

© Associated Asia Research Foundation (AARF)
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

Page | 15

DECISION SUPPORT SYSTEM FOR DESIGN PATTERN SELECTION:

MODEL, METHODOLOGY & METHODS

Srinivasa Suresh Sikhakoli
1
, Dr. M.Kameswara Rao

2

1
Research Scholar,Department of Computer Science, Himalayan University, Itanagar,

Arunachal Pradesh.
2
Research Supervisor,Department of Computer Science, Himalayan University, Itanagar,

Arunachal Pradesh.

ABSTRACT

Design patterns are crucial for solving recurring design problems in software engineering.

Selecting the appropriate design pattern can significantly impact software systems'

maintainability, scalability, and overall quality. This paper presents a comprehensive decision

support system (DSS) aimed at aiding software engineers in the selection of design patterns.

We propose a model for the DSS, outline the methodology for its development, and discuss

the methods used for pattern selection. The proposed system integrates domain knowledge,

pattern attributes, and decision-making techniques to enhance decision-making.

KEYWORDS:Software Engineering, Knowledge Base, Inference Engine, Rule-Based

Systems, Case-Based Reasoning (CBR).

I. INTRODUCTION

In the dynamic field of software engineering, the quest for optimal design solutions has led to

the development of numerous methodologies and frameworks to tackle recurring problems.

One of the most influential contributions to this endeavor is the concept of design patterns.

Originating from the seminal work of Gamma, Helm, Johnson, and Vlissides, design patterns

offer standardized solutions to common design challenges, promoting best practices and

enhancing the reusability of software components. Despite their widespread adoption and

proven benefits, selecting the most appropriate design pattern for a given project remains

complex and often daunting. This complexity arises from the vast array of design patterns

available, each with its unique attributes and applicability depending on the specific

requirements and constraints of the software being developed.

The difficulty in choosing the correct design pattern is compounded by the diversity of

software projects, each with its own set of objectives, constraints, and operational

environments. For instance, a pattern suitable for a high-performance system might not be

ideal for a system that prioritizes ease of maintenance or rapid development. Moreover, the

landscape of design patterns is continually evolving, with new patterns emerging and existing

patterns being refined to address contemporary challenges in software design. This ever-

changing environment necessitates a robust mechanism to support decision-making in pattern

selection, ensuring that the chosen patterns align with project goals and deliver optimal

results.

International Research Journal of Mathematics, Engineering and IT

Volume 3, Issue 3, March 2016 Impact Factor- 2.868

ISSN: (2349-0322)

 © Associated Asia Research Foundation (AARF)

Website- www.aarf.asia, Email : editor@aarf.asia , editoraarf@gmail.com

http://www.aarf.asia/
mailto:editor@aarf.asia
mailto:editoraarf@gmail.com

© Associated Asia Research Foundation (AARF)
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

Page | 16

A Decision Support System (DSS) for design pattern selection is a powerful solution to this

challenge. Such a system aims to assist software engineers in making informed choices by

integrating domain knowledge, pattern attributes, and decision-making techniques into a

cohesive framework. The primary objective of a DSS is to streamline the selection process,

reduce the cognitive load on engineers, and enhance the alignment between design patterns

and project requirements. By leveraging a DSS, engineers can navigate the complexities of

pattern selection more efficiently, ultimately leading to more effective and reliable software

solutions.

The development of a DSS for design pattern selection involves several critical components.

The knowledge base is the repository of various design patterns, including their

characteristics, use cases, and associated benefits and trade-offs. This component must be

comprehensive and up-to-date, reflecting the latest design pattern developments and

capturing theoretical and practical insights. The inference engine is responsible for processing

the information in the knowledge base and applying decision-making algorithms to match

patterns with project requirements. This component is crucial in translating abstract

knowledge into actionable recommendations, considering factors such as pattern suitability,

complexity, and impact on system design. Finally, the user interface facilitates interaction

between the system and its users, allowing engineers to input project requirements, view

recommended patterns, and access justifications for the recommendations provided.

The methodology for developing a DSS involves several stages, including requirements

analysis, knowledge acquisition, system design, implementation, and testing. Requirements

analysis focuses on understanding the needs of software engineers and identifying the

challenges they face in pattern selection. This stage involves gathering input from

practitioners, reviewing existing practices, and pinpointing areas where a DSS can add value.

Knowledge acquisition entails collecting and organizing information about design patterns,

which requires a thorough literature review, expert consultations, and case studies. The

system design phase involves architecting the DSS and defining data structures, algorithms,

and user interactions. Implementation involves building and integrating the system

components, while testing and evaluation ensure that the system meets its objectives and

performs effectively in real-world scenarios.

Several methods can be employed within the DSS to facilitate design pattern selection. The

rule-based approach uses predefined rules to match patterns with project requirements based

on attributes and constraints. Case-based reasoning involves drawing parallels between

current projects and historical cases where similar patterns were used, enabling the system to

adapt solutions from previous experiences. Decision trees represent the decision-making

process through a series of criteria, guiding the selection of the most suitable pattern. Multi-

criteria decision Analysis (MCDA) evaluates patterns based on multiple criteria, such as cost,

complexity, and performance, aggregating these factors to rank and select the best option.

Expert systems integrate expert knowledge and heuristics to provide recommendations based

on accumulated experience and insights.

Applying a DSS in real-world scenarios demonstrates its potential to enhance the design

pattern selection process. For instance, in a software development project requiring a scalable

and flexible notification system, the DSS can evaluate various patterns, such as Observer,

Mediator, and Publisher-Subscriber, based on the project’s criteria. By analyzing the

attributes and implications of each pattern, the system can recommend the most suitable

option, providing a rationale for its choice and highlighting the anticipated benefits. This

application streamlines the decision-making process and ensures that the selected pattern

aligns with project requirements and delivers optimal performance.

Developing and implementing a Decision Support System for design pattern selection

represent a significant advancement in software engineering. By integrating knowledge,

decision-making techniques, and user interactions, the DSS addresses the complexities of

© Associated Asia Research Foundation (AARF)
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

Page | 17

pattern selection and supports engineers in making informed decisions. The system’s ability

to process and analyze information, coupled with its practical applications, highlights its

value in enhancing the design process and creating high-quality software solutions. As the

field of software engineering continues to evolve, the DSS for design pattern selection will

play a crucial role in navigating the complexities of modern design challenges and promoting

best practices in software development.

II. MODEL FOR DECISION SUPPORT SYSTEM

1. Knowledge Base: The knowledge base serves as the foundation of the Decision Support

System (DSS), storing comprehensive information about design patterns. This includes:

o Pattern Attributes: Detailed descriptions of each pattern, including their structure,

components, and design goals.

o Use Cases: Practical examples and scenarios where each pattern has been successfully

applied.

o Advantages and Disadvantages: Analysis of the strengths and limitations of each pattern

in various contexts.

o Project Requirements: Information on standard requirements and constraints in different

software development projects.

2. Inference Engine: The inference engine is responsible for processing information from

the knowledge base to recommend suitable design patterns. It involves:

o Decision Algorithms: Rules and algorithms that evaluate patterns based on criteria such

as applicability, complexity, and impact.

o Matching Process: Techniques to match design patterns with project requirements,

including rule-based logic, case-based reasoning, and multi-criteria analysis.

o Scenario Analysis: Evaluation of different patterns' performance under project conditions

and constraints.

3. User Interface: The user interface facilitates interaction between the DSS and its users. It

includes:

o Input Mechanism: Tools for users to input project requirements, constraints, and

objectives.

o Recommendation Display: Presentation of recommended design patterns, explanations,

and justifications for each recommendation.

o Feedback System: Features allowing users to provide feedback on the recommendations

and refine their search criteria.

By incorporating these components, the DSS model aims to enhance the decision-making

process in selecting design patterns, ensuring that choices are informed, relevant, and aligned

with project goals.

III. METHODS FOR DESIGN PATTERN SELECTION

1. Rule-Based Approach:

o Definition: Uses a predefined set of rules to match design patterns with project

requirements.

o Process: Rules are based on pattern attributes and project constraints. For example, if a

project requires high flexibility and low coupling, the rule-based system might suggest the

Strategy or Observer pattern.

o Advantages: Provides clear and consistent recommendations based on established criteria.

Easy to implement and understand.

2. Case-Based Reasoning (CBR):

o Definition: Involves comparing the current project with historical cases where similar

design patterns were used.

© Associated Asia Research Foundation (AARF)
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

Page | 18

o Process: The system retrieves past cases, analyzes how similar patterns addressed those

cases, and adapts solutions for the current project. For example, if a previous project used the

MVC pattern to handle complex user interfaces, it might recommend the same pattern for a

new project with similar requirements.

o Advantages: Leverages real-world examples and experiences, allowing for context-

specific recommendations. It helps in understanding the practical implications of different

patterns.

3. Decision Trees:

o Definition: Represents the decision-making process through a tree-like structure of criteria

and options.

o Process: Each node in the tree corresponds to a decision criterion (e.g., performance vs.

maintainability), leading to selecting the most suitable pattern based on the project's needs.

For instance, a decision tree might help determine whether to use the Singleton or Factory

pattern based on criteria such as object instantiation frequency.

o Advantages: Provides a visual and structured approach to decision-making. Facilitates

understanding of how different criteria impact the selection process.

Each method offers unique strengths and can be used individually or in combination to

enhance the design pattern selection process. By incorporating these approaches, a DSS can

provide more accurate, context-aware, and practical recommendations for design patterns.

IV. CONCLUSION

The proposed Decision Support System for design pattern selection offers a structured

approach to aiding software engineers in choosing appropriate design patterns. By integrating

domain knowledge, decision-making techniques, and user interactions, the DSS enhances the

design process and supports informed decision-making. Future work includes expanding the

knowledge base, refining the inference algorithms, and exploring additional decision-making

methods.

REFERENCES

1. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (2000). Design Patterns: Elements of

Reusable Object-Oriented Software (Addison-Wesley). [Reprint of the original 1994 book].

2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (2007). Pattern-

Oriented Software Architecture: A Pattern Language for Distributed Computing (Wiley).

[Reprint].

3. Fowler, M. (2004). Patterns of Enterprise Application Architecture (Addison-Wesley).

4. Herring, S., & Szabo, K. (2006). Design Pattern Fundamentals (Cambridge University

Press).

5. O'Malley, T., & Shah, S. (2005). Advanced Design Patterns: Creating Custom Solutions

(Prentice Hall).

6. Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship (Prentice

Hall).

7. Coad, P., & Yourdon, E. (2002). Object-Oriented Design: A Practical Guide (Prentice

Hall). [Reprint].

8. Alhir, S. S. (2003). Design Patterns: A Survey (Springer).

9. Berczuk, S., & Morrow, R. (2000). Software Configuration Management Patterns:

Effective Teamwork, Practical Integration (Addison-Wesley).

10. Jansen, A., & Bosch, J. (2005). Software Architecture Design Patterns for Distributed

Systems (Springer).

11. McConnell, S. (2004). Code Complete: A Practical Handbook of Software Construction

(Microsoft Press).

12. Prasanna, K. (2011). Decision Support Systems: Concepts and Applications (Springer).

© Associated Asia Research Foundation (AARF)
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

Page | 19

13. Turban, E., Sharda, R., & Delen, D. (2011). Decision Support and Business Intelligence

Systems (Pearson).

14. Chen, M., & Zhang, Y. (2009). Multi-Criteria Decision Analysis in Software

Engineering (Springer).

15. Soni, P., & Tyagi, S. (2012). Knowledge-Based Systems: Principles and Applications

(Wiley).

