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Abstract: In this present article, we explore S-Convex Sets in topological vector spaces, 

investigating key concepts like closed sets, open sets, set interiors, and the closure property of 

S-Convex Sets. It establishes that the closure of an S-Convex Set in a topological vector 

space remains S-Convex, which differs in technique from metric spaces. Neighborhood 

systems are employed. It presents theorems involving closed sets, set closures under specific 

conditions, and the interior of sets in topological vector spaces. It demonstrates that the 

interior of an S-Convex Set in such a space also preserves the S-Convex property. 

Furthermore, the chapter derives a result related to S-Convex Sets and S-Convex hulls.  

Keywords: Open set, convex set, closure, topological vector spaces. 

Introduction 

In the real life problem of optimization, economics, engineering, convex sets are 

fundamental. A convex set is a set that exhibits a particular geometric property, and 

understanding this property is essential for a wide range of theoretical and practical problems. 

This introduction provides an overview of convex sets and offers a concise literature survey 

to highlight their importance and applications. 

In Euclidean space, a convex set is one that has every line segment between any two 

locations in the set. Formally speaking, a set S is convex if every pair of points x and y in S 

has a line segment between x and y that lies wholly within S. This geometric definition of 

convexity serves as the foundation for a wide range of theoretical and applied mathematics. 

The first study according to our knowledge is done by Minkowski in [8]. Early developments 

of convexity were finite dimensional and concerned with solution of quantitative problems, 

which has been described in [4].Understanding convex sets is pivotal as they serve as a 

fundamental building block for convex optimization, which, in turn, is a powerful tool in 

solving various real-world problems. In [12], the extreme points and related results. Convex 
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sets underpin the efficient algorithms used in resource allocation, portfolio optimization, 

image reconstruction, and many other fields. Their geometric properties ensure that 

optimization problems associated with convex sets have unique solutions, making them an 

indispensable concept in mathematical modeling. In [9], the authors introduce a convex-

constrained image restoration model that effectively improves image quality by optimizing 

the relaxation. We can see the literature regarding the properties of convex sets in [1-3, 5, 6, 

7, 10, 11, 13] and references therein and their applications.  

In this present paper, our focus has been on the in-depth exploration of S-convex sets, a 

concept with profound mathematical implications. We have not only introduced the idea of S-

convex sets but have gone a step further to define topological operations on S-convex sets.  

Our work efforts have been on the study of S-Convex Set in a topological vector space. We 

have also studied the notions of a closed set, open set, interior of a set, and the closure 

property of S-Convex Sets and using the notions of these we have established a few results. 

We have observed that in a topological vector space the closure of a S-Convex Set is again a 

S–convex set since such result also holds good in a metric space and hence in a normed linear 

space because a metric space is also a normed linear space. But while we were establishing 

this result in a topological vector space, we observed that the technique is not analogous to 

that for metric spaces. Also, in proving the result we have adopted the neighborhood system 

in place of open (or closed) sphere system. We have also used the results given in the section 

for essential definitions in establishing the results. One more theorem we have established in 

the 3
rd

 section of this chapter using the notion of the closed set and the closure of a set under 

a set of suitable conditions. In addition to that we have also established a theorem using the 

notion of the interior of a set in a topological vector space. Through this theorem we have 

observed that the interior of a S-Convex Set in a topological vector space is again a S-Convex 

Set. The property of an interior of a set A that it cannot be a single ton set worked a lot in 

getting two elements in A with suitable scalars to from A, a S-Convex Set. 

We have also established a result using the notion of S-Convex Set and S-convex hull in a 

topological vector space. In this theorem we have observed that the S-convex hull of an open 

set is open. In establishing this theorem, we used the property of S-Convex Hull that an 

element of it can be expressed in terms of finite S-linear combinations. Another thing on 

which we have made our base to establish this result is the use of the notion of neighborhood 

system. 

One more thing which we would like to bring in the notice that there is a scope of huge work 

in topological vector space with the notion of S – convex sets. Also, one can go ahead with 
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the notion of Balanced set, absorbing set etc. Also, a good number of results can be obtained 

with the notion of balanced set analogous to that for S-Convex Set. 

The present article is divided in two sections. In the next section, we give all the required 

definitions. In last section, we give detailed proof of our results. 

 

Preliminaries and Definitions 

In this section, we present essential preliminaries and definitions which are useful in 

establishing some of the results. 

Definition1:Metric (or Distance Function) Let M be a non-empty set then a real valued 

function d defined on M × M is called a distance function (or metric function or simply 

metric on M) if the following conditions are satisfied: 

i) d (x, y)  0 

ii) d (x, y) = 0  x = y 

iii) d (x, y) = d (y, x) 

iv) d (x, z)  d (x, y) – d (y, z). 

Here the condition (iii) is known as the condition of symmetry and condition (iv) is known as 

triangle inequality. 

Here (x, y) is called the distance between x and y. 

Also, d (x, y) due to symmetry does not depend on the order of the element. 

Definition 2: Metric SpaceThe system (or the pair) (M, d) containing nonempty set M and a 

metric d defined on it is caused a metric space. The elements of M are called the points of the 

metric space (M, d). [we refer to Simmons, G. F. (1) P. 51] 

Definition 3: Topology Let X be a non-empty set. A class T of subsets of X is called a 

topology on X if it satisfies the following two conditions: 

1) The union of every class of sets in T is a set in T. 

2) The intersection of every finite class of sets in T is a set in T. 

That is a topology on a given nonempty set X is a class of X which is closed under 

the formation of arbitrary unions and finite intersections. 

Definition 4: Topological Space A topological space (X, T) is a system consisting of a non-

empty set X and a topology T defined on X. The sets in the class T are called the open sets of 

the topological space (X, T), and elements of X are called its points. No harm can come from 

this practice that if one, instead of writing (X, T), simply writes X.[We refer to Simmons, G. 

F. (1) P. 92]. 
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Definition 5: Open set A subset G of the metric space X is called an open set if, given any 

point x in G, there exists a positive real number r such that Sr (x) G. 

That is, if each point of G is the center of some open sphere contained in G.  

Also, on the real line, a set consisting of a single point is not open, for each bounded open 

interval centered on the point contains points not in the set. 

Result 1: In any metric space X, the empty set  and the full space X are open sets. Also, 

each open sphere in X is an open set. 

[For the definition and the proof of the result 4 we refer to Simmons, G. F. (1) P. 60] 

 

Definition 6: Closed set Let (X, T) be a topological space. A subset A of X is said to be 

closed set if its compliments 𝐴𝑐 is an open set. 

That is if, X – A = 𝐴𝑐T. 

We now give same result on it which we shall use in the next section to establish some of the 

results. 

Result 2: and X are closed sets. 

Result 3: Any arbitrary intersection of closed sets in X is a closed set in X. 

Result 4: The union of any finite number of closed sets in X is a closed set is X. Clearly, the 

union of any two closed sets is again a closed set. 

[For definition and results we refer to Simmons, G.F. (1) P. 95] 

Definition7:  Open sphere Let (X, d) be a metric space.  For, any point x0 in X and any real 

number r > 0. Let 

S (x0, r= Sr (x0) = {xx: d (x0, x) <r}. 

Then Sr (x0) is called an open sphere with centerx0 and radius r. An open sphere Sr (x0) is also 

called an r ball or simply open ball with Centre x0 and radius r and then we denote it by Br 

(x0) clearly an open sphere always contains its center because d (x0, x0) = 0< r. 

Definition 8:NeighborhoodA subset V of a metric space X is called a neighborhood of a 

point x Є X if V contains an open set G containing x. 

Every open set G containing a point x is a neighborhood of x.  

Definition 9: Interior point LetA be an arbitrary subset of a metric space X. A point x ЄX is 

called an interior point of A if there exists r > 0such that Sr (x)  A. 

That is if the point is the center of same open sphere Sr (x) contained in A. 

Definition 10: InteriorThe set of all interior points of A is called the interior of A and is 

denoted by Int. (A) or A
0
. Thus, 

Int. (A) = {x: x Є A and  r > 0 such that; Sr (x)  A} 
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Result 5: Int (A) is an open set. 

Result 6: A is open A = Int (A) 

 

Definition 11: Accumulation point Let A be subset of a metric space X. A point a in x is 

called an accumulation point of A if every open sphere centered on a contains at least one 

point of A different from a. Accumulation point is also known as the limit point or cluster 

point. 

Definition 12: Derived setthe set of all accumulation points of A is denoted by A’ and is 

called the derived set of A. 

Definition 13: Closure of A LetA be a subset of a metric space X, then the set A⋃A’ is 

denoted by 𝐴and is called the closure of A. 

Hence,𝐴=A⋃A’ 

From which we can conclude that 𝐴 ⊆ 𝐴:𝐴 ⊆ 𝐴 ∪ 𝐵&𝐵 ⊆ 𝐴 ∪ 𝐵 

Also, A⋃B= A⋃B 

Definition 14: Convex set Let S be a non-empty subset of a linear space E now for x, y  S 

and λ, µ ≥ 0, then S is called a Convex Set whenever,  

   λx + µy  S for λ + µ = 1. 

Definition 15: S-CONVEX SET: Let A be a set in a linear space E. 

Now if for x, y ∈ A we have scalars ,  0,  +  1 such that x + y ∈ A then we 

shall say that set A is a S–Convex Set. 

S-CONVEX HULL: Let A be a S–Convex Set in a linear space E. The intersection of all S–

Convex Sets containing A will be known as S–Convex Hull and we shall denote it by S(A) 

and we shall read it as the S–Convex Hull of S-Convex Sets. 

Main Results 

In this section we establish some of the results using the definitions given in above section. 

Theorem 1: Let A and B are two S-convex sets. Prove that 𝐴 ∩ 𝐵 is also an S-convex set. 

Proof: Let A, B are S-convex sets. Now, we have to prove that 𝐴 ∩ 𝐵 is also an S-convex set. 

Thus, for any 𝛼,𝛽 ≥ 0,𝛼 + 𝛽 ≤ 1. 

We have to prove that for 𝑥,𝑦 ∈ 𝐴 ∩ 𝐵, we have 𝛼𝑥 + 𝛽 ∈ 𝐴 ∩ 𝐵. 

Since 𝑥,𝑦 ∈ 𝐴 ∩ 𝐵. 

Thus  𝑥,𝑦 ∈ 𝐴 and A is an S-convex set. It gives 𝛼𝑥 + 𝛽𝑦 ∈ 𝐴. 

Similarly, for 𝑥,𝑦 ∈ 𝐵 and B is also an S-convex set. We have  𝛼𝑥 + 𝛽𝑦 ∈ 𝐵. 
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Combining both, we get: 

𝛼𝑥 + 𝛽 ∈ 𝐴 ∩ 𝐵. 

It gives us that 𝐴 ∩ 𝐵 is an S-convex set. 

Theorem 2: The union of a sequence of S-convex sets is an S-convex set, if they form a non-

decreasing chain for inclusion. 

Proof: The proof of this is on similar lines as for the convex sets. So, we omit the details. 

Theorem 3: Let A be an S – convex set in a topological vector space X. Then 𝐴  (the closure 

of A) is also an S-Convex Set. 

Proof: In order to prove the theorem we first of all prove that if be any scalar and X 

(a topological vector space) then 𝛼𝛾 = 𝛼𝛾.  

For this, if  = 0 then obviously 𝛼𝛾  =  𝛼𝛾  

However, if  is nonzero that is if  0 then we suppose that,x be any element of  𝛼𝛾 then 

x =   where 𝛾  

Now, let D be a neighborhood of   

Hence,
1

𝛼
𝐷 is a neighbourhood of . 

Since  𝜛 ∈ 𝛾 ,  
1

𝛼
𝐷 ∩ 𝛾 ≠. 

Thus, there exist y  such that 𝛾 =
1

𝛼
𝑍 for some Z. 

Therefore, Z = xy 

Hence, Z ⋂ D. 

Hence,⋂ D ≠. 

It makes it clear that any neighborhood D of   intersects  

Hence, x =  𝛼𝛾 

Hence, x𝛼𝛾 

That is x𝛾  x𝛼𝛾 

Thus,𝛼𝛾 ⊆ 𝛼𝛾.…(5.1) 

Again let be any element of 𝛼𝛾then, 

w = 
1

2
𝜛 = 𝛼𝑥where𝑥 =

1

2
𝜛. 

Let D be a neighborhood of x then D is a neighborhood of  

Hence, (𝛼𝐷) ∩ (𝛼𝛾) ≠ 𝜑. 

Thus, there exist an element Z1D such that 

https://en.wikipedia.org/wiki/Union_(sets)
https://en.wikipedia.org/wiki/Total_order#Chains
https://en.wikipedia.org/wiki/Total_order#Chains
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Z1 = y Such that y D and y  

Hence 𝑦 ∈ 𝐷 ∩ 𝛾 ⇒ 𝐷 ∩ 𝛾 ≠ 𝜑. 

But D is any neighborhood of x. 

Hence any neighborhood of x intersects . 

This implies that x 𝛾  

Hence x𝛾  

Hence 𝜛 ∈ 𝛼𝛾 ⇒ 𝜛 ∈ 𝛼𝛾 . 

Thus 𝛼𝛾 ⊆ 𝛼𝛾 .…(5.2) 

Hence from equations (5.1) and (5.2) we at once get, 

𝛼𝛾 = 𝛼𝛾. 

Now let  0,  be such that  

Also let x, y be any two elements of 𝐴 . 

Then 𝛼𝑥 + 𝛽𝑦 ∈ 𝛼𝐴 + 𝛽𝐴 = 𝛼𝐴 + 𝛽𝐴 = 𝐿 + 𝑇.  

Now, let for a moment A = L then 𝛼𝐴 = 𝐿  

A = T. Then,𝛽𝐴 = 𝑇.  

We now take 𝑎 ∈ 𝐿 , 𝑏 ∈ 𝑇 . 

Also let be a neighborhood of a + b. 

Also let there are neighborhoods W1 and W2 of a and b such that 

W1 + W2  W. 

Then, there exist 𝑥 ∈ 𝐿 ∩𝑊1and 𝑦 ∈ 𝑇 ∩𝑊2. 

Since, 𝑎 ∈ 𝐿 and 𝑏 ∈ 𝑇 then x + y must lie in (L+T) ∩W. 

That is 𝑥 + 𝑦 ∈ (𝐿 + 𝑇) ∩𝑊. 

Therefore,  𝐿 + 𝑇 ∩𝑊 ≠ 𝜑. 

Hence, 𝑎 + 𝑏 ∈ 𝐿 + 𝑇 = 𝛼𝐴 + 𝛽𝐵. 

But by hypothesis A is a S-Convex Set in X. 

Hence, A + A A. 

Thus, 𝛼𝐴 + 𝛽𝐵 ⊆ 𝐴 . 

Hence, x + y 𝐴 . 

That is, we have that for  𝑥, 𝑦 ∈ 𝐴  ;𝛼,𝛽be scalars and 𝛼 + 𝛽 ≤ 1.x + y is in 𝐴 . 

Hence, 𝐴 is an S-Convex Set. 
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Theorem 4: Let 

i) X be a topological vector space. 

ii) A be an S–Convex Set in X. 

iii) {0} be an open set X. 

Then, provethat A is closed. 

Proof: By hypothesis A is an S-Convex Set. 

Hence origin belongs to A (or equivalently A contains origin) 

Hence, 0  A 

We also know that if 𝐴 ⊆ 𝐴 ⇒ 𝐴is closed. 

So, to prove the theorem, it is sufficient to show that 𝐴 ⊆ 𝐴 

For this, since we already know that,  

𝐴 =∩ (𝐴 + 𝑉) 

Where, V sums through all neighborhoods of Zero. 

Since {0} is also a neighborhood of 0. 

Hence, 𝐴 ⊆ 𝐴 +  0 = 𝐴 

Thus, 𝐴 ⊆ 𝐴 

Hence, A is closed. 

That is A is a closed S–Convex Set. 

Theorem 5:Let 

i) X be a topological vector space. 

ii) A be a S- convex set in X. 

iii) 𝐴𝑜 ≠ 𝜑. 

Then, prove that A
o
 is also an S-Convex Set. 

Proof: By definition, A
o A. 

Also, by hypothesis 𝐴𝑜 ≠ 𝜑and A
o
is open. 

Hence, A
o
 cannot be a singleton set. 

It means A
o
 contains at least two elements. 

Let, 𝑥,𝑦 ∈ 𝐴𝑜and𝛼,𝛽 be positive scalars such that 𝛼 +  𝛽 ≤ 1. 

In case = 0,  = 1 or  = 1,  = 0 

Clearly 𝛼𝑥 +  𝛽𝑦 ∈ 𝐴𝑜  

So let us assume that 𝛼 <> 0,𝛽 > 0 then, 

𝛼𝑥 ∈ 𝛼𝐴𝑜  𝑎𝑛𝑑 𝛽𝑦 ∈  𝛽𝐴𝑜 . 

Hence,𝛼𝑥 +  𝛽y ∈  𝛼𝐴𝑜 + 𝛽𝐴𝑜 . 
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Now,𝛼𝐴𝑜  +  𝛽𝐴𝑜  =  𝑈
Ze𝛽𝐴

 𝑍 + 𝛼𝐴𝑜 . 

Since,𝛼 ≠ 0,𝛼𝐴𝑜 is open and hence 𝑍 + 𝛼𝐴𝑜 is also open. 

Hence,𝛼𝐴𝑜 + 𝛽𝐴𝑜being union of open sets is open. 

Also  𝛼𝐴𝑜 + 𝛽𝐴𝑜 ⊆ 𝛼𝐴 + 𝛽𝐴 ⊆ 𝐴. 

Hence by the definition of A
o
, 

𝛼𝐴𝑜 + 𝛽𝐴𝑜 ⊆ 𝐴𝑜 . 

Thus,𝛼𝑥 + 𝛽𝑦 ∉ > 𝐴𝑜 . 

Hence, A
o
is a S–convex set. 

Theorem 6:Let 

i) X be a topological vector space. 

ii) S is an open set in X. 

Then, the S–convex hull of S is also open. 

Proof:Let x be in the S–convex hull of S. 

Then, x is a finite sum 𝛴𝛼𝑖𝑥𝑖where 𝑥𝑖 ∈ 𝑆for i = 1, 2, 3, ..., n. 

i=0 for each i = 1, 2, 3, …, n such that  𝛼𝑖 ≤ 1𝑛
𝑖=1 . 

Since, S is open,then their exist neighborhoodsVi of xi such that  𝑉𝑖 ⊂ 𝑆. 

Let T be the set 𝛴𝛼𝑖𝑣𝑖 . 

That is,T is the set of all elements 𝛴𝛼𝑖𝑣𝑖where 𝑣𝑖 ∈ 𝑉𝑖 . 

Hence, it is clear that 𝑥 ∈ 𝑇 ⊆(the S-convex null of S). 

Now to prove the theorem it is sufficient to prove that T is open. 

For this, since each i Vi is open, since 𝛼𝑖 ≠ 0. 

Hence by the method of induction T will be open. 

As we already know that if U and V are open then U + V is open. 

Now x + V is open for each fixed x and U + V is the union of all x + V as x varies over U. 

Thus U + V is open. 

 Conclusion:In this article, we define the S-convex set and topological structure for the 

collection of these sets. We investigate fundamental ideas such as closed sets, open sets, set 

interiors, and the closure property of S-Convex Sets. In contrast to metric spaces, it proves 

that the closure of an S-Convex Set in a topological vector space stays S-Convex. 

Additionally, a conclusion about S-Convex Sets and S-Convex hulls is derived in this 

chapter. Our research paves the way to find the more interesting topological properties of 

new defined S-convex sets.  
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