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Abstract.The issue of G-structures founded by Goldman in 1951 and then
its extension named"G-type structures"was raised in 2012 by Karamzadeh
and Moslemi. In this paper is expressed the applications of G-type
structures in spectral spaces, which in for G-type domain R has been
introduced a new domain saying"pullback of G-type domain"with title of R.
It has been proven, if R is a G-type domain then Spec(R) homomorphic to
Spec(R) and in special if R is a saturated G-type domain and S™!R c
R* then Ris coincides to R.
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1. Introduction

The properties of Hilbert ring and Hilbert Nullstellensatz was the one of important concepts
raised by Goldman in 1951, this purpose were defined as a new structure by the title of"G-
structures”,the main idea was been the applications of these structures in Hilbert rings, these
concepts as a suitable classified form have come in commutative algebra of Kaplansky[13].
After a long time was expressed a new concept of extension of these structures with the title
of"G-type structures”by Karamzadeh and Moslemi in 2012[14] , where in was pointed the
suitable and broader of Hilbert Nullstellensatz, on this way G-structures, G-type domains and
G-type ideals were defined and also some Theorems and Corollaries were presented.

In this paper is discovered the applying of G-type structures to spectral spaces by instruction
of the historical concepts.

So firstly, the G-type domains and G-type ideals are defined, then by paper [14] some
important Theorems are come and finally after the presenting a few Lemmas is proved some
important Theorems as the following:

A Noetherian domain R is a G-type domain if and only if it has just countable number of
nonzero minimal prime ideals. In addition, if R is a G-type domain then Spec(R)
homomorphic to Spec(R).
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2. Mathematical Notations

Definition 2.1 A commutative ring with unit in which every finitely generated ideal is
principal is called a Bézout ring, if a Bézoutring has no zero divisors it is called a Bézout
domain.

If each finitely generated ideal of an integral domain R isinvertible, then it's called a prifer
domain.

Lemma 2.2.[14] Let R be a domain with quotient field K, R is said to be aG-domain if K is a
finite type R-algebra.

Lemma 2.3. [15]Let P(R) = Npespec (r)poo P -(PSeudo-radicalof R), R is a G-domain if and
only if P(R) # 0.
In addition Spec(R) is finite set then R is evidently a G-domain.

Definition 2.4. A domain R is called a G-type Domain if its quotient field is countably
generated as a R-algebra.
R is a G-type Domain if and only if its zero ideal is thecontraction of a maximal ideal in

Rlx1. Xy . .%o ]
A prime ideal | of R[x;. x; . =-.x, .---] is G-type if and onlyif its contraction in R and
R[xy. x; . --.x,]forall n > lare G-type.

Theorem 2.5.[14]Let P be a prime ideal in a ring R, then the following areequivalent:

1) P is a G-type ideal in R.

i1) There is a countable multiplicative closed set S € R such that: P is maximal with respect
to having the empty intersection with S.

iii) There are either only a countable number of prime ideals in R/P orany uncountable set
of prime ideals properly containing P, say F,can be written in the form F =U,¢, E, , where
Ais a subset of the natural numbers, P is properly contained in U,cr Qfor each n and some
of the F, are uncountable.

[2] Corollary 2.6. Let R be a domain, such that each of its ideals countably generated ,then R
is a G-type domain if and only if there exists a countably generated R-algebra"T"contains the
quotient field of R.

Theorem 2.7. [16] If R be a countable domain, then there is a maximal ideal M in
R[xq.xy.+.x, .---]Jsuchthat M U R = (0) and each x,, + M is algebraic over% = R.

Corollary 2.8. [2] Let R is a domain, R is a G-type domain if and only if there exists
amaximal ideal M in R[x; .x5 .-=-.x,, .---] suchthat M U R = (0).

Corollary 2.9. [2] Let K be an algebraically closed field and R = K[x; .x, .+--.x,, .-+ |then
each maximal ideal M of R is of the form M = (x; —a;.x; — ay.---) if and only if K is
uncountable.

Definition 2.10 Let R be a ring, then:

i) dim R = the supremum of all lengths of chain of distinctprime ideals in R.

ii) Let M be an R-module, the Krull dimension of M , which isdenoted by "k-dim M", is
defined by transfinite recursion asfollows: k-dim M = -1 if M =(0)and for every ordinal
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number of @ , we say that k—dimM =a if k—dim <« a andgiven any infinite
descending chain "M; 2 M, 2 ---" of submodules in M there exists some k such that:
k —dim M,, /M, 1 < a forall m > k.

The Krulldimension of a ring R," k-dimR",is defined to be the Krull dimension of a right R-
module R.

Theorem 2.11. [14]Let R be a Noetherian domain, R is a G-domain if and only if R
issemilocal and k — dim R < 1.

Remark 2.12. [3] The ring of R is said has the"CPA"property(Countable PrimeAvoidance) if
AC UZ p; (Aanidealof R)then A P;. 3i.

Theorem 2.13. [2] Let R be a complete Noetherian semi-local ring, then a primeideal P of R
is a G-type ideal if and only if R is a G-type idealif and only if it is a G-ideal.

Theorem 2.14. [14] Let R has countable Noetherian dimension, then R is a finitedirect sum
of G-type domain if and only if each localization R, is a G-type domain or countably
generated as a ¢p(R) — algebra ,where ¢p: R — Rp is the natural homomorphism.

Definition 2.15. Let R be a ring and X is the set of all prime ideals of R, let E € R, if we
define V(E) as follows:

V(Ey={P€EX:P 2 E}
Then :
HVO0)=X,V(1) = 2.
ii) If (E;);e; be every family of subsets of R, then:

V(Uier Ep) =N V(E)

iiV(anb) =V(ab) = V(a) UV (b) ,aand b are arbitrary ideals of R.

Note 2.16.1) The set of V(E) is satisfying all the axioms of closed sets in atopological space,
which is called the Zariski topology.
2) A topological space X is called, prime spectrum of R and it'swritten by Spec(R).

Definition 2.17.Let V f € R. Xy be the complement of V(f) in the X=spec(R), so the sets X,
are open, therefore they form abasis of open sets for the Zariski topology, which are:

1) Xf N Xg = ng

2) If Xy = @ then f is nil potent.

3) X =X & fisaunit\\

NX=Xg V(<> =V(<g>)

5) X is quasi-compact (that is every open covering of X has afinite sub covering).

6) Furthermore, each X(is also quasi-compact.

7) An open subset of X is quasi-compact if and only if it is afinite union of sets X.

Note 2.18. [3] The sets X, are called basic open sets of X = Spec(R). A topological space X
is said to be irreducible either X # @ or every pair of non-empty open sets in X intersect.
Equivalently if every non-empty open set is dense in X, therefore Spec(R)is irreducible if and
only if the nil radical of R isa prime ideal.

Remark 2.19. [6] If R be a ring and X=Spec(R) , then the irreducible componentsof X are the
closed sets V(P),where P is a minimal prime ideal ofR.Let R = []?_; R; be the direct product
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of rings R; , so Spec(R) is the disjoint union of open (and closed) subspacesX;,where X; is
canonically homeomorphic with Spec(R;).

Conversely, Let R be any ring ,the following are equivalent:

i) X= Spec(R) is disconnected.

i) R = Ry X R, , where any of the rings R; . R,aren't the zero ring.

iii) R contains an idempotent not equal to 0, 1.

Note 2.20.Let R is a Boolean ring X = Spec(R),then:

i) Foreach f € R , the set X¢ is both open and closed inX.

i Let{fi.fo.-fu} eR,thean1 U--UXp = Xp. 3f€ER.

iii) The sets X are the only subsets of X those are both openand closed.
iv) X is a compact Hausdorff space.

Definition 2.21.Let R be a domain with quotient field K and P be any prime idealof R and

S = R — P be a "mcs"(Multiplicative Closed Subset) of R and Rbethe integralclosure of R and
T be the ring of fraction of R so:

i) R is a pullback of a ring of fraction T of R suchthat each nonzero prime of T is contained in
the union of height 1primes.

ii)R* : the seminormalization of R.

ii)R" : the integral closure of R.

ivV)R* : the complete integral closure of R.

V) Let P(R) = Npespec (R)psoy P it's shown thatfor brevity by P, so it's defined as following:
1) P*:seminormalization of P.

2) P': integral closure of P.

3) P*:complete integral closure of P.

vi)X(R): denote the set of all valuation overrings of R.

X1(R): The set of all one-dimensional valuation overringsof R.

vii)my :denote the maximal ideal of any given valuation ringV.

Theorem 2.22. [6] Let R be a G-domain. Then, the following are equivalent:
N{xeK|x>?€eP.x>€P}cR.

2) P = P*.
3 P=P.
4P = P

5) N {my|V € X'(R)} c R.

The G-domain R is called saturated if it satisfies in each of equivalentconditions of
Theorem"2.22".

Corollary 2.23. [7] i) If R is a seminormal G-domain, then R is saturated if and only
ifP(R) = P(R) = P(RY).

ii) For a saturated G-domain R, P(R) = P(S™'R) ifand only ifS™'R < R*.
iii) If R is a saturated G-domain, then R* = n { V|V € X'(R)} and is completely
integrally closed.

Lemma 2.24. [6] A pullback diagram of commutative rings
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Ax;R 3 4
Ty 4 OPR

R - T

where ¢4 is surjective, naturally gives rise to acommutative diagram

Spec(AXr R) — u Spec(4)
pp T Spec(¢y) T
Spec(R) —Spec(¢py) — Spec(T)

in such a way that Spec(A4 Xt R) is identified with thetopological space
Spec(A) Uspec (ry Spec(R) via the mapsy, and u,. Moreover, my is a surjective map andu,
gives a closed embedding of Spec(A) intoSpec(A Xt R).

3. Some Important Properties of G-type Domains

Definition 3.1.The G-type domain R is called essential (i.e.,a G-type domain ofessential type)
if each nonzero prime ideal of R is contained inthe union of the height 1 prime ideals of R.
Each R which is G-type domain with one dimensional such that itsmotivation SR is
essential, so that R is apullback of an essential G-type domain.

Definition 3.2. For each commutative ring R, let Spec'(A) denote the subspaceof Spec(R)
consisting of the height i primes.In particular if Spec'(R) = {P,.P,. ---.P,}, then:
STIR=NR,..

pi

Lemma 3.3.Let R be a G-type domain, then:
i) Every overring of R is a G-type domain, in particular S~!Ris a G-type domain.
i)P(STIR) = STI(P(R))
iii) ST(R) € n{Ry|Q € Spec'(R)}
Proof. i) It is concluded immediately from definition of a G-typedomain.
i) Since we have P(R) = n {Q|Q € Spec'(R) } and also
P(ST'R) =n{S71Q|S7'Q € Spec'(S7'R)}
=n{S71Q|Q € Spec!(R).Q NS = @}

ButS = R —U {Q|Q € Spec'(R)} implies that Q N S = @ is true for every Q €
Spec'(R) .thus:
P(ST'R) =n{S71Q|Q € Spec'(R)}

> STH(N{QIQ € Spec’(R)}) = S~'(P(R))-

To verify thereverse containment, let:

x=22eP(S'R)c S (R). where x; €ER and x, €S
2

X

Since x €n {S7'Q|Q € Spec! (R)}, it follows that, for every Q € Spec’(R) there existss, €
S suchthat spx € Q. Then since sox; = sox,x € @, SO we havex; € Q forevery Q €
Spec!(R) andtherefore,x € S~1(N {Q|Q € Spec'(R)}) as claimed.

iii) Since S < R/Q for every Q € Spec!(R) thereforethe proof is completed. i

Lemma 3.4.Let R be a G-type domain, then:
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1) Every valuation overring of R other than K is contained in amaximal valuation overring of
R distinct from K.
ii) Every 0 # Q € Spec(R) contains a minimal nonzeroprime, therefore:
P(R) =N {P|P € Spec'(R)}
iii) P(R) =n{(my NnR)|V € X (R)}

Proof.i) Since each overring of an G-type domain is alsoan G-type domain and each union of
G-type domains is an G-typedomain, therefore by Zorn's lemma, let {R,} be achain of
valuation rings in X(R) — {K}, then W = U R, is necessarily a valuation overring of R.Now
let 0 # x € P(R) ,since x lies in every nonzero prime ideal ofR, then 1/x & R for every
nontrivial R # X(R)thereforel/x ¢ W and hence W # K.

1)By Zorn's lemma, if { P,} be a chain ofprime ideals in Spec(R) — {0},then Q =n P, alsois
a prime ideal, since 0 # P(R) c P, . Va .Therefore P(R) < Q and hence Q # 0.

iii) Let P € Spec!(R)be an arbitrary prime ideal, thereexists V € X(R) such that V c W.
Thus my N R is anonzero prime inside P, whence my, N R = P. i

Corollary 3.5.For every G-type domain R we have:
SR @
P(S-1R) (R)
Definition 3.6. Let R be any ring. We denote by ZD(R) (respectively, NZD(R) the setof all
zero divisors (all nonzero divisors) of R.the totalquotient ring of R,denoted Tot(R),is:
{r/slreR and s € NZD(R)}.

Lemma 3.7. Let R be an G-type domain with pseudo-radical P, and let Y be theunion of all
minimal primes of R = R/P.Then:

i) Y =Z2D(R)

i) Tot(R) = S7Y(R) = (S"'R)/(P(S"IR)).

Proof.i) That Y c ZD(R) is well known. For the reverse, note that:

P =n{Q|Q € Spec'(R)}.

Thus, if Xy = 0 andy = 0, then there exists Q € Spec!(R) such thaty ¢ Q. It follows that
X €Qandsox €Y.

ii) Let ¥ € R. By (i) ¥ € NZD(R) if andonly if x #U {Q|Q € Spec'(R)} andif and

only if x € S. Thus Tot(R) = S~ (R). Therefore:

STHR) = (ST'R)/(P(ST'R)) O

Note 3.8.By the proof of last lemma a G-type domain R has essential type ifand only if

R = Tot(R).Thus every one dimensionalG-type domain has essential type. Since it is Known
that all Noetherian and all Krull G-type domain satisfy dim(R) < 1,it follows that all
Noetherian and Krull G-type domains haveessential type.In addition each valuation ring V of
finite dimension n > 2 is a G-type domain of nonessential type (indeed, the

pseudo-radical of V is the unique height 1 prime P of Vand so S~V =V, = V(.

Theorem 3.9. Let R be an integrally closed G-type domain. then:
i) R* =n {V|V € X1 (R)}
i) P(R) = P(R*) =n{my|V € X1(R)}

Proof. i) This is a similar result due to Gillmer and Heinzer[11].
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ii) By lemma "3.4" (iii) P(R*) =n {(my N R")|V € X1(R*)} and by the part of (i) X*(R) =
X1(R*), therefore:
P(R*) = (n {my|V € X}(R)}) NR*.
On the other hand, applying Lemma "3.4"(iii) to R yields:
P(R) =n{(my nR)|V € X} (R)} = (n {my|V € X1 (R)}) NR.
An application of Lemma "3.4"(i) makesclear that:
Nn{my|VeX'(R)}=n{my|VeXR)}cn{V|VeEXR)}=R
(Since R is integrally closed).
The assertions now followeasily. o

Lemma 3.10. Let a ring R have dcc on finite intersections of prime ideals (Rhas "dcc"
(Descending Chain Conditions) on prime ideals, R/P has only a countable number ofnonzero
minimal primes for each prime P), then each prime ideal Pof R is a G-ideal (G-type ideal).

Proof. At first we must show that a domain with "dcc" onfinite intersections of prime ideals
is G-domain. To see this,let A be minimal among the ideals which are finite intersections

of nonzero prime ideals, (i.e., (0) # A is in fact theintersection of all the nonzero prime
ideals and we are through.For the other part, we must show that each domain R with dcc on
prime ideals and having only a countable number of nonzero minimalprime ideals is G-type
ideal. To see this, let P, P,,..., B,, ... be the nonzero minimal prime ideals of R andnote that
each nonzero prime ideal contains one of Pl-'s. Nowfor each n, take 0 # a,, € B,, and let S be
the "mcs" setgenerated by {ay,a,,...,a,,...}. It is now that S n P + (0) for each nonzero
prime ideal P and this completes theproof. o

Theorem 3.11. Let R be a Noetherian domain, then R is a G-type domain if andonly if R has
only a countable number of nonzero minimal primeideals

Proof. If R has only a countable number of nonzerominimal prime ideals, then we are
through by lemma of"3.9".

Conversely, let S = {sq,5s3,...,,,...} be a countable "mcs "set such that Sn P # @ for all
nonzero primeideals P. Let us assume that the set of nonzero minimal primeideals is
uncountable and drive a contradiction. Now there mustexist an element s € S such that s
belongs to an uncountablenumber of nonzero minimal prime ideals. Clearly each of these
prime ideals are minimal over (s) and it goes without saying that(s) is not a prime ideal. Now
considering the Noetherian ringR /(s) which has an infinite number of minimal prime ideals,
itgives us the desired contradiction. O

Corollary 3.12.Let k — dimR = n, then R is a G-type domain if and only if thenumber of
nonzero minimal prime ideals in R are countable.

Theorem 3.13. Let R be a Noetherian domain with the CPA property, then R is aG-type
domain if and only if Spec(R) is countable and each nonzeroprime ideal is maximal.
(ie.,k—dimR <1)

Proof. If Spec(R) is countable and k —dim R < 1, thenby Theorem"3.11"R is a G-type
domain.

Conversely, we claim that every prime ideal has the rank less or equal one and by theorem
of"'3.11", the proof is complete. So, let P € Spec(R) is a primeideal with rank(P) = 2 and
derive a contradiction.
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It is well-known that the rank of every prime ideal in Noetherian ringsis finite (i.e., we may
assume that rank (P)=n). Hence there existsa chain of prime ideals.
P=B,>P,_1>...0P, 2P ©(0), of length'n",(i.e.,rank(P;) = 2)

In view of theorem of "9" there exist only countable numbers of primeideals of rank less than
or equal to one. Thus we may assume thatP; = Q4,Q,,..., Q,, .. are the only primes between
(0) andP,. But by the "CPA™ property we can have P, S U/Z; Q;,50 there exists x € P, and
then bythe "Principal ldeal Theorem" we have rank(P,) <1 whichis the desired
contraction.o

Theorem 3.14.i) If R is a G-type domain, then Spec(R) ishomeomorphic to Spec(R) (via the
map induced by the naturalinclusion of Rin R).

i) If R is a saturated (e.g.,seminormal) G-type domain and SR ¢ R*,thenR = R isa
pullback type.

Proof.This Proof is similar to theorem of [7,thm.2.15]

i) By definition of G-type domain, since each overringof a G-type domain is also G-type
domain and each pullback of aG-type domain is also an overring of it, so it is obviously a
G-type domain. Now by pullback diagram of canonical homomorphism'’s:

~ 1 —

R - R
my | ¢y 1
SR ¢—1> T

We obtain a commutative diagram

Spec(R)  —py — Spec(R)
po T a 1
Spec(ST'R) «— a; «— Spec(T)

which is Spec(R) is identified with Spec(R) Uspec(ry Spec(S™'R) and p; is a
closedembedding. The map a4,being induced by the surjectiong,is just the standard
correspondence between prime idealsin T = (S™'R)/(P(S"!R)) and prime ideals in S™R
thatcontain P(S~1R). Since each nonzero prime contains thepseudo-radical, the image of o
is Spec(ST1R)\{0}. But every a; (P) in thisimage is identified with the corresponding a, (P)
inSpec(R).

Thus, up to homeomorphism,Spec(R) Uspe. (ry Spec(S™'R) = Spec(R U {0}

(the second union being disjoint).

Moreover, since p,is a closed embedding, Spec(R) is a closed set in Spec(R) U {0} and the
proper closed sets ofSpec(R) U {0} are in 1-1 correspondence with all closedsets of Spec(R).
Thus, we have a bijectionSpec(R) Usgpec ry Spec(S™'R) — Spec(R)

which is both continuous and closed, therefore it is ahomeomorphism.

ii) By the universal property of pullback diagrams, R is alwaysidentified with a subring of R
via the injectiongiven by ¢(r) = (¥,r/1).If R is saturated and S~'R c R*, we claim that ¢

must be surjectiveas well. To see this, let (f, %) € R X S™IR be arbitrary. By definition,
7= (a/t)inT,whence b = r — =€ P(S™'R). Therefore P(S™'R) = S™'(P(R)) = P(R).
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Thus, b € P(R) cR.So%= r—b€R.and (7,%) = ((;) ,;) =¢(3) eo®. ©
Corollary 3.15.If R is a Prifer G-type domain, then S™'R c R*R has pullback type, and
R* =N {Rp|P € Spec'(R)}has essential type. If in addition, R is a Bézout G-typedomain,
then S™I1R = R*.

Proof. Since each Prifer G-type domain is necessarilya GD-type domain (R as a G-type
domain is called a going-downG-type domain if for every overring T of R, the inclusion map
R — T satisfies the going-down property), henceS~'R < R* and obviously R has pullback
type andfurthermore for each Prifer domain ( specially PriferG-type domain) we have

R* =N {Rp|P € Spec'(R)} as a essential type .

Now if R is a Bézout G-type domain, since each overring of Ris a ring of fraction of R. So if
R* = TR for somesaturated multiplicatively closed set T, then:

STIRc TR = R* =n{Ryp|P € Spec'(R)}.

Therefore,

T > Sand R, © T"'R,VP € Spec(R). It follows that TN P =0,V P € Spec'(R),and so
SO T.ThusS"'R=T"'R =R*. o

Remark 3.16. If R is a G-type domain such that Spec(R) is a countable set,then:

SR =n{Rp|P € Spec(R)} is a countable set ofone-dimensional quasi local rings.The
condition that Spec!(R)be countable is characterized by S™'R being semiquasilocal
ofdimension at most 1.

Therefore it is obvious that a G-type domain R satisfies Spec(R) is countable and R has
essential type if and only ifevery nonzero principal ideal of R is countably intersection of
(height 1) primary ideals.

Example 3.17.We exhibit a one-dimensional quasi local domain R such that R*is a one-
dimensional (therefore, essential) Priifer G-typedomain, but not semi quasi local. Let V be a
one-dimensionalvaluation domain with quotient field K such that there exists analgebraic
field extension L of K having infinitely many valuation subrings extending V. (for instance,
take V = Zp; and L thefield of algebraic numbers.) Let T be the integral closure of V inL.
Then T is one-dimensional and Prufer, but notsemiquasilocal.

Corollary 3.18.Let Ry, R, ..., R, ... befinite-dimensional conducive domains which are not
fields, with@; being the (unique) height 1 prime of R;. LetR =N72; R; and pickg; = Q; N
R. Let (V;,M;) be the ( unique) one dimensional valuation overring of R;and let b; =
(R;:V;) n M;(which is nonzero by theconducive property). Let W =n;Z; V; and

m; = M; N W. Assume further that R and each of the R;’s have acommon quotient field K
andthat q; € q; wheneveri # j. then:

1) R is a G-type domain and R* = W, a one-dimensionalsemi quasi local Bézout domain.

2) Spec!(R) = {41,920, Gns---

3)ST'R=NZ; Ry, © R".

4) If each R, is a one-dimensional, then R = S~!R isone-dimensional and semi quasi local.
5) If each R; is saturated, then R is saturated and R = R =~ R Xy+ R* where T*is the total
quotient ring of R*/P*.
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Corollary 3.19.Spec! (R) is finite for every G-type domain R such that R' isa strong G-type
domain.

Example 3.20. Spec(R) is finite and dim(R) < 1 if (and only if) R is acompactly packed G-
type domain of essential type. (R is compactlypacked if, for any subset Q of Spec(R) and any
ideal | ofR, the condition I cU{P|P € Q} impliessic P , 3Pe Q. In a compactly
packedring, every prime ideal P is the radical of a principal ideal. By essentiality, dim(R) <
1.Thus, for every P,Spec(R)\P is a quasi-compact Zariski- open set, andtherefore it is closed
when Spec(R) is discrete. Since the patchtopology is compact, Spec(R) must be finite.
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