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Abstract 

Electronic transport through a coupled triple quantum dot (TQD) system in T-shape and 

triangular shape configuration is theoretically studied using Keldysh’s non-equilibrium 

Green’s function approach. It is observed that in the T-shape configuration, an antiresonance 

peak appears in the electronic transport spectrum at the quantum dot (QD) energy level which 

results from the quantum interference effects that take place in electron transport through 

multiple channels. The width of the antiresonance peak increases with the increase in interdot 

tunnel coupling in the side coupled QD. Further, an asymmetric Fano lineshape is found to 

occur in the triangular shape configuration for a particular case when side coupled QD is 

symmetrically coupled to other two QDs which are connected to leads in a series 

configuration. This asymmetric Fano lineshape can be attributed to the destructive quantum 

interference effect taking place in the electron transport through multiple pathways.  

Keywords: Coupled Triple Quantum Dots, T-Shape and Triangular Shape configurations; 

Interference Effects; Fano Effect.  

1. Introduction 

Quantum dots (QD)s have been studied in the recent past by various authors[1-17] due to 

their rich potential applications. Electron transport through the QD systems has been utilized 

to study various physical phenomena such as interference effects, Kondo effect, dephasing 

effect, quantum entanglement, swap effect, and Coulomb blockade in low dimensional 

systems [1-4, 6-17]. A distinct feature of electronic transport through the QD systems is 

quantum phase coherence which is manifested through interference effects in various QD 

structures. Therefore, various structures of multiply connected QDs i.e. two, three, four and 

an array of a finite number of QDs have been studied in the last few years.  
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The TQD systems have been investigated [14-17] particularly for their use in spin 

qubits, charge qubits, charging rectifiers, and in the study of correlation effects. The 

interference effect in terms of the Fano effect and formation of bound states in the continuum 

(BIC) due to magnetic flux in TQD systems has already been studied, but, structural 

dependent interference effects in these systems have not been discussed so far to the best of 

knowledge. Therefore, the electronic transport through the TQD system is studied, here, in T-

shape and triangular shape configurations to investigate interference effects. In a T-shape 

configuration, the QDs, QD1 & QD2 are connected to the left and right lead respectively and 

coupled to each other with the interdot tunnel coupling𝑡12 , whereas QD3 is side coupled to 

QD2 with tunnel coupling t23. Triangular shape configuration is obtained when QD3 is also 

coupled to QD1 with the interdict tunnel coupling𝑡13 . Response of the system for the 

transition from the T-shape to the triangular shape configuration is examined by varying 𝑡13 . 

Using Keldysh non-equilibrium Green’s function approach [18] for three impurities 

Anderson Hamiltonian [19], various Green’s functions are derived in the Coulomb blockade 

(CB) regime with the help of equations of motion and decoupling scheme as used in Ref. 

[20]. In the electronic transport spectrum for T-shape configuration,  𝑡23 ≠ 0,  an 

antiresonance peak is found to occur at QD’s energy level. The width of this peak increases 

with the increase in the value of interdot tunnel coupling t23. This behavior of the TQD 

system in a T-shape configuration can be understood in terms of the quantum interference 

effect that takes place between discrete states and the continuum in transport through 

different pathways.  

Further, it is also found that when QD geometry is transitionally changed from the T-

shape tote triangular shape configuration, asymmetric Fano lineshape occurs for the 

triangular shape configuration for a symmetrical coupling of side coupled QD, QD3, with 

other two QDs, QD1 & QD2, which are serially coupled to each other. The asymmetric Fano 

lineshape can be attributed to the destructive quantum interference effect that takes place 

between discrete states and the continuum in electronic transport. Thus, quantum interference 

effects, as revealed in terms of the antiresonance peak and the asymmetric Fano lineshape in 

the electron transport through different QD structures, can be tuned with various interdot 

tunnel couplings. Main focus in this work is to study the interference effects, so, interaction 

effects are not considered here.  

The paper is organized in six sections: in section 2 mathematical formulations is done. 

Results are discussed in section 3. Conclusions are given in section 4 whereas Appendices A 

and B are given in section 5 and section 6 respectively.  



 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 7  

2. Mathematical Formulation 

A coupled TQD system is described by three impurities Anderson Hamiltonian [19] as; 

H = Hl + Hd + Ht,                                                                                                                                 

(1) 

 where, l, d, and t in the above equation reads as leads, dots, and tunnel respectively, and  

𝐻𝑙 =  𝑘𝛼𝜎 𝜖𝑘
𝛼𝑐𝑘𝛼𝜎

† 𝑐𝑘𝛼𝜎 , 

𝐻𝑑 =  𝑖𝜎 𝜖𝑖𝑑𝑖𝜎
† 𝑑𝑖𝜎 +  𝑖 𝑈𝑖𝑛𝑖𝜎𝑛𝑖−𝜎  , 

𝐻𝑡 =  𝜎 (𝑡12𝑑1𝜎
† 𝑑2𝜎 + 𝑡23𝑑2𝜎

† 𝑑3𝜎 + 𝑡13𝑑1𝜎
† 𝑑3𝜎 + 𝑕. 𝑐. +  𝑖𝑘𝛼𝜎 𝑉𝑖𝑘

𝛼𝑐𝑘𝛼𝜎
† 𝑑𝑖𝜎 + 𝑕. 𝑐. )            

(2)  

Where  𝑐𝑘𝛼𝜎
† (𝑐𝑘𝛼𝜎 ) is the creation (annihilation) operator in the lead with 𝜖𝑘

𝛼  as the energy of 

the lead. The left/right (L/R) lead is represented by α = L(R) and spin by σ. Similarly, the 

creation (annihilation) operator of the QDs is represented by 𝑑𝑖𝜎
† (𝑑𝑖𝜎 )) with i=1, 2, 3. The 

single electron energy level, intradot Coulomb interaction energy, and hybridization between 

the QDs and the leads are represented by 𝜖𝑖 , 𝑈𝑖,and 𝑉𝑖𝑘
𝛼  respectively. The interdot tunnel 

couplings are represented by𝑡12 , 𝑡23 , and 𝑡13 . A mathematical formulation has been derived 

for the coupled TQD system using Keldysh non-equilibrium Green’s function formalism 

[18]. Using the equation of motion and proper decoupling schemes [20] various (retarded, 

advanced, and lesser) Green’s functions are derived in Coulomb Blockade (CB) regime. The 

current in the steady state condition is derived from the formula [20],  

𝐼𝑒 =
2𝑒

𝑕
  𝑓𝐿 𝜔 − 𝑓𝑅 𝜔  𝑇(𝜔)𝑑𝜔.                   (3) 

 In the above equation,  𝑓𝛼 𝜔 = [1 + 𝑒(𝜔−𝜇𝛼 )/𝐾𝐵𝑇]−1 represents the Fermi distribution 

function in leads with chemical potential𝜇𝛼 . The transmission coefficient, T (ω), is derived 

from the formula,  

T(ω) = tr{ G
a
Γ 

R
G

r
Γ 

L 
}                                                                                          (4)  

where, 

𝛤𝛼 =  𝛤11
𝛼

𝛤12
𝛼 𝛤13

𝛼 𝛤21
𝛼𝛤22

𝛼 𝛤23
𝛼 𝛤31

𝛼 𝛤32
𝛼 𝛤33

𝛼   and 𝐺𝛽 =  𝐺11
𝛽
𝐺12

𝛽
𝐺13

𝛽
𝐺21

𝛽
𝐺22

𝛽
𝐺23

𝛽
𝐺31

𝛽
𝐺32

𝛽
𝐺33

𝛽
    where 

α=L(R) and  β= r/a i.e. retarded/ advanced Greens functions. Γ
α 

’s, a measure of dot-lead 

coupling strength are defined as  𝛤𝑖𝑗
𝛼 = 2𝜋  𝑘 𝑉𝑖𝑘

𝛼𝑉𝑗𝑘
𝛼†𝛿(𝜔 − 𝜖𝑘

𝛼). The expressions for 

these Green’s functions in the above equation are given in Appendix A. Substituting for these 

Greens’s functions in Eqn. (4) and solving the trace, the transmission coefficient so obtained 

is utilized in the next section for the discussion. 
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3. Results and Discussion 

All the parameters in numerical calculations are scaled in terms of Γ. In this work, interaction 

effects are relaxed, so, intradot Coulomb interactions are taken zero as U1 = U2 = U3 = 0 and 

QDs energy level values are taken ϵ1 = ϵ2 = ϵ3 = ϵ = −2Γ. Results are discussed for T-shape 

and triangular shape geometries of TQD system which can be obtained by taking various 

Γii’s, Fig. 1, as 𝛤11
𝐿 = 𝛤22

𝑅 = 𝛤and 𝛤22
𝐿 = 𝛤33

𝐿 = 𝛤11
𝑅 = 𝛤33

𝑅 = 0. In T-shape configuration, the 

interdot tunnel couplings 𝑡12  and 𝑡23 can vary while 𝑡13   is fixed zero and in a triangular 

shape configuration, all the three interdot tunnel couplings can vary. The transition from the 

T-shape to the triangular shape can also be investigated in this case. 

Here, the transmission coefficient, T(ω), is calculated as a function of electron energy, 

ω. The numerical calculation is presented in two parts. In the first part, we study the T-shape 

configuration of the TQD system, and calculations are done for fixed values of 𝑡12  and  

𝑡13 = 0  while varying 𝑡23. In the second part, the behavior of coupled TQD system is 

examined for triangular shape configuration with fixed values of 𝑡12  and 𝑡23 while varying 

𝑡13 .  

Fig. 2 displays the transmission coefficient, T(ω), as a function of electron energy, ω, 

for the T-shape configuration of the TQD system. The interdot tunnel coupling between QD1 

& QD2 is fixed as 𝑡12  = Γ and between QD2 & QD3, 𝑡23 is varied in steps to see its effect on 

electronic transport. Starting with 𝑡23=0, a case of serially coupled double quantum dots, a 

pair of resonant peaks occur around QD energy level ϵ = −2Γ. With the introduction of 𝑡23, 

the T-shape structure starts to build up and an antiresonance peak occurs at ϵ = −2Γ. The 

width of the antiresonance peak increases with an increase in 𝑡23. The occurrence of the 

antiresonant peak can be linked with destructive quantum interference taking place through 

different pathways of discrete molecular states and the continuum in electron transport in the 

QDs. 

In Fig. 3, transitional change in configuration from T-shape to triangular shape is 

examined for electron transport in TQD system. Here, the values of interdot couplings are 

taken as 𝑡12  = Γ, 𝑡23= Γ/4 while 𝑡13  is varied. For  𝑡13  = 0 i.e. T-shape configuration, the 

electronic transport spectrum shows an antiresonance peak at QD’s energy level as discussed 

above in Fig. 2. When we take 𝑡13  = Γ/4, a case that represents a symmetrical coupling of the 

side coupled QD, i.e. QD3 with QD1 & QD2, an asymmetric Fano lineshape occurs in the 

vicinity of QD’s energy level. The occurrence of the Fano lineshape corresponds to the 

destructive quantum interference as discussed above. However, with a further the increase in 
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the value of 𝑡13, the Fano lineshape disappears and a small bump that takes a shape of a 

plateau develops towards the right side of QD’s energy level, ϵ = −2Γ. Therefore, it can be 

inferred from this discussion that quantum interference effects occur in both the geometries 

of TQD but the Fano effect, in particular, occurs only in the triangular shape configuration of 

the TQD system even that for the symmetrical coupling of the side coupled QD , QD3, with 

the serially coupled QDs, QD1 & QD2.  

Therefore, the interference effect, in the form of the antiresonance peak and the 

asymmetric Fano lineshape, can be tuned with interdot tunnel coupling in the TQD system 

for different geometries.  

4. Conclusions 

The electronic transport property of the TQD system has been studied using three impurities 

Anderson Hamiltonian and Keldysh’s non-equilibrium Green’s function formalism. This 

work focuses mainly on the geometrically tunable interference effects in the TQD system, so, 

interaction effects are not taken up here.  

Though it is now clear that the interference effects in general occur in both the 

geometries of the TQD system, i.e. a T-shape and triangular shape, however, its effect is 

different. The interference effect in T-shape configuration forms antiresonance peak in 

electronic transport spectrum, whereas asymmetric Fano lineshape is formed in triangular 

shape geometry and that even for a symmetrical coupling of side coupled QD. Both these 

effects are caused by the destructive quantum interference effect that takes place between 

discrete (molecular) states and the continuum in electron transport through different channels 

provided by the TQD system in these geometries. However, the difference lies in the fact that 

the molecular states in triangular shape TQD geometry have a long lifetime which forms 

asymmetric Fano lineshape in a particular case. Thus, tunable interdot tunnel couplings, 

which are varied to produce different TQD geometries, are found responsible for the 

occurrence of interference effects in these systems. 

5. Appendix A 

Expressions for various retarded functions are as below, 

𝐺11
𝑟 =

1

 𝑍 
 𝑃23 + ɩ𝑄23 , 𝐺21

𝑟 =
1

 𝑍 
 𝑅12 + ɩ𝑆12 , 𝐺31

𝑟 =
1

 𝑍 
 𝑅13 + ɩ𝑆13 , 

𝐺12
𝑟 =

1

 𝑍 
 𝑅12 + ɩ𝑆12 , 𝐺22

𝑟 =
1

 𝑍 
 𝑃13 + ɩ𝑄13 , 𝐺32

𝑟 =
1

 𝑍 
 𝑅23 + ɩ𝑆23 , 

𝐺13
𝑟 =

1

 𝑍 
 𝑅13 + ɩ𝑆13 , 𝐺23

𝑟 =
1

 𝑍 
 𝑅23 + ɩ𝑆23 , 𝐺33

𝑟 =
1

 𝑍 
 𝑃12 + ɩ𝑄12 . 
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Where, 

𝑃12 = 𝑏1𝑏2 − 𝑎2 −
1

4
 𝑔7𝑔8 − 𝑔13 ,                                 𝑃13 = 𝑏1𝑏3 − 𝑐2 −

1

4
 𝑔7𝑔9 − 𝑔14  

𝑃23 = 𝑏2𝑏3 − 𝑏2 −
1

4
 𝑔8𝑔9 − 𝑔15 , 

𝑄12 =
1

2
 𝑏1𝑔8 + 𝑏2𝑔7 + 2𝑎𝑔10 ,            𝑄13 =

1

2
 𝑏1𝑔9 + 𝑏3𝑔7 + 2𝑐𝑔11 , 

𝑄23 =
1

2
 𝑏2𝑔9 + 𝑏3𝑔8 + 2𝑏𝑔12 , 

𝑅12 = 𝑎𝑏3 + 𝑏𝑐 +
1

4
 𝑔9𝑔10 − 𝑔11𝑔12 ,                      𝑅13 = 𝑐𝑏2 + 𝑎𝑏 +

1

4
 𝑔8𝑔11 − 𝑔10𝑔12 , 

𝑅23 = 𝑏𝑏1 + 𝑎𝑐 +
1

4
 𝑔7𝑔12 − 𝑔10𝑔11 , 

𝑆12 =
1

2
 𝑎𝑔9 − (𝑏3𝑔10 + 𝑐𝑔12+𝑏𝑔11) ,𝑆13 =

1

2
 𝑐𝑔8 − (𝑏2𝑔11 + 𝑎𝑔12+𝑏𝑔10) , 

𝑆23 =
1

2
 𝑏𝑔7 − (𝑏1𝑔12 + 𝑎𝑔11+𝑐𝑔10) .                                                                                  (6) 

In eqn. (6), various parameters are defined as, 

𝑏1 =
𝑏11𝑏12

𝑏13
,                                    𝑏2 =

𝑏21𝑏22

𝑏23
,                                       𝑏3 =

𝑏31𝑏32

𝑏33
,            (7) 

with  

𝑏11 = 𝜔 − 𝜖1,              𝑏12 = 𝜔 − 𝜖1−𝑈1,              𝑏13 = 𝜔 − 𝜖1−𝑈1(1−< 𝑛1−𝜎 >), 

𝑏21 = 𝜔 − 𝜖2,              𝑏22 = 𝜔 − 𝜖2−𝑈2,              𝑏23 = 𝜔 − 𝜖2−𝑈2(1−< 𝑛2−𝜎 >), 

𝑏31 = 𝜔 − 𝜖3,              𝑏32 = 𝜔 − 𝜖3−𝑈3,              𝑏33 = 𝜔 − 𝜖3−𝑈3(1−< 𝑛3−𝜎 >).         (8) 

a, b and c in eqn. (6) denote interdot tunnel couplings t12, t23 and t13 respectively and the 

parameters g’s are as, 

𝑔7 = 𝑝 + 𝑠,                                          𝑔8 = 𝑞 + 𝑡, 𝑔9 = 𝑟 + 𝑢,     

𝑔10 = 𝑔1+𝑔4,                                      𝑔11 = 𝑔2+𝑔5𝑔12 = 𝑔3+𝑔6, 

𝑔13 = 𝑔10
2 ,                                           𝑔14 = 𝑔11

2 ,                                     𝑔15 = 𝑔12.
2              (9) 

also, 

𝑝 = 𝛤11
𝐿 , 𝑞 = 𝛤22,     

𝐿 𝑟 = 𝛤33
𝐿 ,        

𝑠 = 𝛤11
𝑅 , 𝑡 = 𝛤22,     

𝑅 𝑢 = 𝛤33
𝑅 ,        

𝑔1 =  𝑝𝑞, 𝑔2 =  𝑝𝑟, 𝑔3 =  𝑞𝑟, 

𝑔4 =  𝑠𝑡, 𝑔5 =  𝑠𝑢, 𝑔6 =  𝑡𝑢, 

The denominator, Z, in eqn. (5) is expressed as, 𝑍 =  𝐶1
2 + 𝐶2

2.  The expressions for C1 and C2  

are given in Appendix B and 𝐺𝑎 = 𝐺𝑟∗.    

6. Appendix B                                                            

The expressions for C1 and C2 in Appendix A are, 

𝐶1 = 𝐶11 − 𝐶12 +
1

2
 𝐶13 − 𝐶14 +

1

4
 𝐶15 − 𝐶16 , 
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𝐶2 =
1

2
 𝐶21 − 𝐶22 + 2 𝐶23+𝐶24 +

1

4
 𝐶25−𝐶26  . 

The various 𝐶𝑖𝑗 ’s in above equation are given as, 

𝐶11 = 𝑏1𝑏2𝑏3 − 2𝑎𝑏𝑐, 𝐶12 = 𝑔𝑏1 + 𝑕𝑏2 + 𝑓𝑏3, 

𝐶13 = 𝑎𝑔11𝑔12 + 𝑏𝑔10𝑔11 + 𝑐𝑔10𝑔12 , 

𝐶14 = 𝑎𝑔9𝑔10 + 𝑏𝑔7𝑔12 + 𝑐𝑔8𝑔11 , 𝐶15 = 𝑏1𝑔15 + 𝑏2𝑔14 + 𝑏3𝑔13 , 

𝐶16 = 𝑏1𝑔8𝑔9 + 𝑏2𝑔7𝑔9 + 𝑏3𝑔7𝑔8 , 
𝐶21 = 𝑏1𝑏2𝑔9 + 𝑏1𝑏3𝑔8 + 𝑏2𝑏3𝑔7, 𝐶22 = 𝑓𝑔9 + 𝑔𝑔7 + 𝑕𝑔8, 

𝐶23 = 𝑏𝑏1𝑔12 + 𝑐𝑏2𝑔11 + 𝑎𝑏3𝑔10 , 

𝐶24 = 𝑏𝑐𝑔10 + 𝑎𝑏𝑔11 + 𝑎𝑐𝑔12 , 𝐶25 = 𝑔7𝑔15 + 𝑔8𝑔14 + 𝑔9𝑔13 , 

𝐶26 = 𝑔7𝑔8𝑔9 + 2𝑔10𝑔11𝑔12 . 
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Figures  

 

Figure 1: Schematic representation of generic TQD system with dot lead couplings. T-shape 

and Triangular shape configurations are obtained 𝛤11
𝐿 = 𝛤22

𝑅 = 𝛤and  𝛤22
𝐿 = 𝛤33

𝐿 = 

𝛤11
𝑅 = 𝛤33

𝑅 = 0. The interdot tunnel couplings t12 and t23 and t13 are varied to get T- 

shape and triangular shape configurations. 

 

Figure 2: Displays T(ω) vs. ω curve for T-shape configuration of Double Quantum dot with 

interdot tunnel couplings, t12 = Γ, t13 = 0 and varying t23 in terms of Γ. Other 

parameters are ϵ1 = ϵ2 = ϵ3 = ϵ = −2Γ and various Γ’s are defined in Fig.1. 
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Figure 3: Displays T(ω) vs. ω curve for transitional change in configuration from T-shape to 

triangular shape of TQD system with interdot tunnel couplings, t12 = Γ, t23 = Γ/4 and varying 

t13. Other parameters are same as in Fig. 2. 

 

 


