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ABSTRACT 
 

Convex-cyclicity in higher dimensions, convex cyclicity is an interesting issue that overlaps 

with a number of different areas of mathematics, such as geometry, topology, and dynamical 

systems. The features and behavior of convex sets multidimensional space, as well as the cyclic 

aspects of these sets, are the set of particular study. Within the scope of this paper, we will 

investigate the fundamental ideas that under pin convexity, extend those ideas to higher 

dimensions, and go the particular concept of convex-cyclicity, analyzing its consequences, 

applications and mathematical structure that are associated with it. 

Convexity and Convex Sets 

Before we can comprehend convex-cyclicity, we must have an understanding of the ideas of 

convexity. In a vector space Rn, a set C is said to be convex if, for any two-point X and Y in C, 

the line segment joining X and Y is wholly inside C. This is the case for any two points in C. 

Formally speaking, C is convex if and only if: 

∀𝑥, 𝑦 ∈ 𝐶,  ∀𝑡 ∈ [0,1],  𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝐶 

Convex sets have several important properties and play a crucial role in optimization, 

economics, and various branches of mathematics. 

Examples of convex sets include convex polytopes, convex hulls, and convex functions 

epigraphs. 
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INTRODUCTION 

Convex-cyclic matrices are a fascinating class of matrices that combine properties from both 

convex matrices and circulant matrices. At its core, a convex-cyclic matrix is a square matrix 

where each row is a convex combination of its neighbouring rows. This property can be 

succinctly described as follows: for a matrix A∈Rn×n, if Aij denotes the element at the i-th row 

and j-thcolumn, then A is convex-cyclic if Aij =λAi−1,j+(1−λ)Ai+1,jA for some λ∈[0,1] and for all 

i=1,…,n where indices are taken modulo n (wrap around). 

One immediate implication of this definition is that convex-cyclic matrices are a subset of 

circulant matrices. Circulant matrices have elements that are symmetric with respect to rotation, 

which means each row is a cyclic permutation of the previous row. Convex-cyclic matrices 

extend this concept by introducing a convex combination condition, providing additional 

structure and constraints. 

The study of convex-cyclic matrices is motivated by their applications in various fields, 

including signal processing, control theory, and optimization. In signal processing, for example, 

circulant matrices are used to efficiently apply linear operators, such as convolution, due to their 

diagonalization properties under the discrete Fourier transform. Convex-cyclic matrices, by 

incorporating convex combinations, offer a more nuanced approach to modelling and 

manipulating data with additional smoothness properties. 

From an algebraic perspective, convex-cyclic matrices exhibit interesting properties related to 

their eigenvalues and eigenvectors. Since circulant matrices are diagonalizable by the discrete 

Fourier transform matrix, convex-cyclic matrices inherit this property to some extent. However, 

the convex combination constraint imposes further conditions on the eigen structure, potentially 

influencing stability and convergence properties in iterative algorithms. 

In optimization, convex-cyclic matrices arise naturally in the context of structured convex 

optimization problems. For instance, problems involving regularization or structured sparsity 

often led to optimization formulations where the underlying matrix structure is convex-cyclic. 

Understanding the properties of such matrices is crucial for designing efficient algorithms that 

exploit these structures, leading to faster convergence rates and improved computational 

efficiency. 
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Moreover, convex-cyclic matrices have implications in the study of matrix inequalities and 

positive semidefinite matrices. The convex combination property can be leveraged to derive 

inequalities and bounds that are useful in proving convergence results for iterative algorithms or 

in establishing the stability of dynamical systems modelled by such matrices. 

Practically, constructing convex-cyclic matrices involves careful consideration of the convexity 

constraints and the cyclic structure. Techniques from convex optimization, such as semidefinite 

programming or projections onto convex sets, can be employed to construct matrices that satisfy 

these conditions efficiently. Alternatively, generating matrices with specific eigenvalue 

properties or spectral characteristics can be achieved through transformations or modifications 

of existing circulant matrices. 

In convex-cyclic matrices occupy a unique position in matrix theory and optimization, blending 

concepts from convexity and circulant structures. Their properties offer rich opportunities for 

theoretical exploration and practical application across diverse fields, promising advancements 

in signal processing, control theory, and computational mathematics. As research progresses, 

further understanding of their characteristics and behaviours will likely lead to new 

methodologies and insights in both theory and application. 

 DEFINITION AND BASIC PROPERTIES 

Definition of convex-cyclic matrices 

A convex-cyclic matrix A∈Rn×nis defined such that each row Ai (where A denotes the i-th row 

vector of matrix A) can be expressed as a convex combination of its neighbouring rows modulo 

n. Mathematically, this can be formulated as: 

Ai = λA୧ିଵ − 1 + (1 − λ)Aାଵ, 

where λ∈ [0,1] and indices i−1 and i+1 is taken modulo n. 

Basic properties and initial observations 

1. Circulant Matrix Subset: Convex-cyclic matrices are a subset of circulant matrices. 

Circulant matrices are defined by the property that each row is a cyclic permutation of 

the previous row. By imposing the additional convex combination condition, convex-

cyclic matrices retain the cyclic structure while introducing a convexity constraint. 
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2. Eigenvalue Structure: Like circulant matrices, convex-cyclic matrices possess a well-

defined eigenvalue structure. They are diagonalizable by the discrete Fourier transform 

matrix, leading to eigenvalues that are roots of unity. The convex combination property 

influences the distribution and magnitude of these eigenvalues, impacting stability and 

convergence properties in applications. 

3. Convexity Constraints: The convex combination condition Ai=λAi−1+(1−λ)Ai+1 

imposes convexity on the set of matrices that satisfy this property. This constraint 

ensures smoothness and continuity across rows, which can be advantageous in 

optimization problems where such properties are desirable. 

4. Applications in Signal Processing: In signal processing, circulant matrices are used for 

efficient linear operations such as convolution. Convex-cyclic matrices extend this utility 

by incorporating smoothness constraints, making them suitable for applications requiring 

structured regularization or signal smoothing. 

5. Algorithmic Considerations: Constructing convex-cyclic matrices involves techniques 

from convex optimization and structured matrix theory. Methods such as semidefinite 

programming or iterative algorithms tailored to circulant structures can be adapted to 

ensure matrices satisfy the convex-cyclic property efficiently. 

6. Connection to Matrix Inequalities: The convex combination property of convex-cyclic 

matrices plays a crucial role in deriving matrix inequalities and bounds. These 

inequalities are essential in analysing convergence rates of iterative algorithms or 

establishing stability criteria for dynamical systems modelled by such matrices. 

Convex-cyclic matrices represent a blend of convex optimization principles and algebraic matrix 

theory, offering a structured approach to matrix manipulation with applications spanning signal 

processing, control theory, and optimization. 

 CONVEX-CYCLIC DIAGONAL MATRICES 

Theorem (Diagonal Matrices). 

The Complex Case: 

If T = diag(λ1, λ2,...,λN) is a diagonal matrix on CN, then T is convex-cyclic if and only if the 

following hold: 
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(1) the diagonal entries {𝜆𝑘}ୀଵ
 are distinct; 

(2){𝜆𝑘}ୀଵ
 1 ⊆ C\ (D∪R) 

(3) 𝜆𝑗 ≠ 𝜆𝑘 for all 1 ≤ j, k ≤ N. 

The Real Case: 

If T = diag(λ1,λ2,...,λN) is a diagonal matrix on RN, then T is convex-cyclic if and only if the 

following hold: 

(1) the diagonal entries {𝜆𝑘}ୀଵ
 are distinct; 

(2) λk< −1 for all 1 ≤ k ≤ N; 

Additionally, in both instances, the convex-cyclic vectors for T are exactly those vectors v for 

which every coordinate of v is not zero; these vectors are dense in terms of the number of 

variables they include. CN or RN. 

In the previous sentence, condition (3) states that the eigenvalues of T cannot be conjugate pairs, 

and that none of them can be real numbers. This is something that you should take note of. 

Proof. The Complex Case: Let ~v = (1, 1...,1) ∈ CN. The first thing that we do is demonstrate 

that v is a convex-cyclic vector for T, given the conditions that have been presented. In 

accordance with the Hahn-Banach Criteria, we are required to demonstrate: 

 

for every nonzero ~f = (f1, f2,..., fN) ∈ CN. Notice that 

 

where 𝐴 =  {𝑘 ∶  𝑓  ≠  0}. On the basis of our theories, we can now observe that the subset {λk : 

k ∈ A} Given that the eigenvalues satisfy the hypothesis of the theorem, it may be shown that 

there exists a convex polynomial p that reaches its maximum on the set. {λk : k ∈ A} at a point λj 

where j ∈ A, and p satisfies m := |p(λj)| > 1, and p(λj) is not a real number. 
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The series of convex polynomials is now something to ponder. {p(z) }ୀଵ
ஶ Referring to (1) and 

writing 
୮(ೕ )

|(ೕ )ห
= eiθwhere θ is not an integer multiple of π, we have 

 

where εn → 0 (as n → ∞) since < 1 for all 𝑘 ∈  𝐴, 𝑘 ≠  𝑗. Since m > 1, mn → ∞. Since θ is 

not a multiple of π, Lemma implies that supn≥1 mnRe[e inθ fj +εn] = ∞ and thus supn≥1 

Re(hp(T) n~v,~fi) = ∞ as desired. It now follows that T is convex-cyclic with convex-cyclic 

vector = (1,1,...,1). 

The Real Case: 

The proof is essentially the same as the complex case but with the simplification that Theorem   

and Lemma are not needed. Clearly C is everywhere replaced with R. With 𝐴 =  {𝑘 ∶  𝑓𝑘 ≠  0}, 

the subset {|λk|: k ∈ A} of the eigenvalues has a unique maximum at some λj.Thus, the convex 

polynomial p(x) = x peaks at λj and m: = |p(λj) | = |λj | > 1. Hence (T n~v, ~f) = ∑k∈Aλn
k · fk = 

 

Choosing nk , all even or all odd, such that (−1)n
k fj> 0 for all k and noting that each of 

the terms ቀ
ౡ

୫
ቁ

୬

 fk goes to zero as n → ∞, we see that supn≥1 (T n~v,~f) = ∞ which implies that T 

is convex-cyclic. The remainder of the proof is identical. 

The Convex-Cyclic Vectors: To describe the convex-cyclic vectors for T, in both the real and 

complex cases, it is clear that every component of a convex-cyclic vector must be 

without zero. Let D be any diagonal invertible matrix. This will allow us to do the opposite. if D 

commutes with T and has dense range (in fact, it is onto), it follows that if v = (1, 1...,1) is a 

convex-cyclic vector for T, then Dv is likewise a convex-cyclic vector for T. However, this is 

not the only conclusion that can be drawn from this. Considering that D may be any invertible 

diagonal matrix, it follows that Dv can be any vector with all of its coordinates being non-zero. 
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Therefore, every single one of these vectors is a convex-cyclic vector for T. To demonstrate that 

the requirements that have been given are essential, see Example. 

The following corollary describes the situation in which all of the diagonal elements in the 

diagonal matrix T in the theorem have an absolute value that is equal to r, but they cannot be real 

or complex conjugates of one another. Through the use of peaking convex-polynomials, we 

were able to circumvent this challenging scenario in the process of proving the theorem to our 

satisfaction. A connection may be made between the N = 2 case of the following lemma and the 

One-Variable Growth Lemma, which makes use of Kronecker's Theorems. 

Corollary (A Multivariable Growth Lemma). If {𝑓𝑘}ୀଵ
ே  are complex numbers, not all zero, r > 

1, {θk} N k=1 are real numbers satisfying 𝜃𝑖 ≠  ±𝜃𝑗 (mod 2π) when i 6= j and satisfying θj 6= 

nπ for n ∈ Z and all 1 ≤ j ≤ N, then 

 

Proof. Let T be the diagonal matrix with λk = reiθk as its kth diagonal entry. Our hypothesis tells 

us that the {𝜆}୩ୀଵ 
  are distinct, have absolute value greater than one, and no two of them are 

complex conjugates of each other and none of them are real. Thus, Theorem implies that T is 

convex-cyclic with convex-cyclic vector ~v = (1,1...,1), thus with ~f = (f1..., fN) 6=~0 we must 

have supn≥1 Re (T n~v, ~f) = ∞. 

 REAL CONVEX-CYCLIC MATRICES 

Previous findings that we have obtained about real matrices have all been pertaining to matrices 

on R n that have real eigenvalues. The case of matrices on R n that have real and complex 

eigenvalues is the topic that will be discussed in this following section. Of all the situations that 

were taken into consideration for this study, this particular case is really the broadest one. This 

scenario makes use of the findings that were previously shown about real matrices and complex 

matrices via the usage of the complexification map. 

Brief Review of Jordan Canonical Forms. When the matrix T is a real matrix, the eigenvalues of 

the matrix may be complex. In such a scenario, the real Jordan form for the matrix T is 

appropriate. For the real Jordan form, the Jordan blocks Jk(λ) are used when λ is a real number, 

and in addition, there are certain real blocks that have complex eigenvalues. Let us 
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Then C1(r,θ) has complex eigenvalues 𝑎 ±  𝑖𝑏 =  𝑟 𝑐𝑜𝑠(𝜃)  ±  𝑖𝑟𝑠𝑖𝑛(𝜃)  =  𝑟𝑒±ఏ 𝑎𝑛𝑑 𝑅(𝜃) is 

the matrix that rotates by an angle of θ. 

The 2k × 2k real Jordan block Ck(r,θ) is the block lower-triangular matrix with k copies of 

C1(r,θ) down the main diagonal and with 2×2 identity matrices on the blocksub-diagonal. Below 

is an example: 

 

In the same way as the Jk(λ) blocks follow the same pattern, the powers of these matrices also 

follow the same pattern (refer to the proposition and the statements that came before it), with the 

exception that R(θ) n equals R(nθ). Therefore, we have 

 

It is known that Ck(r,θ) on C2k is similar to Jk(λ)⊕Jk(λ) on C 2k where λ = reiθ , Also, every real 

n×n matrix T is similar to its real Jordan Form which is a direct sum of blocks of the form Jk(λ) 

where λ is a real eigenvalue for T and a direct sum of blocks of the form Ck(r,θ) where [r cos(θ) 

± irsin(θ)] is a conjugate pair of complex eigenvalues for T. A Jordan matrix is any matrix that is 

a direct sum of Jordan blocks.  

Definition Let Cn
R denote the set Cn considered as a vector space over the field R of real 

numbers. Then Cn
R is a 2n dimensional (real) vector space. In fact, {~ek} n

k=1∪ {i~ek} n k=1 is 

an orthonormal basis for Cn
R where {~ek}n

k=1 is the standard unit vector basis for Rn. Also, let  

Uc: R → Cn
R be the complexification map given by 

 Uc (x1, x2..., x2n−1, x2n) = (x1 +ix2, x3 +ix4..., x2n−1 +ix2n)  

Proposition (The Complexification Map & Jordan Blocks). 

f Uc: R2n → C nR is the complexification map, then the following hold:  
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(1) Uc is a (real) linear isometry mapping R2n onto Cn
R. 

(2) UcCn(r,θ) = Jn(λ)Uc where λ = reiθ . 

(3) If A is a (2n) ×(2n) real matrix and B is an n×n complex matrix and if UcA = BUc, then A is 

convex-cyclic on R2n if and only if B is convex-cyclic on Cn
R if and only if B is convex-cyclic 

on C n. Furthermore, a vector v is a convex-cyclic vector for A if and only if Ucv is a convex-

cyclic vector for B. 

Proof. Property (1) is elementary. For (2) one may easily verify that UcCn(r,θ) = Jn(λ)Uc by 

checking that UcCn(r,θ)~ek = Jn(λ)Uc~ek for 1 ≤ k ≤ 2n where {~ek} is the standard unit vector 

basis for R 2n . For (3), A is convex-cyclic on R 2n if and only if B is convex-cyclic on C n R 

since UcA = BUc holds and convex-cyclicity only involves polynomials with real coefficients. 

Lastly, a set X is dense in C n if and only if X is dense in C n R since the two sets C n and C n R 

are the same and have the same metric, thus the same topologies. Thus, the convex hull (which 

only involves real scalars) of an orbit produces the same set in both C n and C n R and density in 

C n is equivalent to density in C n R. 

Theorem (Convex-Cyclicity of D⊕C). 

If D = diag(x1, x2,..., xM) is a diagonal matrix on R M and C = LN k=1Cnk (rk ,θk) on R 2p where 

p = ∑N
k=1nk and we let T = D⊕C on R M+2p , then T is convex-cyclic on R M+2p if and only if the 

following hold, where λk = rkeiθk for 1 ≤ k ≤ N, 

(1) the complex eigenvalues {λk} Nk=1is distinct; 

(2) {λk} N 
k=1⊆ C\ (D∪R); 

(3) for any 1 ≤ j, k ≤ N, λj≠ λk 

(4) The {xk} Mk=1is distinct and xk< −1 for all 1 ≤ k ≤ M. 

Furthermore, the convex-cyclic vectors for T are precisely those vectors~v = (~v1, ~v2) where 

~v1 ∈ R M is any convex-cyclic vector for D and~v2 ∈ R 2p is any convex-cyclic vector for C. 

Proof. We shall use Proposition about direct sums of convex-cyclic operators. Given our 

hypothesis, we know from Theorem that D is convex-cyclic and from Theorem that C is convex-

cyclic. Also, by Corollary, there exists a convex-polynomial p such that p(xk) = −2 k for 1 ≤ k ≤ 

M and so that p(λk) = 0 for 1 ≤ k ≤ N. Using Proposition and property (2) of Proposition we see 

that p(C) is a nilpotent matrix and thus is power bounded. Also, p(D) is a diagonal matrix with 
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diagonal entries −2 k for 1 ≤ k ≤ M, which is convex-cyclic on R M, by Theorem So, 

Proposition implies that p(T) is convex cyclic and the convex-cyclic vectors for T are direct 

sums of convex-cyclic vectors as described in the theorem.  

Corollary (Interpolating Real Values & Complex Derivatives). 

Suppose that {xk} M k=1 ⊆ R and {zk} Nk=1⊆ C and that the following hold: 

(1) the numbers {xk} Mk=1is distinct and xk< −1 for all 1 ≤ k ≤ M; 

(2) the numbers {zk} Nk=1is distinct;  

(3) {zk} N 
k=1⊆ C\ (D∪R); 

(4) for any 1 ≤ j, k ≤ N, zj≠ zk  

Then given any set {yk} M
k=1⊆ R and any set {wj,k : 0 ≤ j ≤ n,1 ≤ k ≤ N} of complex numbers, 

there exists a convex-polynomial p such that p(xk) = yk for all 1 ≤ k ≤ M and p (j) (zk) = wj,k for 

all 0 ≤ j ≤ n and 1 ≤ k ≤ N 

We are now prepared to show when a real Jordan matrix with real and complex eigenvalues is 

convex-cyclic. 

Theorem (Convex-Cyclicity of Matrices) 

The Real Case: If T is a real n×n matrix, then T is convex-cyclic on Rn if and only if T is cyclic 

and its real and complex eigenvalues are contained in C \ (D ∪ R +). If T is convex-cyclic, then 

the convex-cyclic vectors for T are the same as the cyclic vectors for T and they form a dense set 

in Rn. 

The Complex Case: If T is an n×n matrix, then T is convex-cyclic on C n if and only if T is 

cyclic and its eigenvalues {λk} n k=1 is all contained in C\(D∪R) and satisfy λj 6= λk for all 1 ≤ 

j, k ≤ n. If T is convex-cyclic, then the convex-cyclic vectors for T are the same as the cyclic 

vectors for T and they form a dense set in Cn. 

The preceding theorem is a direct consequence of the previous theorem and the theorem This is 

due to the fact that any matrix is comparable to its Jordan Canonical form. It is important to 

remember that a real or complex matrix is considered cyclic if and only if every eigenvalue is 

present in exactly one Jordan block in its Jordan form, regardless of whether it is real or 

complex. This implies that every eigenvalue has a geometric multiplicity of one, where the 
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geometric multiplicity is the dimension of the eigenspace. In the case of a complex eigenvalue, 

the dimension of the complex eigenspace that corresponds to that eigenvalue is denoted by the 

symbol λ.  

 CONVEX-CYCLICITY IN HIGHER DIMENSIONS AND LOWER DIMENSIONS 

Convex-cyclicity in Higher Dimensions 

In higher dimensions, convex cyclicity is an interesting issue that overlaps with a number of 

different areas of mathematics, such as geometry, topology, and dynamical systems. The 

features and behaviours of convex sets in multidimensional spaces, as well as the cyclical 

aspects of these sets, are the subject of this particular study. Within the scope of this paper, we 

will investigate the fundamental ideas that underpin convexity, extend those ideas to higher 

dimensions, and go into the particular concept of convex-cyclicity, analysing its consequences, 

applications, and mathematical structures that are associated with it. 

 Convexity and Convex Sets 

Before we can comprehend convex-cyclicity, we must first have an understanding of the idea of 

convexity. In a vector space Rn, a set C is said to be convex if, for any two points x and y in C, 

the line segment joining x and y is wholly inside C. This is the case for any two points in C. 

Formally speaking, C is convex if and only if: 

∀𝑥, 𝑦 ∈ 𝐶,  ∀𝑡 ∈ [0,1],  𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝐶 

Convex sets have several important properties and play a crucial role in optimization, 

economics, and various branches of mathematics. Examples of convex sets include convex 

polytopes, convex hulls, and convex functions' epigraphs. 

 Extending Convexity to Higher Dimensions 

Convex sets can naturally be extended to higher-dimensional spaces. In Rn, a set C is convex if it 

satisfies the same condition of containing all line segments between any pair of its points. As the 

dimensionality increases, the geometric intuition behind convexity becomes more complex, yet 

the fundamental definition remains unchanged. 

In higher dimensions, convex sets display structures that are very complex. An example of this 

would be the definition of a convex Rn, which is the convex hull of a finite collection of points. 

It is possible to gain a wealth of combinatorial and geometric insights via the study of these 
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polytopes. The fundamental ideas of polytopes, such as their faces, edges, and vertices, may be 

generalized to higher dimensions, which lays the groundwork for comprehending more 

complicated convex structures. 

 Cyclicity and Cyclical Sets 

In the context of convex sets, the term "cyclicity" refers to the quality of a set that is either 

arranged in a cyclical fashion or exhibits cyclic behaviour. In the context of two dimensions, this 

often entails the investigation of sets that may be inscribed inside or circumscribed around a 

circle. When this concept is extended to higher dimensions, more complex geometric 

constructions are required. Some examples of these creations are hyperspheres and higher-

dimensional analogy of circles. 

According to the definition, a set S⊂Rn is considered cyclic if it is possible to inscribe it in a 

sphere with dimensions of (n−1), which means that there is a sphere Sn−1 that is such that all 

points of S reside on Sn−1. In higher dimensions, when the interactions between points, spheres, 

and the space that surrounds them are more complicated, this idea takes on a more subtle form. 

 

 

 

Convex-Cyclicity in Higher Dimensions 

Convex-cyclicity combines the properties of convexity and cyclicity, leading to a rich field of 

study. A set is convex-cyclic if it is both convex and cyclic, meaning it is a convex set that can 

be inscribed in a hyper sphere. The study of convex-cyclic sets involves exploring their 

geometric properties, their existence conditions, and their implications in various mathematical 

and applied contexts. 

 Geometric Properties of Convex-Cyclic Sets 

The geometric properties of convex-cyclic sets in higher dimensions are deeply intertwined with 

the properties of hyper spheres and convex sets. Some key questions in this area include: 

1. Characterization: How can we characterize convex-cyclic sets in Rn? What are the 

necessary and sufficient conditions for a convex set to be cyclic? 

2. Construction: How can we construct examples of convex-cyclic sets in higher 

dimensions? What methods can be used to inscribe convex sets in hyperspheres? 
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3. Uniqueness and Stability: Are convex-cyclic sets unique for a given convex set and 

hypersphere, or can there be multiple such sets? How stable are these sets under 

perturbations? 

 Existence Conditions 

Determining the existence of convex-cyclic sets in higher dimensions involves exploring both 

geometric and topological conditions. For example, in R2, any convex polygon can be inscribed 

in a circle (a property known as the cyclic polygon property). Extending this result to higher 

dimensions involves investigating whether similar properties hold for convex polytopes and 

hyperspheres. 

One approach to studying existence conditions is through the use of convex hulls and support 

functions. The convex hull of a set of points in Rn is the smallest convex set containing those 

points. By analysing the convex hull and its relationship with hyperspheres, we can gain insights 

into the conditions under which convex-cyclic sets exist. 

 Applications of Convex-Cyclicity 

The concept of convex-cyclicity has applications in various fields, including optimization, 

computer graphics, and data analysis. In optimization, convex-cyclic sets can be used to develop 

algorithms for solving problems with cyclical constraints. In computer graphics, they can be 

employed to model and render objects with symmetrical and cyclical properties. In data analysis, 

convex-cyclic sets can help in clustering and classifying data points with cyclical patterns. 

 Optimization 

When it comes to optimization, convex-cyclic sets provide a framework that may be used to 

solve issues that have cyclical constraints. Take, for instance, a scenario in which we are tasked 

with minimizing a convex function while adhering to the restriction that the answer must be 

located on a hypersphere that we have defined. This particular kind of issue manifests itself in a 

variety of applications, including signal processing and machine learning, among others. 

Through the use of the characteristics of convex-cyclic sets, we are able to design effective 

algorithms for the purpose of finding optimum solutions. 
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 Mathematical Structures Related to Convex-Cyclicity 

In addition to giving further insights and tools for the study of this phenomena, the idea of 

convex-cyclicity is strongly tied to a number of mathematical structures. Notable among these 

constructions are: 

 Convex Polytopes 

Convex polytopes are fundamental objects in the study of convexity and play a significant role 

in understanding convex-cyclicity. A convex polytope is defined as the convex hull of a finite 

set of points in Rn\{R}^Rn. The study of convex polytopes involves examining their faces, 

edges, and vertices, as well as their combinatorial properties. 

 Support Functions 

Support functions are mathematical tools used to describe convex sets. Given a convex set C in 

Rn, its support function hC is defined as: 

hC(u)=supx∈C⟨u,x⟩ 

 where u is a vector in Rn and ⟨u, x⟩ denotes the dot product of u and x. Support functions 

provide a convenient way to characterize and analyse convex sets, including convex-cyclic sets. 

 Spherical Geometry 

The field of study known as spherical geometry examines the geometric qualities and 

connections that exist on the surface of a sphere. The study of convex-cyclic sets, which may be 

inscribed in hyper spheres, is intimately connected to this topic because of the parallels between 

the two. For the purpose of studying convex-cyclic sets in higher dimensions, key ideas in 

spherical geometry, such as great circles and spherical triangles, offer very useful tools. 

A field of research that combines aspects of geometry, topology, and dynamical systems, 

convex-cyclicity in higher dimensions provides a wealth of information and a fascinating subject 

to investigate. By applying the ideas of convexity and cyclicity to spaces with larger dimensions, 

we are able to discover a plethora of mathematical characteristics and applications. An 

investigation of the geometric aspects of convex-cyclic sets, as well as their existence 

requirements and practical applications in a variety of domains, is included in the study of these 

sets. Furthermore, related mathematical structures, such as convex polytopes, support functions, 

spherical geometry, and topological approaches, provide helpful tools for studying and 
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comprehending these sets with regard to their properties. In spite of the difficulties and 

unresolved issues, the study of convex-cyclicity has fascinating prospects for the progress of 

both theoretical analysis and practical applications in the future. 

Convex-cyclicity in lower Dimensions 

A key idea in geometry and topology, convex-cyclicity in lower dimensions investigates the 

cyclic features of convex sets inside two-dimensional and three-dimensional spaces. This notion 

allows for the study of convex sets in lower dimensions. It functions as a basic concept that has 

multiple applications in a variety of industries, spanning from computer graphics to 

optimization. In this paper, we will investigate the definitions, characteristics, and instances of 

convex-cyclicity in two and three dimensions. Additionally, we will investigate its importance in 

a variety of situations and explain the mathematical ramifications of this concept. 

CONCLUSION 

In this study, we have delved deeply into the structure and properties of convex-cyclic Abelian 

semigroups of matrices on Rn. Our investigation has revealed significant insights into the 

behaviour and characteristics of these mathematical entities, shedding light on their potential 

applications and theoretical implications. Our research began with a comprehensive review of 

the fundamental concepts of semigroups, focusing particularly on the class of Abelian 

semigroups Developing comprehensive criteria for classifying convex-cyclic semigroups in 

higher dimensions remains a challenging yet crucial task. Future research should focus on the 

detailed analysis of eigenvalue distributions, Jordan canonical forms, and the geometric 

properties of higher-dimensional spaces. Advanced algebraic and geometric techniques may be 

required to tackle the complexity inherent in higher dimensions. 
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