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Abstract.‎The issue of G-structures founded by Goldman in 1951 and then 

its extension named‎"‎G-type structures‎"‎was raised in 2012 by Karamzadeh 

and Moslemi‎. ‎In this paper is expressed the applications of G-type 

structures in spectral spaces‎, ‎which in for G-type domain R has been 

introduced a new domain saying‎"‎pullback of G-type domain‎"‎with title of 𝑅 ‎. 

‎It has been proven‎, ‎if R is a G-type domain then 𝑆𝑝𝑒𝑐(𝑅 ) homomorphic to 

Spec(R) and in special if R is a saturated G-type domain and 𝑆−1𝑅 ⊂

 𝑅∗ .‎then Ris coincides to 𝑅 ‎. 
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1. Introduction 

‎‎The properties of Hilbert ring and Hilbert Nullstellensatz was the one of important concepts 

raised by Goldman in 1951‎, ‎this purpose were defined as a new structure by the title of‎‎"G-

structures",‎‎the main idea was been the applications of these structures in Hilbert rings‎, ‎these 

concepts as a suitable classified form have come in commutative algebra of Kaplansky[13]. 

‎After a long time was expressed a new concept of extension of these structures with the title 

of‎"‎G-type structures‎"‎by Karamzadeh and Moslemi in 2012[14] ‎, ‎where in was pointed the 

suitable and broader of Hilbert Nullstellensatz‎, ‎on this way G-structures‎, ‎G-type domains and 

G-type ideals were defined and also some Theorems and Corollaries were presented.‎‎ 

‎In this paper is discovered the applying of G-type structures to spectral spaces by instruction 

of the historical concepts. 

 

‎So firstly‎, ‎the G-type domains and G-type ideals are defined‎, ‎then by paper [14] some 

important Theorems are come and finally after the presenting a few Lemmas is proved some 

important Theorems as the following: 

‎A Noetherian domain R is a G-type domain if and only if it has just countable number of 

nonzero minimal prime ideals‎. ‎In addition‎, ‎if R is a G-type domain then Spec(𝑅 ) 

homomorphic to Spec(R)‎. 
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2. Mathematical Notations‎ 

 

Definition‎ 2.1 A commutative ring with unit in which every finitely generated‎‎ ideal is 

principal is called a Bézout ring‎, ‎if a Bézout‎‎ring has no zero divisors it is called a Bézout 

domain. 

‎If each finitely generated ideal of an integral domain R is‎‎invertible‎, ‎then it's called a prüfer 

domain‎. 

 

Lemma 2.2.‎[14] Let R be a domain with quotient field K‎, ‎R is said to be a‎‎G-domain if K is a 

finite type R-algebra‎. 

 

Lemma 2.3. [15]‎Let 𝑃(𝑅) =  𝑃𝑃∈𝑆𝑝𝑒𝑐 (𝑅)𝑃≠0
‎ ,‎(pseudo-radical‎‎of R)‎, ‎R is a G-domain if and 

only if  𝑃 𝑅 ≠ 0. 

‎In addition Spec(R) is finite set then R is evidently a G-domain‎. 

 

Definition 2.4. ‎A domain R is called a G-type Domain if its quotient field is ‎‎countably 

generated as a R-algebra. 

‎R is a G-type Domain if and only if its zero ideal is the‎‎contraction of a maximal ideal in 

𝑅[𝑥1 .  𝑥2   .  ⋯ . 𝑥𝑛  . ⋯ ]‎. 
‎A prime ideal I of 𝑅[𝑥1 .  𝑥2   .  ⋯ . 𝑥𝑛  . ⋯ ] is G-type if and only‎‎if its contraction in R and 

𝑅[𝑥1 .  𝑥2   .  ⋯ . 𝑥𝑛 ]for all 𝑛 ≥ 1‎‎are G-type‎. 

 

Theorem 2.5.[14]‎Let P be a prime ideal in a ring R‎, ‎then the following are‎‎equivalent: 

‎i) P is a G-type ideal in R. 

‎ii) There is a countable multiplicative closed set 𝑆 ⊆ 𝑅 such that‎: ‎P is maximal with respect 

to having the empty intersection with S. 

‎iii) There are either only a countable number of prime ideals in 𝑅/𝑃 or‎‎any uncountable set 

of prime ideals properly containing P‎, ‎say F‎,‎can be written in the form  𝐹 =∪𝑛∈𝛬 𝐹𝑛   , ‎where 

𝛬‎‎is a subset of the natural numbers‎, ‎P is properly contained in‎‎∪𝑄∈𝐹𝑛 𝑄for each n and some 

of the 𝐹𝑛  are uncountable‎. 

 

[2] ‎ Corollary 2.6. Let R be a domain‎, ‎such that each of its ideals countably generated‎ ,‎then R 

is a G-type domain if and only if there exists a countably‎‎ generated R-algebra‎‎"T"‎‎contains the 

quotient field of R‎. 

 

Theorem 2.7. [16] ‎If R be a countable domain‎, ‎then there is a maximal ideal M in 

𝑅[𝑥1 . 𝑥2 . ⋯ . 𝑥𝑛  . ⋯ ]‎‎such that 𝑀 ∪  𝑅 = (0) and each 𝑥𝑛  +  ‎𝑀 is algebraic over 
𝑅+𝑀

𝑀
≅ 𝑅‎. 

‎ 

Corollary 2.8. [2] ‎Let R is a domain‎, ‎R is a G-type domain if and only if there exists 

a‎‎maximal ideal M in 𝑅[𝑥1 . 𝑥2  . ⋯ . 𝑥𝑛  . ⋯ ] such that 𝑀 ∪  𝑅 = (0). 

 

‎Corollary 2.9. [2] ‎Let K be an algebraically closed field and  R = 𝐾[𝑥1 . 𝑥2  . ⋯ . 𝑥𝑛  . ⋯ ]‎then 

each maximal ideal M of R is of the form 𝑀 =  (𝑥1 − 𝛼1 . ‎𝑥2‎ −  ‎𝛼2 . ⋯ ) if and only if K is 

uncountable‎. 
 
Definition 2.10 ‎Let R be a ring‎, ‎then:‎ 

‎i) dim R = the supremum of all lengths of chain of distinct‎‎prime ideals in R. 

‎ii) Let M be an R-module‎, ‎the Krull dimension of M‎ , ‎which is‎‎denoted by "k-dim M"‎, ‎is 

defined by transfinite recursion as‎‎follows: k-dim M =‎ -‎1  if M =(0)‎and for every ordinal 
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number of 𝛼 , ‎we say that  𝑘 − 𝑑𝑖𝑚 𝑀 = 𝛼  if  𝑘 − 𝑑𝑖𝑚 ≮ 𝛼 and‎‎given any infinite 

descending chain ‎ "‎𝑀1 ⊇ 𝑀2 ⊇ ⋯" of submodules in M there exists some k such that‎: 

‎𝑘 − 𝑑𝑖𝑚 𝑀𝑚/𝑀𝑚+1 < 𝛼  for all  𝑚 ≥  𝑘. ‎ 

The Krull‎‎dimension of a ring R‎,‎" ‎k-dimR"‎,‎is defined to be the Krull‎‎ dimension of a right R-

module R‎. 

‎ 

Theorem 2.11. [14]‎Let R be a Noetherian domain‎, ‎R is a G-domain if and only if R 

is‎‎semilocal and 𝑘 − 𝑑𝑖𝑚 𝑅 ≤ 1‎. 

 

‎Remark 2.12. [3] ‎The ring of R is said has the‎‎"CPA"‎‎property(Countable Prime‎‎Avoidance) if 

𝐴 ⊆  𝑝𝑖
∞
𝑖=1  ( A an ideal‎‎of R) then  𝐴 ⊆ 𝑃𝑖  .  ∃𝑖 . 

Theorem 2.13. [2] ‎Let R be a complete Noetherian semi-local ring‎, ‎then a prime‎‎ideal P of R 

is a G-type ideal if and only if R is a G-type ideal‎‎if and only if it is a G-ideal‎. 

 

‎Theorem 2.14. [14] ‎Let R has countable Noetherian dimension‎, ‎then R is a finite‎‎direct sum 

of G-type domain if and only if each localization  𝑅𝑃  is a G-type domain or countably 

generated as a 𝜙𝑃 𝑅 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 ‎,‎where 𝜙𝑃 ‎: ‎𝑅 ⟶ 𝑅𝑃  is the natural homomorphism‎. 

 

‎Definition 2.15. ‎Let R be a ring and X is the set of all prime ideals of R‎, ‎let ‎‎𝐸 ⊆ 𝑅‎, ‎if we 

define  V(E) as follows‎: 

‎𝑉(𝐸) = {𝑃 ∈ 𝑋 ∶ 𝑃 ⊇  𝐸} 

‎‎Then‎ :‎‎ 

‎i)V(0)=X‎ ,‎𝑉(1) = ∅.‎ 

‎ii) If  𝐸𝑖 𝑖∈𝐼 be every family of subsets of R‎, ‎then‎: 

‎V ∪i∈I Ei =∩𝑖∈𝐼 V(Ei)‎ 
‎iii)𝑉 𝑎 ∩ 𝑏 = 𝑉 𝑎𝑏 =  𝑉 𝑎 ∪ 𝑉(𝑏) ,‎a and b are arbitrary ideals of R‎. 

 

‎Note 2.16.‎1) The set of V(E) is satisfying all the axioms of closed sets in a‎‎topological space‎, 

‎which is called the Zariski topology. 

‎2) A topological space X is called‎, ‎prime spectrum of R and it's‎‎written by Spec(R)‎. 

 

‎Definition 2.17.‎Let ∀ 𝑓 ∈ 𝑅 .  ‎𝑋𝑓  be the complement of V(f) in the ‎‎X=spec(R)‎, ‎so the sets 𝑋𝑓  

are open‎, ‎therefore they form a‎‎basis of open sets for the Zariski topology‎, ‎which are:‎ 

‎1)  𝑋𝑓 ∩ 𝑋𝑔 = 𝑋𝑓𝑔 ‎ 

‎2) If 𝑋𝑓 = ∅ then f is nil potent.‎ 

‎3) 𝑋𝑓 = 𝑋 ⇔  𝑓 is a unit.\\‎ 

‎4) 𝑋𝑓 = 𝑋𝑔 ⇔ 𝑉(< 𝑓 >)  = 𝑉(< 𝑔 >) ‎ 

‎5) X is quasi-compact (that is every open covering of X has a‎‎finite sub covering).‎ 

‎6) Furthermore‎, ‎each 𝑋𝑓 is also quasi-compact. 

‎7) An open subset of X is quasi-compact if and only if it is a‎‎finite union of sets 𝑋𝑓 . 

 

‎Note 2.18. [3] ‎The sets 𝑋𝑓  are called basic open sets of 𝑋 = 𝑆𝑝𝑒𝑐(𝑅). ‎A topological space X 

is said to be irreducible either 𝑋 ≠ ‎∅ or every pair of non-empty open sets in X intersect‎. 

‎Equivalently if every non-empty open set is dense in X‎, ‎therefore Spec(R)‎is irreducible if and 

only if the nil radical of R is‎‎a prime ideal‎. 

 

Remark 2.19. [6] ‎If R be a ring and X=Spec(R)‎ , ‎then the irreducible components‎‎of X are the 

closed sets V(P)‎,‎where P is a minimal prime ideal of‎‎R.‎‎Let 𝑅 =  𝑅𝑖
𝑛
𝑖=1  be the direct product 
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of rings 𝑅𝑖 ‎ , ‎so Spec(R) is the disjoint union of open (and closed) subspaces‎‎𝑋𝑖 ,‎where 𝑋𝑖  is 

canonically homeomorphic with 𝑆𝑝𝑒𝑐(𝑅𝑖).‎ 
‎Conversely‎, ‎Let R be any ring‎ ,‎the following are equivalent: 

‎i) X= Spec(R) is disconnected.‎ 

‎ii) 𝑅 ≃ 𝑅1 × 𝑅2‎ , ‎where any of the rings 𝑅1 . 𝑅2‎aren't the zero ring.‎ 

‎iii) R contains an idempotent not equal to 0 , 1‎. 

 

Note 2.20.‎Let R is a Boolean ring‎ 𝑋 = 𝑆𝑝𝑒𝑐(𝑅),then: 

‎i) For each 𝑓 ∈ 𝑅 ‎ , ‎the set 𝑋𝑓  is both open and closed in‎‎X. 

‎ii) Let  𝑓1 . 𝑓2  . ⋯ . 𝑓𝑛 ∈ 𝑅 ‎, ‎then 𝑋𝑓1
∪⋯∪ 𝑋𝑓𝑛

=  𝑋𝑓  .   ∃ 𝑓 ∈ 𝑅 . 

‎iii) The sets 𝑋𝑓  are the only subsets of X those are both open‎‎and closed.‎ 

‎iv) X is a compact Hausdorff space‎. 

 

Definition 2.21.‎Let R be a domain with quotient field K and P be any prime ideal‎‎of R and 

𝑆 = 𝑅 − 𝑃 be a "mcs"(Multiplicative Closed Subset) of R and 𝑅 bethe integral‎‎closure of R and 

T  be the ring of fraction of R so: 

‎i) 𝑅  is a pullback of a ring of fraction T of R such‎‎that each nonzero prime of T is contained in 

the union of height 1‎‎primes. 

‎ii)𝑅+‎ : ‎the seminormalization of R.‎ 

‎iii)R′ ‎ : ‎the integral closure of R. 

‎iv)𝑅∗‎ : ‎the complete integral closure of R.‎ 

‎v) Let 𝑃(𝑅) =  𝑃𝑃∈𝑆𝑝𝑒𝑐  𝑅 𝑃≠ 0 
, ‎it's shown that‎‎for brevity by P‎, ‎so it's defined as following‎: 

 1)   𝑃+‎: ‎𝑠𝑒𝑚𝑖𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃. 

2) 𝑃′ ‎: ‎𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑜𝑓 𝑃‎. 

3)   𝑃∗‎: ‎𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑜𝑓 𝑃‎. 

‎vi)X(R)‎: ‎denote the set of all valuation overrings of R‎. 

𝑋1(𝑅)‎: ‎The set of all one-dimensional valuation overrings‎‎of R.‎ 

‎vii)𝑚𝑉 ‎:‎denote the maximal ideal of any given valuation ring‎‎V‎. 

‎ 

 

‎Theorem 2.22. [6] ‎Let R be a G-domain‎. ‎Then‎, ‎the following are equivalent: 

‎1)   𝑥 ∈ 𝐾 𝑥2 ∈ 𝑃‎ . ‎𝑥3 ∈ 𝑃} ⊂ 𝑅 ‎. 
‎2) 𝑃 = 𝑃+‎. 
‎3) 𝑃 = 𝑃′ ‎. 
‎4) 𝑃 =  𝑃∗‎. 
‎5) ∩  𝑚𝑉 𝑉 ∈ 𝑋1 𝑅  ⊂ 𝑅‎. 
 

‎The G-domain R is called saturated if it satisfies in each of equivalent‎‎conditions of 

Theorem‎"2.22". 

 

Corollary 2.23. [7] i) If R is a seminormal G-domain‎, ‎then ‎R is saturated if and only 

if𝑃(𝑅) =  𝑃(𝑅′) =  𝑃(𝑅∗).‎ 

ii) ‎For a saturated G-domain R‎, ‎𝑃(𝑅) =  𝑃(𝑆−1𝑅) if and only if‎𝑆−1𝑅 ⊂ 𝑅∗. 

iii) If R is a saturated G-domain‎, ‎then 𝑅∗ = ∩ { 𝑉|𝑉 ∈ 𝑋1(𝑅)} and is completely 

integrally closed‎. 

 

‎Lemma 2.24. [6] ‎A pullback diagram of commutative rings‎ 
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𝐴 ×𝑇 𝑅
𝜋1
  𝐴

𝜋2 ↓ 𝜙2 ↓

𝑅
𝜙1
  𝑇

 

‎ 

where ϕ1 is surjective‎, ‎naturally gives rise to a‎‎commutative diagram‎ 

 
𝑆𝑝𝑒𝑐(𝐴 ×𝑇 𝑅) ⟵      𝜇1      ⟵             𝑆𝑝𝑒𝑐(𝐴)

𝜇2 ↑ 𝑆𝑝𝑒𝑐(𝜙2) ↑
𝑆𝑝𝑒𝑐(𝑅) ⟵𝑆𝑝𝑒𝑐(𝜙1) ⟵            𝑆𝑝𝑒𝑐(𝑇)

 

‎ 

in such a way that 𝑆𝑝𝑒𝑐(𝐴 ×𝑇 𝑅) is identified with the‎‎topological space 

𝑆𝑝𝑒𝑐 𝐴 ∪𝑆𝑝𝑒𝑐  𝑇 𝑆𝑝𝑒𝑐(𝑅) via the maps‎𝜇1 𝑎𝑛𝑑 𝜇2‎. ‎Moreover‎, ‎𝜋1 is a surjective map and‎‎𝜇1 

gives a closed embedding of 𝑆𝑝𝑒𝑐(𝐴) into‎𝑆𝑝𝑒𝑐(𝐴 ×𝑇 𝑅). 

 

3. Some Important Properties of G-type Domains‎ 

‎ 

Definition 3.1.‎The G-type domain R is called essential (i.e‎.,‎a G-type domain of‎‎essential type) 

if each nonzero prime ideal of R is contained in‎‎the union of the height 1 prime ideals of R. 

‎Each R which is G-type domain with one dimensional such that its‎‎motivation 𝑆−1𝑅 is 

essential‎, ‎so that  𝑅  is a‎‎pullback of an essential G-type domain‎. 

 

Definition 3.2. For each commutative ring R‎, ‎let 𝑆𝑝𝑒𝑐𝑖(𝐴) denote the subspace‎‎of 𝑆𝑝𝑒𝑐(𝑅) 

consisting of the height i primes.‎In particular if  𝑆𝑝𝑒𝑐1 𝑅 =  { 𝑃1 . 𝑃2  .  ⋯ . 𝑃𝑛}‎, ‎then‎:  

‎‎𝑆−1𝑅 = ∩ 𝑅𝑝𝑖 .‎ 

‎ 

‎Lemma 3.3.‎Let R be a G-type domain‎, ‎then: 

‎i) Every overring of R is a G-type domain‎, ‎in particular 𝑆−1𝑅‎‎is a G-type domain. 

ii)𝑃(𝑆−1𝑅)  =  𝑆−1(𝑃(𝑅))‎ 
iii) 𝑆−1 𝑅 ‎⊂ ∩ {𝑅𝑄|𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅)}‎ 
Proof. i) It is concluded immediately from definition of a G-type‎‎domain. 

‎ii) Since we have 𝑃 𝑅 = ∩ {𝑄|𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅) } and also‎ 

‎‎𝑃 𝑆−1𝑅 = ∩ {𝑆−1𝑄|𝑆−1𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑆−1𝑅)}‎ 
‎=∩ { S−1Q|Q ∈ Spec1(R)‎ . ‎Q ∩ S = ∅} 

‎‎ 

‎But 𝑆 = 𝑅 −∪ {𝑄|𝑄 ∈ 𝑆𝑝𝑒𝑐1 𝑅 } implies that  𝑄 ∩  ‎𝑆 = ∅ is true for every 𝑄 ∈
 𝑆𝑝𝑒𝑐1 𝑅  .‎thus: 

‎𝑃 𝑆−1𝑅 = ∩  𝑆−1𝑄 𝑄 ∈  𝑆𝑝𝑒𝑐1(𝑅)} ‎ 
‎‎ 

‎⊃ 𝑆−1(∩ {𝑄|𝑄 ∈  𝑆𝑝𝑒𝑐1(𝑅)}) = 𝑆−1(𝑃(𝑅))‎. 

 

To verify the‎‎reverse containment‎, ‎let: 

‎𝑥 =
𝑥1

𝑥2
∈ 𝑃 𝑆−1𝑅 ⊂ 𝑆−1 𝑅  .   𝑤𝑕𝑒𝑟𝑒   𝑥1 ∈ 𝑅  𝑎𝑛𝑑  𝑥2 ∈ 𝑆‎ 

‎Since x ∈∩ {S−1Q|Q ∈ Spec1(R)}, ‎it follows ‎‎that, for every 𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅) there exists𝑠𝑄 ∈

𝑆 such‎‎that 𝑠𝑄𝑥 ∈ 𝑄‎. ‎Then since 𝑠𝑄𝑥1 = 𝑠𝑄𝑥2𝑥 ∈ 𝑄‎, ‎so we have‎‎𝑥1 ∈ 𝑄 for every 𝑄 ∈

𝑆𝑝𝑒𝑐1(𝑅) and‎‎therefore,‎𝑥 ∈ 𝑆−1(∩ {𝑄|𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅)}) as claimed‎.  

‎iii) Since  𝑆 ⊂ 𝑅/𝑄 for every 𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅) therefore‎‎the proof is completed‎.                       □ 

‎ 

Lemma 3.4.‎Let R be a G-type domain‎, ‎then‎: ‎ 
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‎i) Every valuation overring of R other than K is contained in a‎‎maximal valuation overring of 

R distinct from K.‎ 

‎ii) Every  0 ≠ 𝑄 ∈ 𝑆𝑝𝑒𝑐(𝑅) contains a minimal nonzero‎‎prime‎, ‎therefore‎:  

‎‎𝑃 𝑅 = ∩ {𝑃|𝑃 ∈ 𝑆𝑝𝑒𝑐1(𝑅)}‎ 
iii)                      𝑃 𝑅 = ∩ { (𝑚𝑉 ∩ 𝑅)|𝑉 ∈ 𝑋1(𝑅)} 

 

Proof.i) Since each overring of an G-type domain is also‎‎an G-type domain and each union of 

G-type domains is an G-type‎‎domain‎, ‎therefore by Zorn's lemma‎, ‎let {𝑅𝛼} be a‎‎chain of 

valuation rings in  𝑋(𝑅) − {𝐾}‎, ‎then  𝑊 = ∪ 𝑅𝛼  is necessarily a valuation overring of R‎.‎Now 

let ‎‎0 ≠ 𝑥 ∈ 𝑃(𝑅)‎ ,‎since x lies in every nonzero prime ideal of‎‎R‎, ‎then 1/𝑥 ∉ 𝑅 for every 

nontrivial  𝑅 ≠ 𝑋(𝑅)‎‎therefore‎1/𝑥 ∉ 𝑊 and hence 𝑊 ≠ 𝐾‎. 

‎ii)By Zorn's lemma‎, ‎if { 𝑃𝛼} be a chain of‎‎prime ideals in 𝑆𝑝𝑒𝑐(𝑅) − {0}‎,‎then 𝑄 =∩ 𝑃𝛼  also‎‎is 

a prime ideal‎, ‎since 0 ≠ 𝑃 𝑅 ⊂ 𝑃𝛼  .  ∀𝛼 .‎Therefore 𝑃 𝑅 ⊂ 𝑄 and hence 𝑄 ≠ 0‎. 

‎iii) Let 𝑃 ∈ 𝑆𝑝𝑒𝑐1(𝑅)be an arbitrary prime ideal‎, ‎there‎‎exists 𝑉 ∈ 𝑋(𝑅) such that 𝑉 ⊂ 𝑊‎. 

‎Thus 𝑚𝑉 ∩ 𝑅 is a‎‎nonzero prime inside P‎, ‎whence 𝑚𝑊 ∩ 𝑅 = 𝑃‎.                                            □ 

 

‎Corollary 3.5.‎For every‎‎ G-type domain R‎ we have:  

𝑆−1𝑅

𝑃 𝑆−1𝑅 
≃  𝑆−1(𝑅 ) 

 

Definition 3.6. Let R be any ring. We denote by ZD(R) (respectively‎, ‎NZD(R) the set‎‎of all 

zero divisors (all nonzero divisors) of R‎.‎the total‎‎quotient ring of R‎,‎denoted Tot(R)‎,‎is:                       

{𝑟/𝑠|𝑟 ∈ 𝑅    𝑎𝑛𝑑‎    𝑠 ∈ 𝑁𝑍𝐷(𝑅)}‎ . 
 

Lemma 3.7. ‎Let R be an G-type domain with pseudo-radical P‎, ‎and let Y be the‎‎union of all 

minimal primes of  𝑅 = 𝑅/𝑃‎.‎Then:‎ 

‎i)  𝑌 = 𝑍𝐷(𝑅 )‎ 
‎ii)  𝑇𝑜𝑡 𝑅  =  𝑆−1 𝑅  ≃ ‎‎(𝑆−1𝑅)/(𝑃(𝑆−1𝑅)). 

 

‎Proof.i) That  𝑌 ⊂ 𝑍𝐷(𝑅 ) is well known‎. ‎For the reverse‎, ‎note that: 

𝑃 = ∩ {‎𝑄|𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅)}‎. ‎ 
Thus‎, ‎if  𝑥 𝑦 = 0 and‎𝑦 ≠ 0‎, ‎then there exists 𝑄 ∈ 𝑆𝑝𝑒𝑐1(𝑅) such that‎‎𝑦 ∉ 𝑄‎. ‎It follows that 

𝑥 ∈ 𝑄 and so‎𝑥 ∈ 𝑌. 

‎ii) Let 𝑥 ∈ 𝑅 ‎. ‎By (i)  𝑥 ∈ 𝑁𝑍𝐷(𝑅) if and‎only if 𝑥 ≠∪  𝑄 𝑄 ∈ 𝑆𝑝𝑒𝑐1 𝑅   𝑎𝑛𝑑‎if and‎ 

‎only if 𝑥 ∈ 𝑆‎. ‎Thus 𝑇𝑜𝑡(𝑅 ) = 𝑆−1(𝑅 )‎. ‎Therefore:‎ 

‎𝑆−1 𝑅  ≃ (𝑆−1𝑅)/(𝑃(𝑆−1𝑅))‎                                                       □ 

‎‎ 

‎Note 3.8.‎By the proof of last lemma a G-type domain R has essential type if‎‎and only if  

𝑅 = 𝑇𝑜𝑡(𝑅 ).Thus every one dimensional‎‎G-type domain has essential type. Since it is Known 

that all‎‎ Noetherian and all Krull G-type domain satisfy  𝑑𝑖𝑚 𝑅 ≤ 1‎,‎it follows that all 

Noetherian and Krull G-type domains have‎‎essential type.‎‎In addition each valuation ring V of 

finite dimension  𝑛 ≥ 2 ‎is a G-type domain of nonessential type (indeed‎, ‎the 

‎pseudo-radical of V is the unique height 1 prime P of V and so ‎‎𝑆−1𝑉 = 𝑉𝑃 ≠ 𝑉)‎. 

 

Theorem 3.9. ‎Let R be an integrally closed G-type domain‎. ‎then‎: 

 i) 𝑅∗ =∩ {𝑉|𝑉 ∈ 𝑋1(𝑅)} 

 ii) 𝑃 𝑅 =  𝑃 𝑅∗ =∩ {𝑚𝑉|𝑉 ∈ 𝑋1(𝑅)} 

 

Proof. i) This is a similar result due to Gillmer and Heinzer‎‎[11]. 
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‎ii) By lemma‎ "3.4" ‎ iii  𝑃 𝑅∗ =∩ {( 𝑚𝑉 ∩ 𝑅∗)|𝑉 ∈ 𝑋1(𝑅∗)}‎ and by the part of (i) ‎𝑋1(𝑅) =
𝑋1(𝑅∗)‎, ‎therefore‎: 

‎ P R∗ =  ∩  mV  V ∈ X1 R   ∩ R∗‎ . ‎‎ 
‎On the other hand‎, ‎applying Lemma‎ "‎3.4"(iii) to R yields: 

‎𝑃 𝑅 =∩   𝑚𝑉 ∩ 𝑅  𝑉 ∈ 𝑋1 𝑅  =  ∩ ‎ 𝑚𝑉 𝑉 ∈ 𝑋1 𝑅   ∩ 𝑅‎.‎ 
An application of Lemma‎ "‎3.4"(i) makes‎‎clear that: 

‎∩  𝑚𝑉 𝑉 ∈ 𝑋1 𝑅  =∩  𝑚𝑉 𝑉 ∈ 𝑋 𝑅  ⊂∩ {𝑉|𝑉 ∈ 𝑋(𝑅)} = 𝑅‎ 

‎(Since R is integrally closed)‎. ‎ 

The assertions now follow‎‎easily‎.                                                                                          □ 

 

Lemma 3.10. ‎Let a ring R have dcc on finite intersections of prime ideals (R‎‎has "dcc" 

(Descending Chain Conditions) on prime ideals‎, ‎R/P has only a countable number of‎‎nonzero 

minimal primes for each prime P)‎, ‎then each prime ideal P‎‎of R is a G-ideal (G-type ideal)‎. 

 

Proof. At first we must show that a domain with "dcc" on‎‎finite intersections of prime ideals 

is G-domain‎. ‎To see this‎,‎let A be minimal among the ideals which are finite intersections‎ 

‎of nonzero prime ideals‎, ‎(i.e.‎, ‎ 0 ≠  𝐴 is in fact the‎‎intersection of all the nonzero prime 

ideals and we are through‎.‎For the other part‎, ‎we must show that each domain R with dcc on‎ 

‎prime ideals and having only a countable number of nonzero minimal‎‎prime ideals is G-type 

ideal‎. ‎To see this‎ , ‎let 𝑃1‎, ‎𝑃2, . . . , 𝑃𝑛 , . . ‎. be the nonzero minimal prime ideals of R and‎‎note that 

each nonzero prime ideal contains one of 𝑃𝑖
′𝑠‎. ‎Now‎‎for each n‎, ‎take 0 ≠  𝑎𝑛 ∈ 𝑃𝑛 ‎, ‎and let S be 

the "mcs" set‎‎generated by {𝑎1, 𝑎2, . . . , 𝑎𝑛 , . . . }‎. ‎It is now that 𝑆 ∩ ‎𝑃 ≠ (0)  for each nonzero 

prime ideal P and this completes the‎‎proof‎.                                                                               □ 

 

Theorem 3.11. ‎Let R be a Noetherian domain‎, ‎then R is a G-type domain if and‎‎only if R has 

only a countable number of nonzero minimal prime‎‎ideals‎ 

 

Proof. If R has only a countable number of nonzero‎‎minimal prime ideals‎, ‎then we are 

through by lemma of‎"‎3.9". 

‎Conversely‎, ‎let 𝑆 = {𝑠1‎, ‎𝑠2, . . . , 𝑠𝑛 , . . . } be a countable "mcs‎"‎set such that 𝑆 ∩ 𝑃 ≠ ∅ for all 

nonzero prime‎‎ideals P‎. ‎Let us assume that the set of nonzero minimal prime‎‎ideals is 

uncountable and drive a contradiction‎. ‎Now there must‎‎exist an element 𝑠 ∈ 𝑆 such that s 

belongs to an uncountable‎‎number of nonzero minimal prime ideals‎. ‎Clearly each of these‎ 

‎prime ideals are minimal over (s) and it goes without saying that‎‎(s) is not a prime ideal‎. ‎Now 

considering the Noetherian ring‎‎𝑅/(𝑠) which has an infinite number of minimal prime ideals‎, 

‎it‎‎gives us the desired contradiction‎.                       □ 

 

Corollary 3.12.‎Let 𝑘 − 𝑑𝑖𝑚𝑅 =  𝑛‎, ‎then R is a G-type domain if and only if the‎‎number of 

nonzero minimal prime ideals in R are countable‎. 

 

Theorem 3.13. ‎Let R be a Noetherian domain with the CPA property‎, ‎then R is a‎‎G-type 

domain if and only if Spec(R) is countable and each nonzero‎‎prime ideal is maximal. 

(i.e. , 𝑘 − 𝑑𝑖𝑚 𝑅 ≤ 1‎ ) 

 

Proof. If Spec(R) is countable and 𝑘 − 𝑑𝑖𝑚 𝑅 ≤ 1, then‎‎by Theorem‎"3.11"‎R is a G-type 

domain. 

‎Conversely‎, ‎we claim that every prime ideal has the rank less or equal one and by theorem 

of‎"3.11", ‎the proof is complete‎. ‎So‎, ‎let 𝑃 ∈ 𝑆𝑝𝑒𝑐(𝑅) is a prime‎‎ideal with 𝑟𝑎𝑛𝑘 𝑃 ≥ 2 and 

derive a contradiction‎. ‎ 
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It is‎‎ well-known that the rank of every prime ideal in Noetherian rings‎‎is finite (i.e.‎, ‎we may 

assume that rank (P)=n)‎. ‎Hence there exists‎‎a chain of prime ideals.‎ 

‎‎𝑃 = 𝑃𝑛 ⊃ 𝑃𝑛 −1 ⊃. . . ⊃ 𝑃2 ⊃ 𝑃1 ⊃  0 ‎,   𝑜𝑓 𝑙𝑒𝑛𝑔𝑡𝑕‎‎"𝑛"‎ , (𝑖. 𝑒. ‎, ‎𝑟𝑎𝑛𝑘(𝑃2) = 2)‎ 
‎In view of theorem of‎ "9" ‎there exist only countable numbers of prime‎‎ideals of rank less than 

or equal to one. Thus we may assume that‎‎𝑃1 = 𝑄1‎, ‎𝑄2, . . . , 𝑄𝑛 , .. are the only primes between 

(0) and‎‎𝑃2‎. ‎But by the "CPA" property we can have 𝑃2 ⊆ ‎∪𝑖=1
∞ 𝑄𝑖 ‎,‎so there exists 𝑥 ∈ 𝑃2 and 

then by‎the "Principal Ideal Theorem" we have 𝑟𝑎𝑛𝑘 𝑃2 ≤ 1 which‎‎is the desired 

contraction‎.□ 

 

‎ 

Theorem 3.14.‎i) If R is a G-type domain‎, ‎then 𝑆𝑝𝑒𝑐(𝑅 ) is‎‎homeomorphic to Spec(R) (via the 

map induced by the natural‎‎inclusion of R‎‎in 𝑅 ). 

‎ii) If R is a saturated (e.g‎.,‎seminormal) G-type domain and ‎‎𝑆−1𝑅‎‎⊂ 𝑅∗‎, ‎then 𝑅 = 𝑅 is a 

pullback type. 

 

Proof.This Proof is similar to theorem of [7‎,‎thm.2.15] 

i) By definition of G-type domain‎, ‎since each overring‎‎of a G-type domain is also G-type 

domain and each pullback of a‎‎G-type domain is also an overring of it‎, ‎so it is obviously a‎ 

‎G-type domain‎. ‎Now by pullback diagram of canonical homomorphism's‎: ‎ 

 

𝑅 
𝜋1
  𝑅 

𝜋2 ↓ 𝜙2 ↓

𝑆−1𝑅
𝜙1
  𝑇

 

We obtain a commutative diagram 

 

 

𝑆𝑝𝑒𝑐 𝑅  ⟵ 𝜇1 ⟵       𝑆𝑝𝑒𝑐 𝑅  

𝜇2 ↑ 𝛼2 ↑

𝑆𝑝𝑒𝑐 𝑆−1𝑅 ⟵ 𝛼1 ⟵     𝑆𝑝𝑒𝑐 𝑇 

 

 

 

which is 𝑆𝑝𝑒𝑐(𝑅 ) is identified with ‎𝑆𝑝𝑒𝑐 𝑅  ∪𝑆𝑝𝑒𝑐  𝑇 𝑆𝑝𝑒𝑐(𝑆−1𝑅) and 𝜇1 is a 

closed‎‎embedding‎. ‎The map 𝛼1‎,‎being induced by the surjection‎‎𝜙1‎,‎is just the standard 

correspondence between prime ideals‎‎in  𝑇 =  (𝑆−1𝑅)/(𝑃(𝑆−1𝑅)) and prime ideals in 𝑆−1𝑅 

that‎‎contain  𝑃(𝑆−1𝑅)‎. ‎Since each nonzero prime contains the‎‎pseudo-radical‎, ‎the image of 𝛼1 

is ‎𝑆𝑝𝑒𝑐 𝑆−1𝑅 \{0}‎. ‎But every 𝛼1(𝑃) in this‎image is identified with the corresponding 𝛼2(𝑃) 

in‎𝑆𝑝𝑒𝑐(𝑅 )‎.‎ 
Thus‎, ‎up to homeomorphism‎,‎𝑆𝑝𝑒𝑐 𝑅  ∪𝑆𝑝𝑒𝑐  𝑇 𝑆𝑝𝑒𝑐(𝑆−1𝑅) =  𝑆𝑝𝑒𝑐(𝑅 ∪ ‎{0} 

(the second union being disjoint)‎.  

‎Moreover‎, ‎since 𝜇1‎is a closed embedding‎, ‎Spec(𝑅 ) is a closed set in ‎𝑆𝑝𝑒𝑐 𝑅  ∪ {0} and the 

proper closed sets of‎‎𝑆𝑝𝑒𝑐 𝑅  ∪ {0} are in 1-1 correspondence with all closed‎sets of Spec(R)‎. 

‎Thus‎, ‎we have a bijection‎‎𝑆𝑝𝑒𝑐 𝑅  ∪𝑆𝑝𝑒𝑐  𝑇 𝑆𝑝𝑒𝑐 𝑆
−1𝑅 ⟶ 𝑆𝑝𝑒𝑐(𝑅)‎ 

‎which is both continuous and closed‎, ‎therefore it is a‎homeomorphism.‎ 

‎ii) By the universal property of pullback diagrams‎, ‎R is always‎‎identified with a subring of  𝑅  

via the injection‎‎given by ϕ(r) = (𝑟  , r/1)‎.‎If R is saturated and ‎𝑆−1𝑅 ⊂ 𝑅∗‎, ‎we claim that 𝜙 

must be surjective‎‎as well‎. ‎To see this‎, ‎let  𝑟 ,
𝑎

𝑡
 ∈ ‎‎𝑅 ×𝑇 𝑆

−1𝑅 be arbitrary‎. ‎By definition‎, 

‎𝑟 =  (𝑎/𝑡) in T‎, ‎whence 𝑏 = 𝑟‎ −  ‎
𝑎

𝑡
∈ 𝑃(𝑆−1𝑅)‎. ‎Therefore 𝑃(𝑆−1𝑅) =  𝑆−1(𝑃(𝑅)) = 𝑃(𝑅)‎. 
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‎Thus‎, ‎ 𝑏 ∈ 𝑃 𝑅 ⊂ 𝑅‎. ‎So 
𝑎

𝑡
=  𝑟 − 𝑏 ∈ 𝑅‎, ‎𝑎𝑛𝑑 ‎ 𝑟 ‎ , ‎

𝑎

𝑡
 =   

𝑎

𝑡
 ‎ , ‎

𝑎

𝑡
 = 𝜙  

𝑎

𝑡
 ‎‎∈ 𝜙(𝑅)‎.       □ 

 

‎Corollary 3.15.‎If R is a Prüfer G-type domain‎, ‎then 𝑆−1𝑅 ⊂ 𝑅∗‎,‎R has pullback type‎, ‎and 

𝑅∗ = ∩ { 𝑅𝑃|𝑃 ∈ 𝑆𝑝𝑒𝑐1(𝑅)}‎‎has essential type‎. ‎If in addition‎, ‎R is a Bézout G-type‎‎domain‎, 

‎then 𝑆−1𝑅 =  𝑅∗‎. 
 

Proof. Since each Prüfer G-type domain is necessarily‎‎a GD-type domain (R as a G-type 

domain is called a going-down‎‎G-type domain if for every overring T of R‎, ‎the inclusion map 

‎‎𝑅 ⟶   𝑇 satisfies the going-down property)‎, ‎hence‎𝑆−1𝑅 ⊂ 𝑅∗ and obviously R has pullback 

type and‎‎furthermore for each Prüfer domain ( specially Prüfer‎‎G-type domain) we have 

𝑅∗ = ∩ { 𝑅𝑃|𝑃 ∈ 𝑆𝑝𝑒𝑐1(𝑅)} as a essential type‎ .‎ 

‎Now if R is a Bézout G-type domain‎, ‎since each overring of R‎‎is a ring of fraction of R‎. ‎So if 

𝑅∗ = 𝑇−1𝑅 for some‎‎saturated multiplicatively closed set T‎, ‎then: 

𝑆−1𝑅 ⊂ ‎𝑇−1𝑅 =  𝑅∗ = ∩ {𝑅𝑃|𝑃 ∈ 𝑆𝑝𝑒𝑐1(𝑅)}‎. ‎ 
Therefore‎, 

‎𝑇 ⊃ 𝑆 𝑎𝑛𝑑 𝑅𝑃 ⊃ 𝑇−1𝑅 ‎, ∀𝑃 ∈ 𝑆𝑝𝑒𝑐(𝑅)‎. ‎It follows that 𝑇 ∩ 𝑃 = 0 ‎, ∀ 𝑃 ∈ 𝑆𝑝𝑒𝑐1 𝑅 ‎,‎and so 

𝑆 ⊃ 𝑇‎.‎Thus‎‎𝑆−1𝑅 = 𝑇−1𝑅 = 𝑅∗‎.  □ 

 

Remark 3.16. ‎If R is a G-type domain such that  Spec(R) is a countable set‎,‎then: 

𝑆−1𝑅 = ∩ {𝑅𝑃|𝑃 ∈ 𝑆𝑝𝑒𝑐(𝑅)} is a countable set of‎‎one-dimensional quasi local rings‎.‎The 

condition that 𝑆𝑝𝑒𝑐1(𝑅)‎‎be countable is characterized by 𝑆−1𝑅 being semiquasilocal 

of‎‎dimension at most 1‎.  

‎Therefore it is obvious that a G-type domain R satisfies ‎‎Spec(R) is countable and R has 

essential type if and only if‎‎every nonzero principal ideal of R is countably intersection of‎ 

‎(height 1) primary ideals.‎ 

 

Example 3.17.‎We exhibit a one-dimensional quasi local domain R such that 𝑅∗‎‎is a one-

dimensional (therefore‎, ‎essential) Prüfer G-type‎domain‎, ‎but not semi quasi local‎. ‎Let V be a 

one-dimensional‎‎valuation domain with quotient field K such that there exists an‎‎algebraic 

field extension L of K having infinitely many valuation ‎‎subrings extending V‎. ‎(for instance‎, 

‎take 𝑉 =  𝑍𝑃𝑍  and L the‎‎field of algebraic numbers.) Let T be the integral closure of V in‎‎L‎. 

‎Then T is one-dimensional and Prüfer‎, ‎but not‎‎semiquasilocal‎. 

 

‎Corollary 3.18.Let 𝑅1, 𝑅2 , … , 𝑅𝑛 , … be‎‎finite-dimensional conducive domains which are not 

fields‎, ‎with‎‎𝑄𝑖  being the (unique) height 1 prime of 𝑅𝑖 ‎. ‎Let‎‎𝑅 =∩𝑖=1
∞ 𝑅𝑖  and pick𝑞𝑖 = 𝑄𝑖 ∩

 𝑅‎.  ‎𝐿𝑒𝑡   𝑉𝑖 ‎ , ‎𝑀𝑖  be the ( unique) one dimensional valuation overring of 𝑅𝑖 ‎‎and let 𝑏𝑖 =
 𝑅𝑖 : 𝑉𝑖 ∩  𝑀𝑖( which is nonzero by the‎conducive property)‎. ‎Let  𝑊 = ∩𝑖=1

∞ 𝑉𝑖  𝑎𝑛𝑑  
𝑚𝑖 = ‎𝑀𝑖 ∩𝑊‎. ‎Assume further that R and each of the 𝑅𝑖 ′𝑠 have a‎‎common quotient field K 

and that 𝑞𝑖 ⊈ 𝑞𝑗  whenever‎‎𝑖 ≠ 𝑗‎. ‎then:‎ 

‎1) R is a G-type domain and 𝑅∗ = 𝑊‎, ‎a one-dimensional‎‎semi quasi local Bézout domain. 

‎2) 𝑆𝑝𝑒𝑐1(𝑅) =  {𝑞1, 𝑞2, . . . , 𝑞𝑛 , . . . }. ‎ 
‎3) 𝑆−1𝑅 = ∩𝑖=1

∞ 𝑅𝑞 𝑖 ⊂ 𝑅∗. ‎ 

‎4) If each 𝑅𝑖  is a one-dimensional‎, ‎then 𝑅 =  𝑆−1𝑅 is‎‎one-dimensional and semi quasi local. 

‎5) If each 𝑅𝑖  is saturated‎, ‎then R is saturated and 𝑅 = ‎𝑅 ≃  𝑅 ×𝑇∗ 𝑅
∗ 𝑤𝑕𝑒𝑟𝑒 𝑇∗‎is the total 

quotient ring of 𝑅∗/𝑃∗‎. 
‎ 

‎ 
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‎Corollary 3.19.‎𝑆𝑝𝑒𝑐1(𝑅) is finite for every G-type domain R such that R' is‎‎a strong G-type 

domain‎. 

 

Example 3.20. ‎Spec(R) is finite and 𝑑𝑖𝑚 𝑅 ≤ 1 if (and only if) R is a‎‎compactly packed G-

type domain of essential type‎. ‎(R is compactly‎‎packed if‎, ‎for any subset Ω of Spec(R) and any 

ideal I of‎‎R‎, ‎the condition  𝐼 ⊂∪ {𝑃|𝑃 ∈ Ω} implies‎𝐼 ⊂ 𝑃‎ , ‎∃ P ∈ Ω ‎. ‎In a compactly 

packed‎‎ring‎, ‎every prime ideal P is the radical of a principal ideal‎. ‎By essentiality‎, ‎𝑑𝑖𝑚 𝑅 ≤
1‎.‎Thus‎, ‎for every P‎,‎𝑆𝑝𝑒𝑐 𝑅 \𝑃 is a quasi-compact Zariski‎- ‎open set‎, ‎and‎‎therefore it is closed 

when Spec(R) is discrete‎. ‎Since the patch‎‎topology is compact‎, ‎Spec(R) must be finite‎. 
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