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ABSTRACT 

This study is attempted to introduce some of the basic concepts of asymptotic analysis and provide 

approximation solutions to differential equations that cannot easily be solved explicitly. The 

study is divided in to three parts. The first part is the introduction which introduces the back 

ground of the asymptotic methods of differential equations and some important topics that are 

essential in the main body. The second part is the main body of the study, which is focusing on 

perturbation theory and the methods of approximating differential equations. Under 

perturbation theory, regular perturbation and singular perturbation are discussed using 

illustrative examples. One of the most common methods in singular perturbation theory; methods 

of matched asymptotic expansions shall be presented. To demonstrate the theory for this method 

fully worked introductory examples are considered and the concept of boundary layer, matching, 

compost expansion, finding further terms, Ven Dyke’s matching principle and the location of 

boundary layer are introduced.  The third part is the conclusion of the study which summarizes 

what we have discussed in the main part of the study. Based on the findings and implication of 

the study, thus, conclusion and recommendation were forwarded, too.   

Key words: Asymptotic expansions, Boundary layer, Compost expansion, Matched, Perturbation.    

 

Introduction 

When mathematical modeling is used to describe physical, biological or chemical phenomena, 

one of the most common results is either a differential equation or a system of differential 
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equations, together with appropriate boundary and initial conditions. These differential 

equations may be ordinary or partial, and finding and interpreting their solution is at the heart 

of applied mathematics.  

The vast majority of differential equations that arise from everyday problems as models for real 

physical systems cannot easily be solved directly. In these situations we usually have two options. 

We can use computers to seek complicated numerical solutions or we can look to construct an 

analytical approximation to the solution using asymptotic expansions. Asymptotic methods have 

particular importance in many areas of applied mathematics, with the physical problems studied 

in fluid dynamics providing the main motivation for much of the important development in the 

subject's history.  

One of the oldest and most famous asymptotic results is Stirling's formula, used to approximate n! 

for large values of n, 

 n!    ~  𝑛/𝑒 𝑛   2𝜋𝑛 

where ~ is used to denote that two functions are asymptotically, or approximately, equivalent. It 

was Henri Poincare who introduced the term asymptotic expansion during an 1886 paper 

published in Acta Mathematica, studying irregular integrals of linear equations. He began that 

paper by analyzing another of Stirling's series: his series for the logarithm of the Euler Gamma 

Function. 

To obtain an approximate solution, it is possible to use an asymptotic method if one or smaller 

dimensionless parameters appear in the differential equation. Moreover, the presence of a small 

parameter often leads to a singular perturbation problem, which can be difficult to solve 

numerically Thomas [15].  

Small, dimensionless parameters usually arise when one physical process occurs much more 

slowly than another, or when one geometrical length in the problem is much shorter than 

another. Thus, this paper is focus on the methods applicable to problems presented as differential 

equations, particularly basics of regular and singular perturbation theory. The method of 

matched asymptotic expansions for Ordinary differential equations will be considered in detail. 
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Preliminary Concept 

 Gauge Functions: If  lim
      𝜀→0 

 
𝑓(𝜀)

 𝑔(𝜀)
= 𝑘 , for some nonzero constant 𝑘, we write 𝑓 (𝜀 ) = O (g (𝜀 ))  

for ε ≪ 1. We say that f is of order g for small ε. Here g (𝜀) is a gauge function, since it is used to 

gauge the size of 𝑓(𝜀). This notation tells us nothing about the constant 𝑘. For example, 1010 =

 𝑂 (1).  The order notation only tells us how functions behave as ε →  0.  It is not meant to be 

used for comparing constants, which are all, by definition, of  𝑂 (1).  

We also have a notation available that displays more information about the behavior of the 

functions. If  lim
  𝜀→0 

 
𝑓(𝜀)

 𝑔(𝜀)
 = 1, we write 𝑓 (𝜀) ~ 𝑔(𝜀),  and say that 𝑓 (𝜀) is asymptotic to 𝑔(𝜀) as 

𝜀 →  0.  

 If the function lim𝜀→0
𝑓(𝜀)

 𝑔(𝜀)
= 0, we write  𝑓  𝜀 = 𝑜 𝑔(𝜀) , and say that f is much less than g.  

 

Asymptotic Sequence: A sequence {𝐴𝑛 } for n = 1, 2,   .  .  .  is called an asymptotic sequence if for 

all n,  𝐴𝑛+1 𝑧 =  𝑜(𝐴𝑛 𝑧 )  as  𝑧 →  𝑧0 .   The order of every term in an asymptotic sequence is 

less than the order of the previous one. 

Asymptotic Expansions: The crucial difference between asymptotic expansions and the power 

series is that asymptotic expansions need not be convergent in the usual sense Georgescu [5]. 

Poincare's original definition states that for 𝐴𝑛 𝑧  an asymptotic sequence as  → 𝑧0  ,   𝑎𝑛𝐴𝑛
𝑁
𝑛=1  

is an asymptotic expansion (or asymptotic series) of 𝑓  𝑧  if for all N, 𝑓  𝑧 =  𝑎𝑛𝐴𝑛
𝑁
𝑛=1 +

 𝑜(𝐴𝑛 𝑧  as 𝑧 →  𝑧0 .  For all values of n the functions 𝐴𝑛 𝑧  are known as the guage functions. 

Asymptotic Equivalence: The aim of asymptotic approximation is to find a function that is 

asymptotically equivalent to the solution of the given problem. Two functions f and g are 

asymptotically equivalent, written 𝑓 (𝑧) ~𝑔 (𝑧)  as 𝑧 → 𝑧0, if     lim
     𝑧→𝑧0

𝑓(𝑧)

 𝑔(𝑧)
=  1.  

Leading order solutions:  leading order solutions of an equation are solutions which are not 

dependent on small parameter 𝜀 where  0 < 𝜀 <  1. 

Boundary layer problems: if 𝜀 is a multiplier of the highest derivative or leading term of a 

polynomial equation (differential equation) 𝜀 is known as a boundary layer problem or rarely a 

matching problem. 

Introductory Examples 

The Taylor's theorem which is often used within more complicated methods is one of the most 

useful tools for obtaining asymptotic expansions. Consider the exponential function 𝑒𝑧  as an 

example and the well known Taylor series for 𝑧 →  0  is given as 
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                                                   𝑒𝑧 = 1 + 𝑧 +  
𝑧2

2!
+  

𝑧3

3!
+  −  −  − 

 valid for all 𝑧 an element of the set of complex numbers. Hence the order of the terms is 

gradually decreasing for 𝑧 → 0. Therefore, from the definition this is clearly a valid asymptotic 

series and for a 3 term asymptotic expansion we can write  

                                           𝑒𝑧 = 1 + 𝑧 +  
𝑧2

2!
 

This is known as three term expansion or an expansion to 𝑂(𝑒3) (to order 𝑒3) taken from the 

highest order of the asymptotic variable the series is expanded to. 

 

Discussions and Results 

Perturbation Theory 

One of the main uses of asymptotic analysis is to provide approximations to differential equations 

that cannot easily be solved explicitly. To simplify our discussion we considered only second 

order ordinary differential equations. However most of the techniques can easily expanded to 

problems of higher ODEs and PDEs. 

Consider the following general second order differential equation for 𝑦 𝑥, µ , which is a function 

of 𝑥¸   
𝑑2 𝑦  

𝑑𝑥 2 +  𝑝(𝑥, µ) 
𝑑𝑦

𝑑𝑥
  +   𝑞(𝑥, µ)𝑦  =   𝑟(𝑥, µ) 

Where x is an independent variable with respect to which all differentiation and integration is 

applied. µ and any other variables upon which the solution of y could depend on are known as 

physical parameters and no differentiation or integration is carried out with respect to them. 

 

The variable with respect to which we study the asymptotic behavior is known as the asymptotic 

variable. In classical asymptotic analysis the asymptotic variable is taken as the independent 

variable of the differential equation. In perturbation theory the asymptotic behavior is studied 

with respect to a small physical parameter, usually denoted by ℇ. The point in the domain around 

which the asymptotic behavior is studied is known as the asymptotic accumulation point. The 

most common differential equation problems we focus on in this paper for an approximation are 

those of perturbation theory, where the accumulation point is ℇ =  0. Perturbation theory deals 

with problems that contain a small parameter usually denoted by ℇ and solutions are required as 

ℇ approaches 0. Perturbation theory can be divided into regular and singular forms. The 

differences between the two will be seen in the coming examples. 
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Regular Perturbation Problems   

The common technique with perturbation problems is to find an expansion with respect to the 

asymptotic sequence   {1, ℇ,  ℇ2  .  .  . }  as ℇ → 0. The regular (or Poincare) expansion is then  

 𝑢 ℇ, 𝑥 ~ 𝑈0 𝑥 +  ℇ 𝑈1 𝑥 +  ℇ 2𝑈2 𝑥 + .  .  .  as ℇ → 0. 

for gauge functions 𝑈0 , 𝑈1 , 𝑈2 . . . which we will determine.  

The solution of ODEs by asymptotic methods often proceeds as follows. We assume that an 

asymptotic expansion of the solution exists, substitute into the equation and boundary conditions, 

and equate powers of the small parameter. This determines a sequence of simpler equations and 

boundary conditions that we can solve.  

 Example:  Consider the initial value problem 

 𝑑2𝑦

𝑑𝑡 2 +  ℇ 
𝑑𝑦

𝑑𝑡
+  1 = 0                     

                                                           𝑦 (0)  =  0;                                                      (1.1)                                                            

𝑑𝑦

𝑑𝑡
 0 = 1 

The above equation represents a projectile motion problem where air friction taken into account. 

ℇ =  
𝑘𝑣0

𝑚𝑔
  where 𝑘 is the coefficient of air friction, g is the gravitational acceleration, m the 

object's mass and 𝑣0 the initial velocity. 

 

To construct the asymptotic solution when ℇ <<1, it can be carried out to find as many terms of the 

expansion as necessary but in practical situations only a small number of terms are usually 

needed. Thus, to gives an approximation up to 𝑂 (ℇ2), we seek a solution of the form: 

                𝑦(𝑡)  =  𝑦0(𝑡)  +  ℇ 𝑦1(𝑡)  +  ℇ2  𝑦2(𝑡)  +  𝑂 ( ℇ3)                                                       (1.2) 

This is now substituted in the differential equation and initial conditions (1.1) to determine 

functions 𝑦0, 𝑦1  and 𝑦2 and give a 3 term expansion. Of course this Substituting (1.2) in to (1.1) 

and after rearrange into a hierarchy of powers of ℇ it gives: 

  
𝑑2𝑦0

𝑑𝑡 2   +  1  +  ℇ  
𝑑2𝑦1

𝑑𝑡 2    + 
𝑑𝑦0

𝑑𝑡
   + ℇ2  

𝑑2𝑦2

𝑑𝑡 2     +  
𝑑𝑦1

𝑑𝑡
 +  𝑂 (ℇ3)  =  0  

                                                                                  

𝑦0 0 +  ℇ 𝑦1 0 +  ℇ2  𝑦2 0 +  𝑂   ℇ3 = 0 

  
𝑑𝑦0

𝑑𝑡
(0)  −  1 +  ℇ

𝑑𝑦1

𝑑𝑡
(0)   +  ℇ2  

𝑑𝑦2

𝑑𝑡
(0)   +  𝑂 (ℇ3)  =  0 

The next step is then to equate to zero all the terms of each order of ℇ : 

𝑂(1):   
𝑑2𝑦0

𝑑𝑡 2   +  1 = 0     where      𝑦0 0 = 0 and 
𝑑𝑦0

𝑑𝑡
 0 − 1 = 0 
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                                𝑂(ℇ):     
𝑑2𝑦1

𝑑𝑡 2    +  
𝑑𝑦0

𝑑𝑡
= 0   where     𝑦1 0 = 0 and  

𝑑𝑦1

𝑑𝑡
 0 = 0 

                                𝑂(ℇ2):   
𝑑2𝑦2

𝑑𝑡 2     +  
𝑑𝑦1

𝑑𝑡
= 0   where        𝑦2 0 = 0 and  

𝑑𝑦2

𝑑𝑡
 0 = 0 

Solving these equations gives: 

     𝑦0 𝑡 =  𝑡 −  
 𝑡2

2
  

      𝑦1 𝑡 =  −  
  𝑡2

2
  +   

 𝑡3

6
  

     𝑦2 𝑡 =   
 𝑡3

6
  −   

 𝑡4

24 
  

Now putting these into the expansion (1.2) gives an approximation to 𝑂(ℇ2): 

 𝒚 𝒕   ~   𝒕  −   
  𝒕𝟐

𝟐!
  +  ℇ  −

  𝒕𝟐

𝟐!
 +  

  𝒕𝟑

𝟑!
  +  ℇ𝟐   

  𝒕𝟑

𝟑!
−  

  𝒕𝟒

𝟒!
                                        (1.3) 

 

 

 

Figure - 1:  Asymptotic solutions of (1.1) when  ℇ =  0 and ℇ =  0.1 

 

Hence finding an asymptotic expansion is simply a case of assuming a well-known form and 

substituting it into the problem equation to give an approximate solution. Of course this was an 

extremely basic example but the fundamental principle is the same wherever regular 

perturbation techniques can be used. In the next section on singular perturbation theory we will 

discuss areas where regular perturbation fails. 

Singular Perturbation Problem 
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Singular perturbation theory concerns the study of problems featuring a parameter for which the 

solutions of the problem at a limiting value of the parameter are different in character from the 

limit of the solutions of the general problem; namely, the limit is singular. In contrast, for 

regular perturbation problems, the solutions of the general problem converge to the solutions of 

the limit-problem as the parameter approaches the limit-value as discussed Cronin [2]. 

Thus, a perturbation problem is said to be singular when the regular methods produce an 

expansion that fails, at some point, to be valid over the complete domain. Geometric singular 

perturbation theory provides a rigorous approach for describing solutions of singularly perturbed 

dynamical systems, based on Fenichel's analysis of the manifolds underlying the system as 

discussed elsewhere  [2, 7].  

There are a number of types of singular perturbation problems that all need different 

methods to attempt them. We will consider method of matched asymptotic expansions. 

This method is the most common and widely applicable in singular perturbation 

problem as discussed [10, 14]. When ℇ is a multiplier of the highest derivative or leading 

term of a polynomial equation it is known as a boundary layer problem or rarely a 

matching problem, the reasons for this will become clear in the next section. 

 

Matched Asymptotic Expansions Method 

The Method of Matched Asymptotic Expansions has its roots in Ludwig Prandtl's 

boundary layer theory, developed in 1905 while studying the flow of a viscous 

incompressible fluid past a wall or body. In physical terms a boundary layer is the layer 

of fluid at the very border of a flow, against the containing surface for example an 

aircraft wing or the banks of a river. The thin area here exhibits properties very much 

different from the rest of the field Bruijn [1]. 

 

Introductory Example:  

Consider the ordinary differential equation 

                                   ℇ
 𝑑2𝑦

𝑑𝑥 2 +  2 
𝑑𝑦

𝑑𝑥
 −  𝑦 =  0                                                                     (2.1) 

to be solved for 0 ≤  𝑥 ≤  1, subject to the boundary conditions 

𝑦 (0) = 0,    𝑦(1) = 1.  

Know we consider an asymptotic solution of the form 

                                        𝑦(𝑥)  =  y0(𝑥)  +  ℇ y1(𝑥)  +  𝑂(ℇ 2).                                       (2.2) 
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Substituting this into (2.1) gives: 

                        2𝑦′0  −  y0  +  ℇ  𝑦′′0 +  2 𝑦′1 −  𝑦1  +  𝑂 (ℇ 2)  =  0                         (2.3) 

And so the term independent of ℇ,𝑂(1)  is: 

2𝑦 ′
0

 –  y0 = 0 

With the general solution 

                                                                 y0 𝑥 =  𝐴𝑒𝑥/2                                                                              (2.4) 

for A an arbitrary constant. This raises the first difficulty: with only one arbitrary constant both 

boundary condition  𝑦 (0) = 0  and 𝑦 (1) = 1 cannot be satisfied. What this means is that (2.2) 

and (2.4) cannot provide a valid solution over the whole interval 0 ≤  𝑥 ≤  1 and this is where 

Prandtl's boundary theory comes into play. It is now assumed that a boundary layer exists at 

either end of the domain [0, 1] within which the properties of the solutions are very much 

different, preventing solution (2.4) being valid over the complete interval.  

 

For it assumed that this boundary layer occurs at 𝑥 = 0 and so we will have more than one 

solution. Inside the boundary layer about 𝑥 = 0  we will have an inner or boundary layer 

solution and over the rest of the domain we will have the outer solution. Hence (2.4) will be 

known as first term of the outer solution and it satisfies the second of the two boundary 

conditions 𝑦 (1) = 1. 

Using this boundary condition (2.4) which gives as 

                                                                      𝐲𝟎 𝒙 =  𝒆(𝒙−𝟏)/𝟐                                                             

(2.5) 

This is our one term approximation to the solution outside the boundary layer. 

At 𝑂(ℇ) we have 

2 𝑦′1 −  𝑦1 =  −𝑦′′0 =  −  
1

4
 𝑒(𝑥−1)/2   

to be solved subject to 𝑦 (0) = 0  and 𝑦 (1) =0. This equation can be solved using an integrating 

factor, which gives 

                                              𝑦1(𝑥)  =  −  
1

2
 𝑥𝑒(𝑥−1)/2  +  B 𝑒(𝑥−1)/2                    

for some constant B. Again, we cannot satisfy both boundary conditions, and we just use  

𝑦1(1)  = 0, and evaluate the constant B =  ½  to gives 

                                                                      𝒚𝟏(𝒙)  =  
𝟏

𝟐
 (𝟏 –  𝒙) 𝒆(𝒙−𝟏)/𝟐                                       

(2.6) 
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Figure -2:  Exact and asymptotic solutions of (2.1) when  ℇ =  0.25. (Source: King, A.C.  2003) 

 

And hence this gives 

                                                             𝒚(𝒙)  = 𝒆(𝒙−𝟏)/𝟐  𝟏 +
𝟏

𝟐
ℇ (𝟏 –  𝒙) + 𝑶(ℇ 𝟐)                     

(2.7) 

for ℇ ≪ 1.  

This shows that 𝑦 → 𝑒−1/2 (1 +  
1

2
ℇ)  as x → 0, which clearly does not satisfy the boundary 

condition 𝑦 0 = 0. We must therefore introduce a boundary layer at 𝑥 = 0, across which y 

adjusts to satisfy the boundary condition.  

 Boundary Layer 

Singularly perturbed differential equations can yield solutions containing regions of rapid 

variation (rapid compared to the regular length scale for the problem). These regions, which may 

be apparent in the solution or in its derivatives, are called `layers' and often appear at the 

boundary of the domain (as illustrated in Figure 3). Solutions obtained for the layers (singular 

distinguished limits) are usually termed inner solutions while the slowly varying solutions for 

the regular distinguished limits are referred to as outer solutions. 

The uniformly valid solution (composite solution) can be constructed through asymptotic 

matching of the inner and outer solutions, which rely on the fundamental assumption that the 

different solution forms overlap at on some identifiable region (see Figure 3). Procedures for 

matching asymptotic expansions have been examined by Kaplun, Van Dyke and others; there are 
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still some fundamental theoretical issues to be resolved as discussed in Eckhaus [4], Kevorkian 

[8] and Lagerstrom [11]. 

 

Fig.- 3: Schematic of a boundary layer. (Source Thomas W. & Mark, B. 2009) 

The idea is that, in some small neighborhood of 𝑥 = 0, the term ℇ𝑦′′, which we neglected at 

leading order, becomes important because y varies rapidly. To deal with the boundary layer at 

𝑥 = 0 introduce a boundary layer coordinate to rescale the problem within the layer; 

                                                                           𝑋 =  ℇ −𝛼  𝑥                                                  (2.8) 

with 𝛼 > 0 (so that  𝑥 << 1)  and 𝑋 = 𝑂(1)  as ℇ → 0. 

𝑋 is also known as the stretching coordinate because under the transformation 𝑥 → 𝑋  with 𝑋 

taken to be fixed, the region becomes much larger as ℇ →  0. Let 𝑦(𝑥) = Y(X) denote the 

solutions to the problem when using the boundary layer coordinate for 𝑋 = 𝑂(1) and so from 

(2.8) and the chain rule we get 

𝑑

𝑑𝑥
=  

𝑑𝑋

𝑑𝑥

𝑑

𝑑𝑋
 =  ℇ−𝛼   

𝑑

𝑑𝑋
  

and 

𝑑2

𝑑𝑥 2 =  
𝑑

𝑑𝑥
  ℇ−𝛼 𝑑

𝑑𝑋
 =  ℇ−2𝛼 𝑑2

𝑑𝑋 2   

Using these new coordinates the initial problem (2.1) becomes  

                                   ℇ1−2𝛼 𝑑2𝑌

𝑑𝑋 2  +  2ℇ−𝛼 𝑑𝑌

𝑑𝑋
 −  Y =  0 ;      with  Y (0)  =  0                     (2.9) 

and the task is to determine the number 𝛼. 

http://www.scholarpedia.org/article/File:Boundary_layer.gif
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Since 𝛼 > 0, the second term in this equation is large, and to obtain an asymptotic balance at 

leading order we must have ℇ1−2𝛼 = 𝑂(ℇ−𝛼). Which implies that 1 − 2𝛼 = −𝛼, and hence 𝛼 =

 1. So (2.8) become 𝑥 = ℇ 𝑋 and the equation (2.9) is now  

                                            
𝑑2𝑌

𝑑𝑋 2  +  2
𝑑𝑌

𝑑𝑋
 −  ℇ Y =  0 ;    and  𝑌 (0)  =  0.                                (2.10)                     

                          

The region where ℇ <<  𝑥 <<  1  is usually refer to as the outer region, with outer solution 

𝑦 𝑥 , and the boundary layer region where x = O(ℇ ) as the inner region with inner solution 

𝑌 (𝑋). The other boundary condition is to be applied at x = 1. However, x = 1 does not lie in the 

inner region, where x = O(ℇ ). In order to fix a second boundary condition for (2.10), we will have 

to make sure that the solution in the inner region is consistent, in a sense that we will make clear 

below, with the solution in the outer region, which does satisfy 𝑦(1) = 1. 

 

The appropriate expansion within the boundary layer shall be 

𝑌 (𝑋)  =  𝑌0(𝑋)  +  ℇ𝑌1(𝑋)  +  𝑂 (ℇ2  )  

Substituting this into (2.10) gives 

         𝑌′′0 (𝑋)  +  2𝑌′0(𝑋)  +  ℇ{𝑌′′
1

(𝑋)  +  2{𝑌′
1

(𝑋)  −  𝑌0(X)} +  𝑂 (ℇ2)  =  0              (2.11) 

At leading order, 𝑌′′0   𝑋 +  2𝑌′
0 𝑋 = 0 to be solved subject to 𝑌0  (0)  =  0.   

The general solution of which is  

                                                                       𝑌0   X =  𝐴 (1 −  𝑒−2𝑋)                                          (2.12) 

for arbitrary constant A. At leading order, we now know that 

                                               𝑦 ~  𝑒(𝑥−1)/2  for ℇ <<  𝑥 << 1                               (the outer 

expansion), 

                                    𝑌 ~ 𝐴 1 −  𝑒−2𝑋  for 𝑋 =  𝑂(1),𝑥 =  𝑂(ℇ)             (the inner 

expansion). 

Hence (2.12) is the solution to the problem within the boundary region at x = 0 and we notice that 

the constant A cannot be determined by either of the boundary conditions. A must be determined 

then by the matching process. 

 

Matching of the Inner and Outer Expansions  

The important idea is to understand that both the inner and outer expansions are approximations 

to the same function. Hence where the inner and outer expansions meet up both expansions 

should provide a valid and equal result. At this stage we already know the outer expansion 
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explicitly. However the inner expansion depends on an unknown constant. The matching process 

is used to evaluate the constants in the boundary layer expansion and it also plays an important 

part in forming the composite expansion. 

 

Essentially, as Y0 leaves the boundary layer (X →∞) it must be equal to 𝑦0 as it comes in to the 

boundary layer, when (x → 0). From this we obtain that 

 

     lim𝑌0 =  lim 𝑦0 
    𝑋→∞           𝑥→0

 

      

and hence                                                     

                                                                         lim𝑋→∞𝐴(1 −𝑒−2𝑋  )  =  𝑒−1/2                                            

(2.13) 

                                                                        

which gives 𝐴 = 𝑒−1/2 . And so we finally have the first term of our inner expansion 

                                                                  𝑌0(𝑋)  = 𝑒−1/2  1 −  𝑒−2𝑋                                 (2.14) 

Composite Expansion:   

After the first terms of both the inner and the outer expansions obtained; they must be matched 

together to obtain one composite expansion that approximates the solution over the whole domain 

[0, 1]. To get the composite expansion the inner and outer expansions are simply added together 

and the common limit found in (2.13) is subtracted, otherwise it would be included twice in the 

overlapping region.  

So our solution to 𝑂(1)  is 

𝑦𝑐   ~ 𝑦0 𝑥 +  𝑌0 𝑋 −  𝑦 1,1  =  𝑒(𝑥−1)/2  + 𝑒−1/2  (1 −  𝑒−2𝑋  )  −  𝑒−1/2   

which gives  

                              𝒚𝒄   ~  𝒆(𝒙−𝟏)/𝟐  − 𝒆−𝟏/𝟐−𝟐𝒙/ℇ    for 0 ≤ 𝑥 ≤ 1 𝑎𝑠 ℇ → 0                                       

(2.15) 

A comparison between the one-term inner and outer solutions, composite expansion and the exact 

solution is given in Figure 4. It should be clear that the inner expansion is a poor approximation 

in the outer region and vice versa. This composite expansion shows good agreement with the exact 

solution across the whole domain 0 ≤ 𝑥 ≤ 1, as expected.   
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Figure - 4: Exact and asymptotic solutions of (2.1) when ℇ =  𝟎. 𝟐𝟓. (Source: King, A.C. 2003) 

 

Further Terms 

To calculate a second term for the outer and inner expansions we return to the differential 

equations obtained using the outer and inner expansions and repeats the same balancing and 

matching processes. From a second term it can be added into the composite expansion to give a 

more accurate approximation. Fundamentally this is a simplification of the intermediate 

matching principle formulated by Saul Kaplan, which introduces the concept of another region 

in the problem, basically an overlap region where the inner and outer expansions meet and where 

both will be valid. 

 

We define a new intermediate variable, valid over an overlap domain, to bridge between the inner 

and outer regions already defined. In conventional notation this interval is written [ℇ 𝛽0 , ℇ 𝛽1 ] 

and in elementary terms it is the region where both the inner and outer approximations are valid. 
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Figure - 5: Overlap regions. Source: (Holmes, M.H. 1995). 

Figure 3 shows, a comprehendible illustration similar to Holmes' diagram found in Holmes [6] 

of how the boundary layer comes into play. In the region around 𝑥 = 0 (at which ℇ close to 0 

valid) and across the newly defined intermediate domain [ 𝛽0  ,  𝛽1] the inner approximation is 

valid. The outer approximation is also valid across this interval and over the remaining section of 

the problem domain, up to 𝑥 = 1. 

Figure 3 also gives a good image of how process for obtaining a composite expansion works. The 

inner and outer expansions are added together and the solution over the intermediate domain is 

subtracted. Otherwise, if we did not subtract the intermediate solution it would be counted twice 

as this region is already approximated by both the inner and the outer expansions. 

 

Proving the existence of the intermediate region is not always easy so for our purposes we shall 

have to bypass the proof, but further study can be found in MacGillivray [12]. With this new 

overlap domain we now define our intermediate variable as 

𝑋   =    
𝑥

 ℇ𝛽      with   ℇ 𝛽0  < ℇ𝛽 < ℇ 𝛽1 . 

Now to use this new matching technique, we should have to find the second term for the outer 

and inner expansions. For the inner expansion look at (2.12) and on matching the O ℇ  terms we 

get  

𝑌′′
1 +  2𝑌′

1  =  𝑌0  =  A 1 −  𝑒−2𝑋   

Integrating this once gives 

𝑌′
1 +  2𝑌1  =  A  𝑋 +  

1

2
𝑒−2𝑋  +  C  

for some constant C. This can now be solved using an integrating factor, and the general solution 

to this is  

𝑌1  =
1

2
𝐴  𝑋 +   

1

2
𝑒−2𝑋  −   𝐵 1 −  𝑒−2𝑋  

                                                                                                         

                                                   Outer approximation                                

                 Inner approximation             

      0                                  𝛽0              𝛽            𝛽1                          1  

 

                                             𝛽0               𝛽              𝛽1  
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for some constant A and B, which we need to determine by the matching process. Thus, the two-

term asymptotic expansions are: 

                                  𝑦(𝑥) ~ 𝑒(𝑥−1)/2 +  
1

2
ℇ (1 –  𝑥) 𝑒(𝑥−1)/2    for  ℇ ≪ 𝑥 ≤  1 

  Y ~𝐴 1 −  𝑒−2𝑋 +  ℇ  
1

2
𝐴  𝑋 +   

1

2
𝑒−2𝑋    −   B 1 −  𝑒−2𝑋     for   X =  O 1 , 𝑥 =  𝑂 ℇ  

Now to match the above two expansions together we want to write each in terms of the 

intermediate variable. That is, we define: 

                                                   𝑥 = ℇ𝛽  𝑋   with 0 <  𝛽 <  1, and write    𝑦 = 𝑌  (𝑋 ).                      

(2.16) 

Hence in an intermediate region or overlap region, they should be equal where ℇ ≪ 𝑥 ≪ 1. And 

we expect in such a region both expansions to be valid. 

In terms of the intermediate variable, 𝑋 , the outer expansion becomes 

       𝑦(𝑥)~ 𝑒−
1

2exp  
1

2
ℇ𝛽  𝑋   +  

1

2
ℇ 1 − ℇ𝛽𝑋    𝑒−

1

2 exp  
1

2
ℇ𝛽  𝑋     for  ℇ ≪ 𝑥 ≤  1      

when  X  = O(1), we can expand the exponentials as Taylor series, and gives   

                                                    𝑌 ~ 𝑒−
1

2⁡ 1 +
1

2
ℇ𝛽  𝑋   +  

1

2
ℇ𝑒−

1

2 + O ℇ                              (2.17) 

Since x =  ℇ𝑋 = ℇ𝛃 X   we get  X = ℇ𝛃−𝟏 X  , the inner expansion is 

𝑌 ~ 𝐴 1 − exp⁡ −2ℇβ−1𝑋    

+ ℇ  
1

2
𝐴ℇβ−1𝑋   1 + exp −2ℇβ−1𝑋    −  B 1 − exp⁡ −2ℇβ−1𝑋       

Since for all n > 0, exp⁡ −2ℇβ−1𝑋   =  O ℇ𝑛  (It is exponentially small for β < 1), we have 

                                          𝑌 ~ 𝐴 +
1

2
𝐴ℇβ  𝑋 −  Bℇ + 𝑂(ℇ)                                                         

(2.18) 

Since by the process of asymptotic matching (4.17) and (4.18) must be identical, we need 𝐴 =

𝑒−1/2 , and we also get B =  −  
1

2
𝑒−1/2. The inner and outer expansions are known as matched 

asymptotic expansions.  

 

Van Dyke’s Matching Principle 

The use of an intermediate variable in an overlap region can get very tedious in more complicated 

problems. Van Dyke’s matching principle is a method that works most, but not all, of the time, 

and it is much easier to use. To use this method let’s start with the explanation. Let 
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𝑦(𝑥)  =  𝜑𝑛 ℇ 𝑦𝑛(𝑥)

𝑁

𝑛=0

 

be the outer expansion and 

𝑌 X =  𝜓𝑛 ℇ 𝑌𝑛 X 

𝑁

𝑛=0

 

be the inner expansion with respect to the asymptotic sequences 𝜑𝑛 ℇ  and 𝜓𝑛 ℇ , with 𝑥 =

𝑓(ℇ)𝑋.  

 

In order to examine how the inner expansion behaves in the outer region, we can write 𝑌 𝑋  in 

terms of x and retain M terms in the resulting asymptotic expansion. We denote this by 𝑦(𝑁,𝑀), 

the 𝑀th  order outer approximation of the inner expansion. Similarly, to examine how the outer 

expansion behaves in the inner region we can write 𝑦(𝑥)  in terms of 𝑋 =  𝑥 𝑓(ℇ) ,  and retain M 

terms in the resulting expansion. We denote this by 𝑌(𝑁,𝑀), the 𝑀th  order inner approximation 

of the outer expansion. Van Dyke’s matching principle states that 

                                    𝑦(𝑁,𝑀)   =  𝑌(𝑁,𝑀) . 

Let’s see how this is valid for our example:- 

In terms of the outer variable, the inner expansion is: 

𝑌~ 𝐴 1 − e−2𝑥/ℇ + ℇ  
1

2
𝐴
𝑥

ℇ
 1 + e−2𝑥/ℇ −  B 1 − e−2𝑥/ℇ    

~ 𝑌(2,2) =  𝐴 +
1

2
𝐴𝑥 − 𝐵ℇ for 𝑥 = 𝑂(1)    

In terms of the inner variable, the outer expansion is: 

𝑦(𝑥) ~ exp⁡ −
1

2
+  

1

2
ℇ𝑋  +  

1

2
ℇ 1 − ℇ𝑋 exp  −

1

2
+  

1

2
ℇ𝑋  

~ 𝑦(2,2) =  e−
1

2  1 +
1

2
ℇ𝑋 +

1

2
ℇ for 𝑋 = 𝑂(1)  

In terms of the outer variable:      𝑦(2,2) =  e−
1

2  1 +
1

2
𝑥 +

1

2
ℇ  

Since Van Dyke’s matching principle states that  𝑌(2,2) = 𝑦(2,2), this gives 𝐴 = 𝑒−1/2   and 

B = −  
1

2
𝑒−1/2 rather more painlessly than before. 𝑥 = 𝑥0  for 0 < 𝑥0 < 1.  

 

Note that, in terms of Van Dyke’s matching principle, we can write the composite solution of any 

order as 
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𝑦 ~ 𝑦𝑐(𝑁,𝑀) =  𝑦𝑛 𝑥 +  𝑌𝑛 𝑋 −  𝑁
𝑛=0

𝑀

𝑛=0
𝑦(𝑁,𝑀)               

In general the method of matched asymptotic expansions can be useful for differential equations 

with an ℇ coefficient multiplying the highest order derivative. Frequently these hold a boundary 

layer preventing the whole set of boundary conditions being satisfied by a regular perturbation 

solution. Where the regular solution fails we introduce new coordinates to describe the solution 

inside the boundary layer and produce two separate approximations valid over different sections 

of the domain. These solutions must be matched together and combined to form a single 

expansion applicable generally found in King [9]. 

 

The Location of the Boundary Layer 

In our example, when we constructed the outer solution, it was identified that a boundary layer 

exists at either x = 0 or x = 1 and we assumed it was located at x = 0. There is no clear and enough 

information on identifying the location of a boundary layer. According to Murray [13] writes 

identifying the layer location comes from experience' while Van Dyke [16] method makes use of 

the exact solutions to the problems to determine the layer location, but it is not much work for a 

problem that cannot easily be solved exactly. 

 

In our pervious problems, if we assume that there is a boundary layer at x = x0. That is, if 𝑥0 ≠ 0 

and 𝑥0 ≠ 1 this is an interior layer. And we would need to use a more general boundary layer 

coordinate in (2.16). In general the transformation to use would be 

     𝑋 =  
𝑥  − 𝑥0 

ℇ𝛼   and  𝑦(𝑥)  =  𝑌 𝑋  

where 𝑥0 represents the location of the layer with 𝛼 > 0 1 and 𝑌 𝑋 = 𝑂 1  for ℇ≪1.  

As before, we find that we can only obtain an asymptotic balance at leading order by taking  

𝛼 =  1, so that 𝑥 =  𝑥0  +  ℇ𝑋  and  

𝑑2𝑌

𝑑𝑋 2  +  2
𝑑𝑌

𝑑𝑋
 −  ℇ  =  0  

At leading order, as before, 𝑌0 = 𝐴0 + 𝐵0𝑒
−2𝑋  . As 𝑋 → −∞, 𝑌0 becomes exponentially large, and 

cannot be matched to the outer solution. This forces us to take 𝑥0 = 0, since then this solution is 

only needed for 𝑋 ≫ 0, and, as we have seen, we can construct an asymptotic solution. 

 

In our example we had simple layer at one of the boundaries of the interval, but much more 

complex layer dependence is possible. Layers can randomly locate in the middle of the domain 

which makes problems immediately more difficult as the location is not always easy to determine 
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White [17]. It is even possible to have nested layers, where we discover that there are two 

possibilities in choosing ℇ𝛼  in the layer coordinate (2.16).  

 

Boundary layer problems are one of the most common of all asymptotic problems. The Navier-

Stokes equations governing fluid flow at high Reynolds number are the typical example dealt 

with widely by Van Dyke [16] and many other applied mathematicians. More recent and very 

much still developing  adaptations of singular perturbation theory have appeared in financial 

mathematics with some examples concerning small limits of volatility in dealing with the Black-

Scholes option pricing model Duck [3].  

Conclusion 

To conclude our study it is important to emphasize how small a portion of asymptotic analysis we 

have covered here. We have introduced the concepts from the original definitions of asymptotic 

analysis and gone forward to use them in examples from perturbation theory. 

 

Perturbation theory is one of the most important methods of approximation due to its strong 

historical connection with physics, particularly the area of fluid mechanics. The previously 

mentioned examples in financial engineering confirm that today perturbation theory is still 

important as it was during the development stages and in fact new areas where perturbation 

techniques are useful are still to be found. 

 

The method we met here, matched asymptotic expansions, is the most widely useful and 

fundamentally important to solve differential problems, this method require the introduction of 

new coordinates and matching of asymptotic expansions and we can apply for both ODEs and 

PDEs. For this reason the matched asymptotic expansions could be considered the more basic and 

more reliable method. 

 

In this  paper we simplified our examples by considering only ODEs up to second order. The same 

methods used can be easily adapted to solve differential equations of much higher orders. With 

slightly trickier adaptation they can also be extended into PDEs, and this is vastly important in 

fluid dynamics. 

 

To extend our study in the areas we have crossed we could further investigate the method of 

matched asymptotic expansions. What we have seen was a simple case where layers existed at one 

of the boundaries and the layer was easy to locate. In reality there may be further complications 
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where the location of a layer can be difficult to define or we can have several layers all present to 

complicate a single problem.  

Finally, based on the aforementioned, discussions and conclusions, It recommended that the 

study can be repeated in  this area and further investigate when several layers all present in a 

single problem and also the study can be extended into PDEs, as this is very much important in 

fluid dynamics. 
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