

XRD DIFFRACTION PATTERN OF THE ADDUCT OF ADIPIC ACID WITH [NP(OH₂)]₃

Atul Gupta¹ and S.P.S. Jadon²

¹Department of Chemistry, S.V. College Aligarh/Dr. B.R.A. University, India ²Department of Chemistry, S.V. College Aligarh/Dr. B.R.A. University, India

ABSTRACT

The adduct of adipic acid with $[NP(OH)_2]_3$ assigned as $[P_3N_3(OH)_4][CH_2]_8$ is characterized by EPR and XRD spectra and resultst reveals that the adduct is paramagnetic in character having a triclinic geometrical structure.

KEYWORDS: Conductor, Geometrical, Paramagnetic, Synthesis, Triclinic.

INTRODUCTION

Synthesis of various adducts of $[NP(OH_2)]_3$ with a number of organic acid such as cinnamic acid, oleic acid, hippuric acid, salicylic acid, nicotinic acid, adipic acid and tannic acid etc. have been reported.¹⁻⁷

EXPERIMENTAL

 $[NP(Cl)_2]_3^8$ is used as starting material. When NaOH as hydroxide is treated on $[NP(Cl_2)]_3$ in a non aqueous solvent. $[NP(OH)_2]_3$ is formed and separated as palm coloured mass. To prepare the adduct, $[NP(OH)_2]_3$ and adipic acid in (1.1) ratio are refluxed for 6-8 hrs. at $140^0 - 160^0$ C in presence of 1 ml. conc. H_2SO_4 using alcohol as solvent.

The adduct, obtained, was separated, washed, dried and stored in vacuum desiccator. EPR and XRD spectra were recorded on Varian's X-E-4 band spectrometer at RT and PW-1710 using Cuk_{α} as source of radiation($\lambda = 1.5418$ Å) in the 2 θ range 0^0 to 80^0 .

RESULTS AND DISCUSSION

Its EPR spectrum⁹ consist a medium peak of high intensity (Figure-1) inferring its paramagnetic nature which is supported by the value of magnetic momentum $\mu_{eff} = 1.6850$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. International Research Journal of Natural and Applied Sciences (IRJNAS) ISSN: (2349-4077) BM and magnetic susceptibility $\chi_A = 1.1833 \times 10^{-3}$ e.s.u. The value of $g_z = 2.1710 > 2$ indicate the presence of covalency in the adduct as well as ionic valency caused by the reaction of COOH group of adipic acid and P-OH group of hydroxyphosphazene forming P-O⁻-C⁺=O with the elimination of water molecules which are absorbed by conc. H₂SO₄.

Figure-1: E.P.R Spectrum of Compound

The XRD graph (Figure-2) has a prominent peak of high intensity at 31.83° having other peak in its right side at 33.5. This prominent peak is for the P-N bond which repeats again at 36° , 38° and 59° & 60° with same pattern and low intensity. The peak at 24.33° having another peak on its left side at 21.83 is for the C=O bands of adipic acid, which also repeats rights side of the prominent peak, inferring that one molecule of $[NP(OH)_2]_3$ has linked to both side with adipic acid as shown by its proton NMR spectrum (loc.cit.) conferming its reported structure.

The values¹⁰ of $\sin^2\theta$, milar indexes hkl and interplaner distance 'd'.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. International Research Journal of Natural and Applied Sciences (IRJNAS) ISSN: (2349-4077)

S. No.	2θ (degree)	Sin ² 0	$\mathbf{q}(\mathbf{h}^2 + \mathbf{k}^2 + \mathbf{l}^2)$	hkl	d(Å)		I / Io
					Obs.	Theo.	%
1.	17.50	0.02314	0.02314 x (1)	100	5.0683	5.0633	20
2.	21.83	0.03585	0.01792 x (2)	110	4.0712	4.0678	30
3.	24.33	0.04440	0.0222 x (2)	110	3.6587	3.6552	60
4.	31.83	0.07519	0.02506 x (3)	111	2.8114	2.8089	75
5.	33.50	0.08305	0.02076 x (4)	200	2.6753	2.6727	35
6.	36.83	0.09979	0.01996 x (5)	210	2.4407	2.4382	25
7.	38.00	0.10599	0.01766 x (6)	211	2.3679	2.3659	20
8.	48.33	0.16758	0.02095 x (8)	220	1.8832	1.8815	15
9.	54.83	0.21199	0.02355 x (9)	300	1.6744	1.6729	20
10.	59.00	0.24248	0.02424 x (10)	310	1.5655	1.5642	25
11.	60.17	0.25128	0.02284 x (11)	311	1.5379	1.5365	15
12.	64.83	0.28734	0.02394 x (12)	222	1.4382	1.4369	10
13.	73.50	0.35799	0.02557 x (14)	321	1.2884	1.2873	15

Table-1 XRD Pattern of Compound

 $q_{avg} = 0.28779$

Calculated, from its XRD spectrum are in close agreement to that of theortical ones. The values of axial distances $a_0 1.4370$ Å, $b_0 0.7869$ Å, $c_0 1.8175$ Å and axial angles $\alpha 65.91^\circ$, $\beta 150.01^\circ$, $\gamma 135^\circ$ are corresponding to triclinic geometrical packing of the molecule.

CONCLUSIONS

From the results it is evident that the adduct has ionic as well as covalent bond with formation of P-O-C=O linkage showing good conductivity due to presence of unpaired electrons in it, supported by its paramagnetism. The published(loc.cite)structure as (Figure-3).

Figure-3: Structure of Compound

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. International Research Journal of Natural and Applied Sciences (IRJNAS) ISSN: (2349-4077)

Acknowledgement

Authors wish to thanks to, Director SAIF, IIT Bombay, Director ACMS IIT Kanpur to provide instrumental facilities.

REFERENCES

1. Rani I., and Jadon S.P.S. Jadon,2008,Synthesis and Spectral Characterization of Hexahydroxy Tris-Cyclophosphazene Hexaacrylate *Asian Journal of Chemistry*, 20(7), 5711-5716.

2. Rani I., and Jadon S.P.S.,2008, Spectral Characterization of reaction product of Oleic acid and Hexahydroxycyclophosphazene, *International Journal of Chemical Sciences*, *6*(2), 519-525.

3. Gupta A., and Jadon S.P.S.,2009, Mass and I.R Spectral Characterization of the reaction product of Hexahydroxycyclotriphosphazene with Hippuric acid, *International Journal of Chemical Sciences*, 7(4), 2867-2871.

4. Gupta A., and Jadon S.P.S., 2012, Mass and I.R. Spectral Characterization of the reaction product of Hexahydroxycyclotriphpsphazene with Salicylic acid, *International Journal of Chemical Sciences*, *10*(*1*), 159-165.

5. Gupta A., and Jadon S.P.S.,2012, Removal of Nicotinic acid by [NP(OH)2]3 and Identification of product by its Mass, J.R. and NMR spectra, *Research Journal of Pharmaceutical*, *Biological and Chemical Sciences*, *3*(*4*), 11-19.

6. Gupta A., and Jadon S.P.S.,2014,Spectral and Antibacterial Characterization of the adduct of Adipic acid with [NP(OH)2]3, *American International Journal of Research in Formal, Applied & Natural Sciences*, 7(1), 2014, 97-103.

7. Gupta A., and Jadon S.P.S., 2014, Investigations of Hexahydroxyphosphazene Tannate, *American International Journal of research in Formal, Applied & Natural Sciences*, 8(1), 81-88.

8. Jadon S.P.S., 2003 Asian Journal of Chemistry, 15(1), 151-154.

9. G.E. Pake, *The Physical principles of Electron paramagnetic Resonance*, (W.A. Binjamin, Inc., 1973).

10. M.M. Woolfson, *An Introduction to X-ray Crystallography* (Vikas Publishing House Pvt. Ltd., Cambridge University Press, 1978).