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ABSTRACT 
The micropolar fluid flow over moving stretching surface in a non-Darcian porous medium with 

a uniform magnetic field is examined when viscosity and thermal conductivity are vary with 

temperature. Both the fluid viscosity and thermal conductivity are considered as an inverse 

linear function of temperature. Mathematical formulation of the problem under consideration is 

presented and a similarity transformation is applied to reduce the system of partial differential 

equations and their boundary conditions, describing the problem, into a boundary value problem 

of ordinary differential equations. The system of equations is solved numerically by shooting 

technique. The results are presented graphically for velocity, temperature and micropolar 

distributions for various values of non-dimensional parameters.  
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1. INTRODUCTION: 

 The theory of micro polar fluids was originally formulated by Eringen ([4], [5]). In essence, 

the theory introduces new material parameters, an additional independent vector field, the micro 

rotation and new constitutive equations, which must be solved simultaneously with the usual 

equations for Newtonian flow. The desire to model the non-Newtonian flow of fluid containing 

rotating micro-constituents provided initial motivation for the development of the theory, but 

subsequent studies have successfully applied the model to a wide range of applications including 
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blood flow, lubricants, porous media, turbulent shear flows and flowing capillaries and micro 

channels by Lukaszewiesz [9]. 

       The theory of thermo-micropolar fluids has been developed by Eringen taking into account 

the effect of micro-elements of fluids on both the kinematics and conduction of heat. Later 

Ariman et al. [3] describe some of the various applications which have been explored. Boundary 

layer on continuous surface is an important type of flow occurring in a number of technical 

problems. Karwe and Jaluria[7] carried out a numerical study of the transport arising due to the 

movement of a continuous heated body. The boundary layer flow of a micropolar fluid past a 

semi-infinite plate has been studied by Peddieson and McNitt [10] where as a similarity solution 

for boundary layer flow near stagnation point was presented by Ebert  [6]. The boundary layer 

flow of micropolar fluids past a semi infinite plate was studied by Ahmadi[1] taking into account 

the gyration vector normal to the xy- plane and the micro-inertia effects. By drawing the 

continuous strips through a quiescent electrically conducting fluid subject to a magnetic field, the 

rate of cooling can be controlled and final product of desired characteristics can be achieved. The 

theory of lubrication for micropolar fluid was studied by Allen and Kline[2].  Kelson and Farrell 

[8] studied micropolar flow over a stretching sheet with strong suction and injection. 

         Flow and heat transfer through porous media have several practical engineering 

applications such as transpiration cooling, packed bed chemical reactors, geothermal systems, 

that the radiation effect is important under many non isothermal situations. If the entire system 

involving the polymer extrusion process is placed in a thermally controlled environment, then 

radiation could become important. The knowledge of radiation heat transfer in the system can 

perhaps lead to a desired product with sought characteristic. The problem of micropolar fluid 

flow over a stretching surface through a fluid saturated porous medium in presence of magnetic 

field is therefore an important one.  

2. GOVERNING EQUATIONS: 

   The equation of motion for incompressible viscous micropolar fluid is given by                   

              2. .
V

V V p V V N F
t

   
 

           
 

,                          (2.1)      

where    is the mass density of the fluid, p is the pressure, µ is the viscosity, N  is the angular 



 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

3 | P a g e  

 

velocity, κ is the material constant and t denotes time. F  is the body force per unit volume due to 

flow through porous media given by 

           
*

v
F V


 ,                                                                                                                                                      

where ν is the kinematic viscosity of the fluid and λ
*
 is the coefficient of permeability of the 

porous media. 

        The equation of angular momentum for incompressible viscous micropolar fluid is given by 

      . 2
N

j V N N V N
t

   
 

         
 

,                                       (2.2) 

where j is the micro-inertia per unit mass, γ is the material constants. The equation of heat 

transfer is given by 

     . .
p

T
C V T T

t
    

 
      

 
,                                                          (2.3) 

where Cp is specific heat at constant pressure, T is the temperature of the fluid, λ is the coefficient of 

thermal conductivity of the fluid,   is the viscous dissipation function and is given by 

            

2 2 22 2 2

2
u v w v u w v u w

x y z x y y z z x


                   
                   

                    

,                 (2.4)            

3. MATHEMATICAL FORMULATION OF THE PROBLEM:      

Consider a steady, two-dimensional laminar flow of an incompressible micropolar fluid 

over a stretching surface in a non-Darcian porous medium which issues from a thin slit. The x-

axis is taken along the stretching surface and y-axis is perpendicular to it. A uniform magnetic 

field 0B  is imposed along y-axis. Under the usual boundary layer approximations, the flow and 

heat transfer of a micropolar fluid in porous medium with the non-Darcian effects included are 

governed by the following equations. 
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The equation of continuity is  

            0
u v

x y

 
 

 
                                                                                                         (3.1) 

The equation of momentum is  

 
2

2 2

1 02

u u u N u
u v k k u B u

x y y y y y
   

         
        

          
                                             (3.2)            

 

Equation of angular momentum is  

2
N N u N

j u v k N
x y y y y

 
         

         
         

                                                                    (3.3)    

Equation of energy is  

2

2

r
p

qT T T
c u v

x y y y
 

    
   

    
                                                                                            (3.4)      

                          

where  is the coefficient of dynamic viscosity,   is the apparent kinematic viscosity, N   is the 

microrotation component, S is a constant characteristic of the fluid,  1 0
S

k


  is the coupling 

constant,  is the fluid density, pC is the specific heat at constant pressure, u and v are the 

components of velocity along x and y directions respectively, is the porosity, k is the 

permeability of the porous medium, T is the temperature of the fluid in the boundary layer, T  is 

the temperature of the fluid far away from the plate, wT is the temperature of the plat, is the 

thermal conductivity,  is the electrical conductivity,  is an external magnetic field and rq  is 

the radiative heat flux. 

       The appropriate physical boundary conditions of equations are  

         0 :y  ,u ax     0,v      ,wT T       0N                                                                 (3.5) 
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            y   : 0u  ,T T , 0N                                                                                   (3.6)         

The governing equations subject to the boundary conditions can be expressed in a simpler form 

by introducing the following transformations: 

   
a

y


 , a xf  , 3 1
N a xg


 , 

w

T T

T T
 







                                                        (3.7)                         

using the Rosselant approximation  , we have 

  
4

0

0

4

3
r

T
q

k y

  
  

 
              

where 0 is the Stefan-Boltzmann constant and 0k is the mean absorption coefficient. The fluid 

viscosity is assumed to be inverse linear function of temperature (Lai and Kulacki[11])  as  

   
1 1 1

1 , rT T a T T
  





       , a=




and
1

rT T


                                                  (3.8)     

 

where a and  rT  are constants and their values depends on the reference state and the thermal 

property of the fluid. In general a>0 for liquids and a<0 for gases. rT  is transformed reference 

temperature related to viscosity parameter. α is constant based on thermal property and    is the 

viscosity at T=T   similarly, consider the variation of thermal conductivity as,  

                  
1 1 1

1 , kT T b T T
  





       , b=




and   
1

kT T


                                  (3.9) 

where b and  kT  are constants and their values depends on the reference state and thermal 

property of the fluid   is constant based on thermal property and  is the thermal conductivity 

at T=T∞.     

Using equation (3.7), it can be easily verified that the continuity equation is satisfied 

automatically and using equation (3.7) -  (3.9) in the equation (3.2) - (3.4) become, 
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 1 2 1r
a

r r

f D f Mf f Kg f
 


  

 
          


                                (3.10) 

   
2 2

2
2 2

K
g g f f g fg

K K
      

 
                     (3.11)                       

   
2 32 1

4Pr 1 1
3

k k k
r

k k k k

P f
     

     
    

   
       

  
                               (3.12) 

The transform boundary conditions are  

0  ,  1f   ,  0f  ,  0g  ,  1                                                                     (3.13) 

  ,  0f   ,   0g  ,  0                                                                                (3.14) 

where            

1k
K


      ,   the coupling constant parameter 

1

aD
ka

     the inverse Darcy number 

2

0 0B
M

a




 ,  the magnetic parameter 

a
G




       ,  the microrotation parameter 

p

r

C
P

k


   , the Prandtl number 

4.      RESULTS AND DISCUSSION:  

Initially solution was taken for constant values of Pr=0.70 ,M=0.80, G=0.50,  lm1=0.50,   Da
-1
=0.5,   

r=0.30,  θr=-10.00 with the viscosity parameter θr ranging from -15 to -1 at the certain values of θk=-10. 

Similarly the solutions have been found with varying the thermal conductivity parameter  θk  ranging 

from -15 to -1 at the certain values of θr=-10 keeping other values remaining same. We have considered 

in some detail the influence of the physical parameters 1

aD , Pr, M , k  on the velocity, micro rotation 

and temperature distributions which shown in figures (1-6). Figures (5) and (6) show the velocity and 

microrotation for various values of the magnetic parameter M respectively. Application of a transverse 

magnetic field normal to the flow direction gives rise to a resistive drag-like force acting in a direction 

opposite to that of flow. This has a tendency to reduce both the fluid velocity and angular velocity .This 
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indicates that the velocity and microrotation distribution decreases with the increasing values of M. 

Figures (3) and (4) display the influence of the inverse Darcy number  1

aD  on the velocity and the micro 

rotation profiles respectively. It is obvious that the presence of porous medium causes higher restriction 

to the fluid. From (3) ,It is seen that the velocity distribution increases with the increasing values of 

1

aD .   From (4) ,it is seen that the micro rotation distribution decreases then increases with the 

increasing values of 1

aD .   Figures (1) and (2) depict the influence of the thermal conductivity 

parameter
k , Prandtl number Pr on the temperature distributions respectively. From figure (1), it is 

observed that the temperature distributions increases with the increasing values of thermal conductivity 

parameter
k . From (2) it is seen that the temperature distributions decreases as Pr increases. 

 

 

 

 

 

 

 Fig. 1. Temperature distribution profiles along against η for various values of   

parameter θk taking Pr=0.70, M=0.80, G=0.50, lm1=0.50,   Da
-1

=0.5,   r=0.30,  θr=-10.00 
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     Fig. 3.Velocity distribution profiles along against η for various values of parameter  

    1

aD  taking Pr=0.70,M=0.80, G=0.50,   r=0.30,  θr =-10.00,  θk =-10.00      

 

 

 Fig. 2. Temperature distribution profiles along against η for various values of 

 parameter Pr taking M=0.80, G=0.50,  lm1=0.50,   r=0.30,  θr =-10.00,  θk =-10.00         
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 Fig. 4. Microrotation distribution profiles along against η for various values of         

parameter 1

aD  taking Pr=0.70,M=0.80, G=0.50,   r=0.30,  θr =-10.00,  θk =-10.00      
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            Fig. 5. Velocity distribution profiles along against η for various values of parameter M

            taking  Pr=0.70, G=0.50,  lm1=0.50,   r=0.30,  θr =-10.00,  θk =-10.00 
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5. CONCLUSION:  
The micropolar fluid flow over moving stretching surface in a non-Darcian porous medium with 

a uniform magnetic field is examined when  viscosity and thermal conductivity are vary with 

temperature is examined. The resulting partial differential equations, which describe the 

problem, are transformed into ordinary differential equations by using similarity transformations. 

Numerical evaluations are performed and graphical results are obtained. The results presented 

demonstrate clearly that the viscosity and thermal conductivity parameters have a substantial 

effect on velocity distribution, micropolar distribution and temperature distribution. The effect of  

Darcy number 1

aD  , magnetic parameter M,  Prandtl number rP  are quite significant.       

 

 

 

 

 Fig. 6. Microrotation distribution profiles along against η for various values of         

parameter 1

aD  taking Pr=0.70, M=0.80, G=0.50,   r=0.30,  θr =-10.00,  θk =-10.00      



 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

International Research Journal of Mathematics, Engineering and IT (IRJMEIT) 

11 | P a g e  

 

 6.  REFERENCES: 

[1]  Ahmadi, G., Self-similar solution of imcompressible micropolar boundary layer flow 

over a semi-infinite plate, international Journal of Engineering Science, 14,(1976),no7,639-

646. 

[2]  Allen, S.J. and Kline ,K.A., Lubrication theory for micropolar fluids, Journal of Applied 

Mechanics , Transactions of the ASME ,38,(1971),no.3,646-650.   

[3]  Ariman T., Turk M.A. and Sylvester N.D Microcontinum fluid mechanics ,Int.          

J.Engng. Sci., 11,(1973) ,905-930. 

[4]  Eringen, A.C., Theory of micropolar fluids, Journal of Mathematics and Mechanics, 

16,(1966),1-18. 

[5]  Eringen, A. C., J. Math. Anal. Appl., Vol.38, (1972), 480 

[6] Ebert F. A similarity solution for the boundary layer flow of a polar fluid. The Chem. 

Eng. J.,5,(1973),85-92. 

[7]  Karwe Mukund. V and Jaluria Y. Thermal transport from a heated moving surface. 

Trans. of ASME J. Heat Transfer ,108, (1986), 728-734. 

[8]  Kelson N.A. and Farrell T.W Micropolar flow over a porous stretching sheet with strong 

suction or injection. Int. Comm. Heat Mass Transfer, 28, .(2001), 479-488. 

[9]  Lukaszewiez,G. Micropolar fluids, theory and applications, Boston, (1999). 

[10] Peddieson J. and McNitt R.P, Boundary layer theory for a micropolar fluid , (1970). 

 [11] Lai, F. C. and Kulacki, F. A., The effect of variable viscosity on convective heat  

transfer along a vertical surface in a saturated porous media, Int. J. Heat Mass 

Transfer ,Vol.33,No.5, (1990), 1028-1031.  


