑆𝑢)  ≤ 
𝑐

𝑚
. 

But, since m was arbitrary, so  

 𝑑(𝑓𝑢, 𝑆𝑢)  = 0, implies that, fu = Su. 

Similarly, by using 

d(fu, Tu) ≾ d(fu, y2n+1) + d(y2n+1, Tu), 

one can show that fu = Tu, it implies that, v is a common point of coincidence of S, T and f, that 

is, v = fu = Su = Tu. 

Now, we show that f, S and T have a unique point of coincidence. For this, assume that there 

exists another point w in X such that w = fz = Sz = Tz for some z in X. 

From (2.5), we have 

d(v, w) = d(Su, Tz) 

             ≾ h [d(fz, Su) + d(fu, Tz)] 

             = h [d(w, v) + d(v, w)] = 2h d(v, w), that is, 

 𝑑(𝑣, 𝑤)  ≤ 2h  𝑑(𝑣, 𝑤) , implies that, v = w. 

Now, since (S, f) and (T, f) are weakly compatible, we have  

Sv = Sfu = fSu = fv and Tv = Tfu = fTu = fv. 

It implies that Sv = Tv = fv = t (say). Then w is a point of coincidence of S, T and f.  

Therefore, v = t, by uniqueness. 

Hence v is a common fixed point of S, T and f. 

Example 2.4.  Let X = [0, 1] and let d : X × X → ℂ by d(x, y) = 𝒾  𝑥 − 𝑦 , for all x, y ∈ X . 

Then (X, d) is a complex valued metric space. 

Define the functions S, T, f : X → X by 

Sx = 
𝑥

4
 = Tx and fx = 

𝑥

2
. 

Clearly SX ∪ TX = [0, 
1

4
] ⊆ [0, 

1

2
] = fX. 

Also (S, f) and (T, f) are weakly compatible. 

Now, 

d(Sx, Ty) = 
𝒾

4
  𝑥 − 𝑦 , d(fx, fy) = 

𝒾

2
  𝑥 − 𝑦 . 
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Clearly, for h = 
2

3
 < 1, 

d(Sx, Ty) ≾ h d(fx, fy). 

Also 0 is the common fixed point of S, T and f. 

Hence all the conditions of Theorem 2.1 are satisfied. 
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