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Abstract: Data from smart grids can be examined to find anomalies in a variety of fields, 

including cybersecurity, fault finding, energy theft, etc. There is a compelling case to be made 

for anomaly detection using machine learning. We need to extract features from the raw grid 

data. Any occurrences or modifications in the smart grid data that deviate from the typical 

pattern are referred to as anomalies. The outcomes of a common grid layout can differ 

greatly based on patterns or modifications in power, voltage, current, or consumption. In this 

research, an anomaly detection model is developed for a hardware-based testbed 

implementation of a real-world smart grid system. It is possible to enhance system behaviour 

in data communication flow by identifying anomalous activity. Additionally, it will detect any 

changes in parameters that can point to the existence of cyberattacks. Our suggested anomaly 

detection methodology uses several decision trees to separate outliers from typical 

observations, based on the Isolation Forest (IF) paradigm. The simulation findings were used 

on a hardware-based testbed to validate the effectiveness of the suggested detection strategy. 

Principal component analysis was utilised to optimise feature selection, and the dickey-fuller 

test was employed to assess the model's performance. 
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I. INTRODUCTION  

By combining conventional power data and communication technology, smart metres send 

real-time data from end users to the smart grid. Because of their intricate architecture and the 

sensitive nature of the data they convey, smart grids require cybersecurity. The cybersecurity 

section systematically monitors the data flow from each grid parameter for irregularities. We 

shall talk about the different kinds of cyberattacks that can affect the grid in this study. After 

doing a thorough examination of the data and taking into account the underlying attacks, we 

will create a machine learning algorithm that uses individual data production and data flow 

points to identify anomalies.  

In the electrical industry, compromised smart grid devices are one of the biggest security 

risks. False information from a sensor could lead a control device to increase voltage, 

overloading the grid. There could be security flaws in smart equipment that measure and 

regulate the grid, like sensors and controllers. Malicious behaviour on a control device can do 

the same thing, stopping the flow of electricity. The grid's smart grid components have to 

function as intended and provide a steady supply of this vital resource. This research attempts 

to analyse smart grids from a data-driven standpoint by examining real-world data streams 

from a hardware-based testbed accessible within the Energy Systems Research Laboratory at 

Florida International University. This study develops a machine learning model that identifies 

anomalies in data and marks them for examination.  

The machine learning model in this study, which is built on isolation forests, makes use of 

historical data to forecast grid parameter values in the future. Additionally, it keeps an eye on 

grid activities in case an attacker manages to breach the system or if another problem 

modifies the grid's specifications. To test if the built model can identify system changes, a 

few fictitious attacks were introduced. This approach allows for the detection of attack 

locations with a 98.74% accuracy rate by allowing anomalous behaviour at each node to be 

observed.  

The remainder of the document is organised as follows: The relevant work is presented in 

Section II. The architecture, philosophy, procedures, and specifics of the machine learning 

model and anomaly detection for the smart grid testbed are presented in Section III. The 

graphs and findings are shown in Section IV, along with an explanation of the anomaly point 

that the machine learning model identified. The paper is finally concluded in Section V, 

which also addresses future work.  
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II. CONSISTING WORK  

The critical infrastructure organisations are now vulnerable to a range of threats, such as 

physical assaults, virus releases, and information theft, due to their rising reliance on 

CyberPhysical Systems (CPS). Machine learning-based techniques can be used for a variety 

of security-related tasks, such as virus detection, access control, anomaly detection, intrusion 

detection, and classification.  

The anomaly detection method is used in this work to improve security. Agrawal et al. claim 

that an evaluation of current data mining techniques has taken place. Here is an illustration of 

a malicious voltage control computation using a neural network model. A rule-based 

detection method is used by academics to identify attacks on smart grids.  

Distinctiveness in relation to current practices:  

While anomalies can be found in smart grids, this is mostly useful in the corporate and 

industrial domains. This work investigates anomaly detection during the generation stage. In 

our model, an anomaly is found at each grid point. We go over data engineering in other 

parts. This method shortens the time it takes to locate an attack in the grid in addition to 

cutting down on action time. Python machine learning is used for the implementation.  

 

III. STEPS ADOPTED, ARCHITECTURE, MODEL, AND IDEOLOGY   

Cooperation between electricity suppliers and distributors is facilitated by the smart grid. To 

find irregularities and provide an extra degree of protection, a machine learning system has 

been put into place. Energy is created in a smart grid by utilising cutting-edge technology, 

cutting carbon dioxide emissions, and optimising power for effective resources through the 

application of new technologies. Supervisory control and data acquisition, or SCADA, is a 

crucial part of a high-level management system that monitors and controls electricity grids. It 

automates and controls these systems. They have a variety of auxiliary devices and 

controllers that allow them to communicate over the Internet. PLCs, RTUs, sensors, metres, 

embedded computers, Intelligent Electronic Devices (IEDs), HMIs, and Remote Terminal 

Units (RTUs) are just a few examples of the many devices that fall under the category of 

control and peripheral devices. The smart grid is constructed by connecting these devices (fig  

(1)). The difficulty of creating a smart grid is clarified.  
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Figure 1: Smart Grid Testbed in Energy Systems Research Laboratory 

 

A.Anomaly Detection: what is it?  

A phenomena that emerges unexpectedly in a data set and deviates from the expected data is 

called an anomaly. Unsupervised anomaly detection, sometimes referred to as anomaly 

detection, is frequently applied to data that lacks a label. A few presumptions form its 

foundation.  

• The frequency at which anomalies occur is low.  

• Anomalies differ from normal data in a significant and recognizable way. 

B.Smart grids need to detect anomalies, but why?  

A smart grid can be exposed to the following types of attacks and machine learning can help 

mitigate them:  

• Device attack: There will be an effort to take control of or compromise a device. This 

involves committing malevolent physical acts, data theft, and network attacks against 

the smart grid (if the hacked devices may operate as control elements). By disrupting a 

circuit, compromised IEDs, like circuit breakers, have the potential to intentionally 

cause power outages. Device attacks must be avoided by implementing access control.  

• Data attack: an attempt to manipulate commands or add, remove, or modify data in 

network traffic in order to influence the smart grid's decision-making or behaviour. 

Customers frequently compromise their smart metres in order to lower their electricity 

bills. •Privacy attack: examines data on electricity use to find out or deduce personal 

information about consumers. In order to increase the efficiency of grid operation and 

gather precise information about the state of the grid, smart metres gather data on 

power use multiple times an hour. Data with such delicate privacy features needs to be 

shielded from unwanted access.  
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• Network availability attack: seems as a DoS (denial of service). As a result, when 

they are exhausted or overloaded, data communications to the smart grid slow down or 

stop altogether. An attacker with malevolent intent may constantly bombard a control 

centre with false information, causing it to spend most of its effort confirming the 

information's veracity. As a result, the control centre is unable to respond promptly to 

valid traffic. In smart grid control and communications, time is of the essence. 

Effectively handling network availability assaults is crucial.  

• A few more complex threats that might exist in smart grids include:  

• Attacks involving data integrity: Manipulate the data so the signals indicate spurious 

values, which could either force the actuator to make incorrect changes to the device 

or force the control center to make wrong decisions  

• Denial of Service (DoS) Attacks: Delay control actions. As a result of a DoS attack 

on a physical system whose corrective control is time-constrained, the entire system 

could become unstable.  

• Replay attacks: Retransmit legitimate control packets, incorrect decisions can be 

made as a result. Having a networked power-controlled system impacted by this kind 

of attack is problematic.  

• Timing attacks: A type of DoS attack. Adversaries will delay the transmission of 

signals instead of completely cutting off communication between the system and 

control. The Controller will be affected by this delay, and it could even cause the 

controlled system to become unstable.  

• Desynchronization Attacks: This type of attack targets controls that are difficult to 

synchronize.  

• Sniffing attacks: such attacks can expose sensitive information about users and the 

internal operation of power companies.  

• Reconfigure attack: This involves installing malicious firmware on Smart Grid 

devices and using the firmware to perform different kinds of attacks.  

C.Isolation Forest  

Isolation forests focus on separating anomalies in order to identify them, as opposed to 

standard profiling techniques that isolate normal points. Since anomalies are distinct and 

uncommon data points, outlier detection can be accomplished by applying the isolation forest 

algorithm, which yields the anomaly score for each sample. Using the Isolation Forest 

technique, Isolation Forest provides the anomalous score for every sample. For additional 

comparison, this anomaly score is returned to the data as a new column.  

The process of building an isolation tree involves the following cases:  
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• Select a random subset of the data.  

• Until every point in the dataset is isolated select one feature at a time and partition 

the feature at a random point in its range.  

The prediction process involves:  

• For Each I-tree in the forest Perform binary search for the new point across the Itree, 

traversing till a leaf and compute an anomaly score based on the depth of the path to 

the leaf.  

• Aggregate the anomaly score obtained from the individual I-trees to come up with an 

overall anomaly score for the point.  

Separation By first selecting a feature at random and then selecting a split value between the 

maximum and minimum values for that feature, Forest recursively creates partitions on the 

dataset. In a tree, an anomaly's route length—which is the number of edges travelled from the 

root node—will be shorter. In Binary Search Tree (BST), which resembles an I-tree in 

structure, the path length of a failed search is computed as:  

 

C(N) = 2Η(Ν−1) −(2(Ν−1)/Ν)  (1)  

 

where H(i) is the harmonic number and it can be estimated by ln(i) + 0.5772156649 (Euler's 

constant). n is the number of instances in the dataset. This is best explained in.  

D.Architecture and data  

Our lab has created a remote control for the SCADA system using a local IP address. We can 

retrieve data from the grid at the desired spots with the aid of the SCADA control. Figure 2 

displays the architecture of the testbed. The other three generators are auxiliary generators, 

while generator G1 is a slack generator. All four generators in the architecture follow the 

same trend of data flow, which is from G1 to L1 (load). In order to operate synchronously, 

generators are connected via transmission lines and a three-phase bus.  
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Figure 2: Smart grid testbed Network Architecture 

 

Every point in the architecture is where the data is gathered. Table 1 displays data from the 

tested architecture. This data predates both feature engineering and feature extraction. Each 

bus, generator, load, and circuit breaker provides us with information on voltage, power, 

reactive power, synchronisation status, time, and load values. The following buses are 

included in the architecture: 0320, 0380, 0260, 0110, 0040, 0050, 0140, 0130. The loads are 

denoted by the letters L1, L2, L3, and L4. The generators are denoted by the letters G1, G2, 

G3, and G4.  
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Figure 3: comparison plot for time and grid parameters  

 

 

 

 

 

 



 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 9  

Table 1: Data Types and Parameters 

Parameter  Data Type  Parameter  Data Type  

Time  Int64  VA_0140  Float64  

Load_1  Float64  VA_0260  Float64  

Load_2  Float64  VA_0320  Float64  

Load_3  Float64  VA_0380  Float64  

Load_4  Float64  VB_0040  Float64  

P_1  Float64  VB_0050  Float64  

P_2  Float64  VB_0140  Float64  

P_3  Float64  VB_0260  Float64  

P_4  Float64  VB_0320  Float64  

Q_1  Float64  VB_0380  Float64  

Q_2  Float64  VC_0040  Float64  

Q_3  Float64  VC_0050  Float64  

Q_4  Float64  VC_0140  Float64  

Sync_1  Float64  VC_0260  Float64  

Sync_2  Float64  VC_0320  Float64  

Sync_3  Float64  VC_0380  Float64  

Sync_4  Float64  V_1  Float64  

Sync_Status_2  Float64  V_2  Float64  

VA_0040  Float64  V_3  Float64  

VA_0050  Float64  V_4  Float64  

The grid parameters relation with time is given in figure  

3. The goal is to detect anomalies in every grid parameter separately without consuming a lot 

of time, which is why we adopted Isolation Forest as an anomaly detection algorithm.  

E.Feature extraction, and feature engineering  

Now that we own all the data required for developing and evaluating models. Because of 

zeros and irregular patterns in the data, it is necessary to clean the data. There are more zeros 

than we anticipated because the data comes from a smart grid that has numerous buses, circuit 

breakers, four generators, and other components. Every grid parameter has a unique 

timestamp associated with its definition. This is the feature extraction portion.  

In this instance, the initial step was to use Python to create a data frame with the information 

from each grid parameter. In order to combine the files over mean and sum, we built a 

merging code.  
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Figure 4: Similarity plot and cases (P_1, P_2, P_3) 

 

The merged file featured a lot of zeros, which was the same issue we had. We experimented 

with mixing the files over mean, sum, forward fill, and backward fill for a few tries before 

deciding to alter the frequency of data collection. In order to decrease the number of zeros, 

we consolidated the time column; as a result, the time-frequency was changed from 

milliseconds to seconds. Following this procedure, we compared the cleaned and combined 

file to the original raw dataset for a single grid parameter. The outcome is displayed in figure 

6. Next, we determined which traits are required for anomaly identification by examining 
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Figure 6 and comparing them. The unnecessary cluster was then eliminated. For example, 

when a value is present at bus 0320, the generator's circuit breaker is closed, allowing current 

to flow. Therefore, we can disregard that circuit breaker's condition.  

To verify all the conditions, the next step is to examine the association between each feature. 

Figure 4 displays the correlation plot for each parameter taken into consideration. Building 

the Isolation Forest for anomaly detection comes next, after the data is clean and the required 

findings are obtained. Based on historical data and trends, Isolation Forest projects future 

values and contrasts them with the present values. The Isolation Forest labels points as 

anomalies if the actual recorded values are out of order or do not make sense.  

F.Principal Component Analysis  

A conventional scaler is used to fit the data to the machine learning model. Principal 

Component Analysis (PCA) is a more popular technique for accelerating machine learning 

algorithms [15][24]. Using PCA to accelerate the learning algorithm may make sense if the 

input dimension is the reason it is operating too slowly. Data visualisation is one more 

frequent use of PCA. Two-component PCA was employed. Figure 5 illustrates the 

significance of the primary components based on inertia.  

The Augmented Dickey-Fuller Test is one of the statistical tools that we use to determine 

whether the time series data is stationary or non-stationary (has some time-dependent 

structure).  

• Null Hypothesis (H0): If failed to be rejected, it suggests the time series has a unit 

root, meaning it is non-stationary. It has some time-dependent structure.  

• Alternate Hypothesis (H1): The null hypothesis is rejected; it suggests the time 

series does not have a unit root, meaning it is stationary. It does not have a time-dependent 

structure.  

We interpret this result using the p-value from the test. A p-value below a threshold (such as 

5% or 1%) suggests we reject the null hypothesis (stationary). Otherwise, a p-value above the 

threshold means we fail to reject the null hypothesis (non-stationary).  

• p-value > 0.05: Fail to reject the null hypothesis (H0), the data has a unit root and is 

non-stationary.  

• p-value <= 0.05: Reject the null hypothesis (H0), the data does not have a unit root 

and is stationary.  

The PCA value we got from the test is 0.19758759589640856, this specifically means that the 

data has a time-dependent structure. That is wonderful since all the grid parameters are time 

dependent.  
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Figure 5: PCA based on inertia 

 

Figure 6: Correlation plot for grid parameters  

G.Isolation Forest Model  

One common method for creating the model is to use the Isolation Forest, which is covered in 

section C. There are a few steps in the process of building the tree, and some techniques help 

to speed up the work. To create an isolation forest, take a sample of each tree's data and 

choose a dimension at random from the sample. Once the dimension has been chosen, a 

random value is taken from that dimension, and the data is split at that value by drawing a 

straight line through it. Until the tree is finished, the aforementioned procedure is repeated. 

The word "isolation forest" comes from the several trees that are created to make it a forest. 

The line becomes an N-1 dimensional hyperplane for multi-dimensional data. Principal 

component analysis, feature extraction, and feature engineering are some of the techniques 

that help with the process of choosing the dimension, choosing values within the dimension, 

and splitting the data.  

This study considers isolation forests for anomaly detection. In sklearn ensemble modules, the 

isolation forest algorithm is made available as a class. Design options include bootstrap, n-

jobs, max-features, contamination, n-estimators, random-state, verbose, and warm-state. The 
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number of base estimators in the ensemble is denoted by N-estimators. The number of 

samples to take from x in order to train each base estimator is called max-samples. The 

percentage of outliers in the data set is known as contamination. Usually, the remaining 

parameters are left at their default settings, which are best described. Our concept, which is 

described in section F, processes max-samples and n-estimators based on data from the PCA. 

The anomaly ratio is set to 3% because the contamination level is set at 0.03.  

We required to train the model as we defined the parameters of the aforementioned model, 

and we accomplish this by using the data from the real-time hardware setup. Fit the target 

column for our model is what we are using for this. The primary purpose of anomaly 

detection is to modify the target each time the parameter is supplied. Every parameter is 

focused on anomaly inspection with this method. The target column in our model is the PCA 

analysed column, which is the primary distinction between the fit approach and the standard 

fit method. In other words, just the columns that are significant or required for detection and 

prediction are taught to the model.  

We add the anomaly column to the dataset at this point, since the model will output the 

Isolation Forest instance after it has been correctly trained. By using the trained models 

predict function, we may determine the anomaly column values once the model has been 

fitted. Observations of anomalies are noted as follows: Anomalies are represented by -1, and 

normal data is represented by 1. This method has the advantage of labelling every data point 

or row with an anomaly identifier. By establishing a threshold, we may adjust the anomaly 

function. If the threshold is set too closely to the normal data points, the model will be tight 

with the data, and if the threshold is set with a huge gap, the model will be forgiving. The 

anomalous points in the graphs displayed in Figure 7 are those that have a red cross next to 

them. The results section explains the cause of the unusual spots in the data.  

Evaluating the model's accuracy in classifying a data point as anomalous is the final step in 

the model building process. Accuracy was the hyperparameter we utilised for this. The 

model's accuracy percentage is 98.74%, a respectable result given the volume and variety of 

data. Other metrics, such as mean absolute error (MAE) and mean squared error (MSE), are 

available to take into account while evaluating a model. But when your data is balanced, 

accuracy is a useful strategy to take into account. Using a unique testing method known as the 

Dickey-Fuller test, we were able to identify if the data is balanced or unbalanced. This 

demonstrates the balance of the data.  
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Figure 7: Anomaly plot for individual grid parameters: P_1, V_1, P_2, V_2, V_3, Load_1, 

Load_2, Load_3, VA_0380, VC_0140, VA_0050, VB_0320. 

IV. RESULTS  

Assuming that the anomaly ratio is 3%, we ran the model script we wrote (Isolation Forest) 

for the results section and fitted the model using the PCA analysed values. As may be seen in 

picture 6 and described in section III (E), we created graphs for each individual parameter 
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based on how similar they were to one another. The anomalies will now be visualised. To do 

this, we will annotate the original graph with the anomalies' precise location and timing. 

Figure 7 displays the results.  

All of the grid parameter values and time-plotted graphs are included in the findings and 

graphs section. The identified anomalies are displayed alongside each individual grid 

parameter. The voltage, power, and current variations we made to test the model's 

functionality are the anomalies in the system. The accuracy and results indicate that the model 

appears to have performed effectively.  

The abrupt changes in values for each grid parameter are the cause of the anomalous locations 

in the graph, which are shown by red cross marks. For instance, the power in the system 

spikes at 6:18:45, which is the moment when we manually increased the load value to an 

unanticipated value, as seen by the anomalous points noted in (a)P_1 anomalous chart in 

Figure 7. In millisecond intervals, anomalies are identified. Microgrid 1's voltage ought to be 

abnormal based on the relationship between power and voltage. The anomalous spots are 

labelled in (g)V_1, and the markings occur simultaneously at 6:18:45. The manually 

increased load levels are displayed in (h)Load_1, where they are also indicated as anomalies. 

This is an effort to demonstrate how the machine learning model can identify an attack at the 

utility point that could result in a sharp spike or decrease in load.  

We varied the voltage at the generating point in our second attempt to demonstrate the 

model's performance. This is an attempt to demonstrate whether the generator is having issues 

producing an erratic load. Improper power generation due to irregular load values might harm 

household appliances or the Grid. This test case can be found in (e)Load_2, (c)P_2, and 

(i)V_2. The voltage is altered in the aforementioned anomaly charts from a typical generating 

point between 6:18:45 and 6:18:50. Two seconds later, at 6:18:50, we adjusted the voltage 

once more after that. The system notices these modifications and simultaneously marks them 

in V_2, P_2, and Load_2. This means that every bus's data update is recorded for the entire 

system.  

Let's examine the hardware structure as depicted in figure 2 for a clearer explanation. Since 

every transmission line is a three-phase line, voltage and current in phases A, B, and C will 

always be present at every point. Section III provides an explanation of architecture (D).  

Taking into account microgrid 1, which is comprised of load 1, bus 0320, bus 0040, and 

generator 1 (G1). While power generation and voltage can be adjusted to suit the needs of the 

load, the frequency, 60 Hz, remains fixed. Figure 7 displays graphs that illustrate how load 

affects voltage and current at each phase. The primary changes in voltage and current that 

happen during a grid attack also impact power. We have implemented a number of actions in 
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the smart grid, which we have divided into cases. These instances include power consumption 

during faults, load sharing for synchronisation, normal operation, maximum load operation, 

transmission line, and bus failure cases. If we closely examine the values in each of the 

aforementioned scenarios, voltage, power, and current will help us identify any irregularities. 

Figure 2's first section shows P_1, Q_1, VA_0320, VB_0320, VC_0320, VA_0040, 

VB_0040, VC_0040, and Load_1. Let's examine part 1, where all of the aforementioned 

values should indicate anomalies simultaneously when we unintentionally increased the load. 

To demonstrate that there is a systemic attack taking place and that the grid is intended to 

behave abnormally, we abruptly raised the load. We tried this in an effort to test the model we 

created, and as figure 7 illustrates, at time 06:18:50, all of the parameters from microgrid 1 

would exhibit abnormalities.  

The individual microgrids that comprise the entire smart grid go through this procedure again. 

Additional values to examine include P_2, Q_2, VA_0380, VB_0380, VC_0380, VA_0050, 

VB_0050, VC_0050, and others, similar to part 1. Table [1] displays these values along with 

the data types for Load_2, P_3, Q_3, VA_0260, VB_0260, VC_0260, VA_0140,  

VB_0140, VC_0140, Load_3, P_4, Q_4, VA_0110, VB_0110, VC_0110, VA_0130, 

VB_0130, VC_0130, and Load_4. Based on the PCA and feature extraction described in III 

(E), we assessed the significance of each element and chose only the most significant 

features.  

V. CONCLUSION AND FUTURE WORK  

Using a machine learning anomaly detection approach, we have carried out anomaly detection 

and demonstrated the isolation forest's performance. At a specific moment, anomalies in each 

grid parameter were found. Maximum accuracy was achieved by applying the algorithm with 

optimised hyperparameters. To test the model, attack scenarios were added, and the outcomes 

were confirmed. Additionally, we used principal component analysis to optimise feature 

selection and the Dickey-Fuller test to test the model's performance.  

In the future, this procedure might be packaged using Pickle and integrated with the SCADA 

system to allow action on abnormalities at each grid parameter point.  

We combined the two tests listed above to create the third exam. We manually adjusted the 

voltage and the load. This is an attempt to highlight Grid-damaging anomalies in the Grid 

settings. The system notices the identical modifications, which are flagged as abnormalities.  
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