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ABSTRACT : 

  This paper provides some exact, static spherically symmetric solution of Einstein’s 

field equations for the Zeldovich fluid distributions in different cases. Various physical and 

geometrical properties have been studied.   
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1. Introduction  

  Various researchers in theory of relativity have focused their mind to the study of 

solution of Einstein’s field equation using equation of state p =  e.g., Latelier [11], Letelier 

and Tabensky [12] and Yadav et. al. [27]. Singh and Yadav [17] have also discussed the 

static fluid sphere with the equation of the state p = . Further study in the line has been done 

by Yadav and Saini [25], which is more general than on due to Singh and Yadav [17]. Also in 

this case the relative mass m of a particle in the gravitational field is related to its proper mass 

m0 as studied by Narlikar [13]. Schwarzschild [15] considered the perfect fluid spheres with 

homogeneous density and isotropic pressure in general relativity and obtained the solutions 

of relativistic field equations. Tolman [21] developed a mathematical method for solving 

Einstein’s field equations applied to static fluid spheres in such a manner as to provide 

explicit solutions in terms of known analytic functions. A number of new solutions were thus 

obtained and the properties of three of them were examined in detail. Solution to Einstein’s 

equations with a simple equations of state have been found in various cases, e.g. fo  + 3p = 

constant (Whittaker [24]), for  = 3p (Klein Singh and Abdussatar [16], Fenstein and 
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Senovilla [7])’; for p =  + constant (Buchdahl and Land [4], Allunutt [1]) and for 

(1 a) p ap    (Buchdahl [2]). But if one takes, e.g. polytrophic fluid sphere 

1
1

pap


 

(Klein [9] Tooper [22], Buchdahl [3]) or a mixture of ideal gas (Suhonen [18]) one soon has 

to use numerical methods. Davidson [5] has presented a solution for a non stationary 

analogue to the case when 
1

p .
3

   Tolman [21], Thomas E Kiess [20], Karmer [10], Singh 

et. al. [16], Raychaudhari [14], Walecka [23], Yadav, et. al. [28-29] and Yadav and Singh 

[26] are some of the authors who have studied various aspects of interacting fields in the 

framework of Einstein’s field equations for the perfect fluid with specified equation of state 

in general relativity. 

  In this paper we have obtained some exact static spherically symmetric solution of 

Einstein field equation for the Zeldovich fluid distribution using equation of state p = . It has 

been obtained taking suitable choice of g11 and g44 (e.g. 

2n n 3

2n 1e Ar
  

  , Where A is a 

constants). For different values of n and suitable choice of constants we get many previously 

known solutions. To overcome the difficulty of infinite density at the centre, it is assumed 

that distribution has a core of radius r0 and constant density 0 which is surrounded by the 

fluid with the Zeldovich fluid (i.e. p = e). Various physical and geometrical properties have 

been also found and discussed.  

2. The Field Equations  

  We use the static spherically symmetric metric given by 

(2.1) 
2 2 2 2 2 2 2ds e dt e dr r (d sin d )          

where  and  are function of r only. The field equations 

(2.2) 
i i i

j j j

1
R R 8 T

2
      

  for the metric (2.1) for the Zeldovich fluid which can be regarded as a perfect fluid 

having the energy momentum tensor 

(2.3) 
i i i

j j jT ( p)u u p    

  Characterized by the equation of state p =  in comoving co-ordinates (i.e. u1 = u2 = 

u3 = 0 and u4 = 2e




) are 
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(2.4) 
2 2

1 1
8 p e

r r r

  
    

 
 

(2.5) 

2 1 1

8 p e
r 4 4 2r

          
     

 
 

(2.6) 
2 2

1 1
8 e

r r r

  
    

 
 

3. Solutions of the Field Equations 

  From equations (2.4), (2.6) and using p =  we have  

(3.1) 
2 2 2 2

1 1 1 1
e e

r r r r r r

      
       

   
 

  Equation (3.1) shows that if  is known  can be found, so we choose  

Case I 

(3.2) 

2n n 3

2n 1
e Ar

   
      

where A is constant : 

  To avoid mathematical complexcity, we choose  = 0, 0 and n = 1  

so that (3.2) reduces to  

(3.3) e Ar   

  Using (3.3) equation (3.1) takes the form  

(3.4) 
2 2

e 3e 2
0

r r r

 
    

Putting z = e
–

 the equation (2.9) is reduced to  

(3.5) 
dz 3z 2

dr r r
   

  which is a linear differential equation whose solution is 

(3.6) 
3

1 c
z

r r
   

 Therefore we get  

(3.7)  
3

1 c

r r
  
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where C is an integration constant. 

If we set c = 0, then  

(3.8) 
1

e
r

   

Hence the metric (2.1) after suitable adjustment of constants takes the form 

(3.9) 
2 2 1 2 2 2 2 2ds rdt r dr r (d sin d )        

  For the metric (3.9) the fluid velocity u
i
 is found to be 

(3.10)  u
1
 = u

2
 = u

3
 = U1 = U2 = U3 = 0 and 

4

4

1
U ,u r

r
   

  The scalar of expansion  = u
i
; i is identically zero. 

  The non-zero components of the tensor of rotation wij and shear tensor ij are  

(3.11)  14 41

1
W W ,

2 r
    

(3.12)  14 41

1

2 r
      

Case II : Here we choose  = 1, =0, n = 2 in (3.2) 

we get  

(3.13)  
B 7 /5e Ar  

Now use of (3.13) in (3.1) gives  

(3.14)  
de 17 2

e
dr 5r r


   

Putting Z = e
–

, (3.14) goes to the form 

(3.15)  
dZ 17 2

Z
dr 5r r

   

which is a linear differential equation whose solution is given by 

(3.16)  
17 / 5

k 10
Z

r 17
   

(3.17)  
17 / 5

K 10
e

r 17

    

  where k is constant of integration 

Hence metric (2.1) yields  



 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 27  

(3.18)  

1

2 7 / 5 2 2

17 / 5

k 10
ds Ar dt dr

r 17



 
   

 

2 2 2 2r (d sin d )      

  Absorbing the constant A in the coordinate differential dt and taking K = 0 (to avoid 

singularity). The metric (3.18) takes the form  

(3.19)  
2 7 / 5 2 2 2 2 2 2 217

ds r dt dr r (d sin sin .d )
10

         

The non-zero component of Riemann-christoffel curvature tensor Rhijk for the metric (3.19) is 

(3.20)  
2 7 / 5 2

2424 3434 2323

17
sin R R r sin R

10
      

For the metric (3.19) the fluid velocity v
1
 is given by 

(3.21)  
1 2 3 4 7 /10

7 /10

1
0, r

r

          

  The scalar of expansion 
j

i e is identically zero (i.e., 0e ). The non vanishing 

components of the tensor of rotation ij is defined by 

 ij ij ji     

are given by 

(3.22)   
3/10

14 41 3/10

7 7
r

10 10r

 
      

The components of the shear tensor ij defined by 

  ij

ij ij ij

1 1
H

2 3
       

where projection tensor  

 ij ij i jH g    

are given by 

(3.21)  
3/10

14 41 3/10

7 7
r

10 10r

      

with other components being zero.  

Case III :  

  Here we choose 
1 3

0, ,n
3 2

     in (3.2)  
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we get  

(3.22)  
5/ 4e Ar   

where A is constant  

using (3.22) in (3.1), we obtain 

(3.23)  
de 13 2

e
dr 4r r


   

Putting Z = e
–

 , the equation (3.23) goes to the form 

(3.24)  
dz 13 2

z
dr 4r r

   

Which is a L.D.E. whose solution is 

(3.25)  
13/ 4

8 k
z

13 r
   

or 

(3.26)  
13/ 4

k 8
e

r 13

    

where k is constant of integration  

Hence the metric (3.1) provides  

(3.27)  

1

5/ 4 2 2 2 2 2 2

13/ 4

k 8
Ar dt dr r (d sin d )

r 13



 
       
 

 

Absorbing  the constant A in co-ordinate differential dt and putting K = 0, the metric (3.27) 

takes the form  

(3.28)  
2 5/ 4 2 2 2 2 2 213

ds r dt dr r (d sin d )
8

        

   The non-zero component of Relmann-christoffel curvature tensor Rhijk for the metric 

(3.28) is  

(3.29)  
2 13/ 4 2

2424 3434 2323

13
sin R R r sin R

8
      

For the metric (3.28) the fluid velocity v is given by 

(3.30)  

5

1 2 3 4 8
5/8

1
0, r

r



          
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  In the usual notation, we have the scalar of expansion, rotation and shear tensor as 

follows for metric (3.28) : 

(3.31)  
3/8

14 41 3/8

5 5
0, r

8 8r

 
     e  

and 

(3.32)  
14 3/8

41 3/8

5 5
r

8 8r

      

From (3.1)  we see that if  is known, then  can be obtained, so we choose. 

(3.33)  e    

where  is constant. 

using (3.33), equation (3.1) yields 

(3.34)  
2

(1 ) 0
r

       

Also since e (cons tan t) 0     and there fore  

from (3.34) we have  

(3.35)  
2

(1 ) 0
r

      

Which after integration yields  

(3.36)  
2( 1)e r   

where  is constant of integration. 

Now (2.4) and (2.5) lead to  = 2 so that  

(3.37)  
2e r    

Hence metric (2.1) may be written as  

(3.38)  
2 2 2 2 2 2 2 2ds 2dr r (d sin d ) r dt         

This metric can be put in the following form (by absorbing constant  in coordinate 

differential dt) 

(3.39)  
2 2 2 2 2 2 2 2ds 2 dr r (d sin d ) r dt         

The non-zero components of the Riemann Christoffel curvature tensor Rhijk for the line 

element (3.39) are  
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(3.40) 
2 2 2

2424 2323 3434

1
R sin R R r sin

2
       

Choosing orthonormal tetrad i( j)
 as, 

(3.41)  

i

i

i

i

(1)

(2)

(3)

(4)

1
,0,0,0

2

1
0, ,0,0

r

1
0,0, ,0

rsin

1
0,0,0,

r

  
   

 
  
   
  


      


      

 

The physical components R(abcd) of curvature tensor defined by 

(3.42)  h i j k(abcd) hijk(a) (b) (c) (d)
R R      

are  

(3.43)  (2424) 2323) (3434) 2

1
R R( R

2r
     

which shows that  

  (abcd)R 0 as r   

Hence the space time is asymptotically homaloidal. 

For the metric 3.39 the fluid velocity v
i
 is found as  

(3.44)  
1 2 3 4

1 2 3 4

1
0 , , r

r
                 

The scalar of expansion 
iu ,i  is identically zero. 

The non-zero components of rotation ij and shear tensor ij are found to be  

(3.45)  14 41

1

2
      

(3.46)  14 41

1

2
     

4. Solution for the Perfect fluid core 
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  Pressure and density for the metric (3.19) are 

(4.1)  
2 17 / 5 2

12 10 k 1
8 p 8

5r 17 r r

 
      

 
 

If we consider k = 0,  then equation (4.1) reduces to  

(4.2) 
2

7
8 p 8

17r
     

  It follows from (4.1) and (4.2) that the density of the distribution tends to infinity as r 

tends to zero. In order to get rid of singularity at     r = 0 in the density we visualize that the 

distribution has a core of radius r0 and constant 0. The field inside the core is given by 

Schwarzschild internal solution.  

(4.3a)   

2

2

0

r
e 1

R

    

(4.3b)  

2
2

2

0

r
e D 1

R


  

     
  

 

(4.3c)  

2

2

0

12
2 2

2

0

r
3D 1

R1
8 p

R
r

D 1
R

 
          

  
    
   

 

where ,D are constants and 
2

0

0

3
R

8



 

The continuity condition for the metric (3.19) and (4.3a – 4.3c) at the boundary gives  

(4.4)  

2
2 0
0

17 / 5

0

r
R

7 k

17 r


 

 
 

 

(4.5)  

2 2
7 /10 0
0 13/10 2

0

7R r
r 1

10r R

 
    

 
 

(4.6)  

1/ 2
2 2

0

13/10 2

0

7R r
D 1

10r R

 
  

 
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(4.7)  

2
17 / 5 0
0 2

7 r
K r

17 R

 
  

 
 

and the density of the core 

(4.8)  0 2 17 / 5

0

3 7 k

8 r 17 r

 
   

  
 

Which complete the solution for the perfect fluid core of radius r0 surrounded by considered 

fluid. The energy condition 
1

ij jT u u 0 and the  

Hawking and Penrose condition (Hawking and Penrose, 1970) 

 
i

ij ij j

1
T g T u u 0

2

 
  

 
 

Both reduces to  > 0, which is obviously satisfied. 

  For different value of n, solution obtained above in case I and case II provide many 

previously known solutions. For n = 2 and by suitable adjustment of constant we get the 

solution due to Singh and Yadav [17] and Yadav and Saini [25]. 

5. Remarks and Conclusion  

  In this chapter we have obtained some exact static spherical solution of Einstein’s 

field equation with equation of state p = . Our assumption is 

2an bn 3

5e A r
 

  , from which 

we can find value of e

. We have found rotation, shear tensor, scalar of expansion. Here We 

have taken p = , which describes several important cases, e.g. radiation, relativistic 

degenerate Fermi gas and probably very dense baryon matter (Zeldovich and Noviko [30] 

and Waleckco [21]. The casual limit for ideal gas has also the form p =  (Zeldovich and 

Novikov [30] 

  Further if the fluid satisfies the equation of state p =  and if in addition its motion is 

irrotational, then such a source has the same stress energy tensor as that of a massless scalar 

source (Tabensky and Taub [19]). Also the solution in this case can be transformed to Brons-

Dicke theory in vacuum [6]. 
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