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Abstract: 

We have defined Quadratic operators on a linear space and also we extend this concept to 

Hilbert Space. We have studied some interesting theorems on a Quadratic operators which is 

in connection of spectral family. 
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INTRODUCTION 

 Quadratic Operator:Let T:H H be a positive self-adjoint operator on a complex Hilbert 

Space H. Then a bounded self-adjoint operator A is called a Quadratic Operator of T if 

   A
2
 = T 

. . . . . . .  (i) 

 In in addition, A > O then A is called a positive quadratic operator of T and is denoted by 

 A = T 
1/2

 

where, A = T 
1/2

 exists and is unique.
1
 

Positive Operator :If T is self-adjoint (Tx, x) is real then we may consider the set of all 

bounded self-adjoint linear operators on a complex Hilbert space H and introduce this set a 

paytial ordering < by defining 

(i)  T1< T2, if and  only if (T1 x, x) < (T2 x, x) 

For all x 𝜖H. Instead of T1> T2 we also write T2> T1 

A bounded self-adjoint linear operator T:H H is said to Positive 

T > O if and only if (Tx, X) >O 

 For all x 𝜖H. Instead of T > O, we also write O < T. in fact such an operator should be called 

“non-negative” but “positive” is the as usual term. 

The simple relation between (i) and (ii), namely T1< T
2
 O < T2 - T1 
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 i.e. (i) holds if and only if T2 - T1 is positive.
2
 

Role of Quadratic Operator with Spectral Family : 

Application of Quadratic Operator will be considered in a Spectral family of a bounded self-

adjoint linear operator. Quadratic operator will play a basic role in connection with the 

Spectral representation of bounded self-adjoint linear operators.
3
 

Spectral Family of a Bounded Self-adjoint linear operator : 

With a given self-adjoint operator T : H H on a complex Hilbert space H we can associate 

a spectral family such that  may be used for spectral representation of T. 

 To define , we need the operator :- 

1. T = T -  I. The positive quadratic operator of  T
2
  which we denote B, thus 

2. B = (T2
2
) 

1/2
 and the operator  

3. T2
+
 = 1/2 (B + T) which is called the positive part of T. 

The spectral family  of T is then defined by  = (E) ∈R, where E is the projection of H 

onto the null space N (T
+
) of T

+
 consider at first the operators: 

  B = (T
2
) 

1/2
 (Positive part of T

2
) 

  T
+
 = 1/2 (B+T) (Positive part of T) 

  T
-
 = 1/2 (B-T) (negative part of T) 

And the projections of H onto the null space of T
+
 which we denote by ∈, that is E:H  Y = 

N (T
+
)          (3) 

4. T = T
+
 - T 

-
 

5. B = T
+
 + T

-
.
4
 

THEOREMS AND LEMMAS 

Theorem 1 :If two bounded self-adjoint linear operators S and T on a Hilbert Space H are 

positive and cominute (ST = Ts), then their Positve St is positive. 

Proof : We show that (S Tx, x) > O for all x EH. If S = O, this holds. Let S # O. We proceed 

in two steps : 

(a) We consider, S1 = 
1

| 𝑆 |
  S, Sn + 1 = Sn - S

2
n 

. . . . . . . . (ii) 

where n - 1, 2, . . . . . . . And prove by induction that O < Sn< 1. 

. . . . . . . . (iii) 

(b) We prove that (STx, x) >O for all X EH. 

 The following are the details : 

(a) For n = 1 the inequality (iii) holds. Indeed, the assumptions O < S implies   O < S, and 

S1< 1 is obtained by an application of the Schwarz inequality and the inequality  
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  || S x ||  <  || S || || X || : (S1x, x) =  
1

| 𝑆 |
  (Sx, x) <

1

| 𝑆 |
  ||Sx||  ||x|| 

< ||x||
2
 = (1x, x) 

Suppose (iii) holds for an n = k, that is, 

 O <Sk< 1, thus O < 1 - Sk< 1 

Since Sk is self-adjoint, for every x ∈ H and y = Sk X, we obtain 

 (Sk
2
 (1 - Sk)x, x) - ((1 - Sk) Sk x, Skx) = ((1-Sk) y, y) > O. 

By definition this proves 

 Sk
2
 (1 - Sk) > O 

Similary, 

 Sk (1-Sk)
2
> O 

By addition and simplification, 

 O < Sk
2
 (1-Sk) + (Sk (1-Sk)

2
 = SkSk

2
=  Sk + 1 

Hence, O <Sk+1.And Sk+1< 1 follows from Sk
2
> O and 1-Sk> O 

 by addition; indeed, 

 O < 1 - Sk + Sk
2
 = 1 - Sk + 1. 

 This completes the inductive proof of (iii). 

(b) We now show that (ST x, x) > O for all x ∈ H. From   (ii) 

  S1 = S1
2
 + S2

2
 + S3

2
 

  . . . . . . . . . . . . 

 = S1
2
 + S2

2
 + S3

3
 + . . . . . . + Sn

2
 + Sn+1 

Since Sn+1 > O, this implies 

  S1
2
 + S2

2
 + S3

3
 + . . . . . . + Sn

2
 = S1 - Sn+1< S1.  (iv) 

By the definition of < and the self-adjointeness of Si this means 

 ||𝑛
𝑖−1 S1 x||

2
=  = (S

𝑛

𝑖=1 I x, Si x) =   (S
𝑛

1=1 i
2
 x, x) < (S1 x, x). 

Since n is arbitary, the infinite series 

 ||S1 x||
2
 + ||S2 x||

2
 + . . . . . . Converges. 

Hence, || Sn x ||  O and Sn x  by    (iv), 

 ( S𝑛
𝑖=1 i

2
) x = (S1 - Sn+1) x S1 x (n  x) …. (v) 

All the Si s commute with T since they are sums and the products of S1 = ||S||
-1

 S, and T 

commute. 

Using S - ||S|| S1, from (V), T > O and continuity of inner product. We thus obtain for every ∈ 

H and Yi = Si x, 

(STx, x) = ||S||  (T S1 x, x) 

   = ||S||  lim𝑛→∞  𝑇𝑆𝑛
1−1 1

2
 x, x) 
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            = ||S|| lim𝑛→∞  (𝑇𝑦𝑖, 𝑌1)𝑛
1−1 > O 

That is, (STx, x) > O      ……… (vi) 

The partial oder relation defined by (2) also suggests the following concepts: so that Sn 

Sm> Sn
2
, Together 

 Sm
2
> SnSm> Sn

2
 (m < n) 

By definition, using self adjointeness of Sn, we thus have 

 (Sm
2
 x, x) > (SnSm x, x) > (Sn

2
 x, x) = (Sn x, Snx)  ……….. (vii) 

This shows that (Sn
2
 x, x) with fixed x is a monotone decreasing sequence of non- negative 

numbers. Hence it converges. 

 We know that (Tn, x) converges. By assumption, every Tn commutes with every Tm & with 

K. Hence the Si „ s all commute. These operators are self adjoints. 

Since - 2 (Sn x, x) < - 2 (Sn
2
 x, x) by 

 (vii) where m < n, we thus obtain 

|| Sm
x
 - Sn

x
||

2
 = {(Sm - Sn) x, (Sm - Sn) x } 

   = {((Sn - Sn)
2
 x, x } 

   = (Sn
2
 x, x) - 2 (Sm Sn x, x) + (Sn

2
 x, x) 

    <  (Sm
2
 x, x) - (Sn

2
 x, x). 

From this and the convergence proved in part (a) we see that (Snx) is cauchy. It converges 

since H is complete. Now Tn = k - Sn. Hence (Sn x) also converges. Clearly the limit 

depends on x, so that we can write Tn x  Tx for every x En hence this defines an operator 

T:H  H which is linear. T is self-adjoint because Tn is self-adjoint and the inner product is 

continuous. Since (Tn x) converges, it is bounded for every x EH. 

Theorem 2: every positive bounded self-adjoint linear operator T:H  H on a complex 

Hilbert space H has a positive quadratic operator A, which is unique. This operator A 

commutes with every bounded linear operator on H which commutes with T. 

Proof:  We proceed in three steps : 

(a) We show that if the theorem holds under the additional assumptions T < 1, it also 

holds without that assumptions. 

(b) We obtain the existence of operator A = T 
1/2

 from AnXAx, where Ao = O and An+1 

= An + 
1/2

 (T - An
2
), n = 0, 1, … 

(c) We prove uniqueness of the positive quadratic operators. 

 Now, 

(a) If T = O, we can take 

 A = T 
1/2

 = O, Let T # O. By the Schwarz inequality. 
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Dividing by ||T|| # O and setting Q < 1. Assuming that Q has a uniques positive quadratic 

operator B = Q 
1/2

, we have B
2
 = Q and we see that a quadratic of T = ||T|| Q is ||T||

1/2
 B 

because (||T||
1/2

 B)
2
 = ||T|| B

2
 = ||T|| Q = T. 

 Also, it is not difficult to see that uniqueness of Q 
1/2

 implies uniqueness of the positive 

quadratic operator of T. 

Existence : We consider (i), since Ao = O, we have A1 = 1/2 T, A2 = T - 1/8 T
2
 etc. Each An 

is a polynomial In T. Hence the An‟s are self adjoints Q all commute and they also commute 

with every operator that T commutes with. We now prove 

(ii) An < 1,  n = 0, 1, …….. 

(iii) An < An+1  n = 0, 1, …….. 

(iv) Anx Ax  A = T 
1/2

 

(v) ST = TS   AS = SA 

  Where S is a bounded linear operator on H. 

Proof (ii) :We have Ao < 1. Let n > O. Since 1-An-1 is self adjoint, 

 (1 - An-1)
2
> O. Also T < 1  1 - T > O 

From this and (i), we obtain (ii) : 

 O < 1/2 (1-An-1)
2
 + 1/2 (1-T) 

= 1-An-1 - 1/2 (T - A
2

 n-1) 

= 1 - An 

Proof (iii) :We use induction (i) gives O = Ao < A1 = 1/2 T. 

We show that A n-1< An for any fixed n implies 

An< A n-1. 

 From (i) we calculate directly 

A n+1 - An = An + 1/2 (T-A
2

n) - A n-1
 -1/2

 (T-A
2

 n-1) 

 = (An - A n-i) [1 - 1/2 (An + A n+1)] 

Here (An - A n-1) > O by hypotehsis and [….] > O by  (iii) 

 Jemce An+1 - An> O. 

By product of positive operators :- If two bounded self-adjoint operators S and T on Hilbert 

Space H are positive and commute (ST = TS) and then their product ST is positive].
5
 

Proof (iv) : {An} is monotone by (iii) and An< 1 by (ii). 

Hence the existence of a bounded self adjoint linear operator 

A such that Anx Ax for all x E H. Since {An X} converges 

 (i)  gives 

  A n+1 X - An X = 1/2 (T - A
2
nx)  O 
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As n ∞. Hence T x - A
2
 x = O for all x, that is T = A

2
. 

Also A > O because O = Ao < An by (iii), that is An x,x) > O for every x En which implies 

(An x, x) > O for every x E H by the continuity of the inner product. 

Proof (V) :We know that ST = TS implies AnS = S An, that is An S x = SA n X for all x EH. 

Letting n ∞, we obtain        (v) 

(c)  Uniqueness : 

 Let both A and B be positive quadratic of T. 

 Then A
2
 = B

2
 = T. 

Also BT = BB
2
 = TB, so that AB = BA by  (V) 

Let x E H be arbitrary and y = (A-B) x. Then. 

(Ay, y) > O and (By, y) > O because A > O and B > 0 

Using AB = BA and A
2
 = B

2
, we obtain 

 (Ay, y) + (By, y) = {A+B) y, y} 

    = {(A
2
 - B

2
) x, y} 

    = 0 

Hence (Ay, y) = (By, y) = O. Since A > 0 and A is self adjoint, it has itself positive quadratic 

C, that is ( 
2
 = A C is self adjoint. We thus obtain, 

O = (Ay, y) = (C
2
 y, y) = (Cy, Cy) = ||Cy||

2
 and 

Cy = O. Also Ay = (C
2
 y = C (Cy) = O 

Similarly, By = O. Hence, (A-B) Y = O. Using y = (A-B) x, we have thus for all x EH. 

||Ax - Bx||
2
 = { (A-B)

2
 x, x} = {(A-B) y, x } = O 

This shows that Ax - Bx = O for all x EH and proves that A = B.  

Theorem 3 :  Let T:HH be bounded positive self-adjoint linear operator on a complex 

Hilbert space using the positive quadratic of T, to show that for all x, y E H. 

  | (Tx, y) | < (Tx, x)
1/2

 (Ty, y)
1/2

 

also for all x E H, || Tx || < ||T||
1/2

 (Ty, y)
1/2

 

Proof :Since T = T 
1/2

  T 
1/2

 is self-adjoint, 

|Tx, y)| = | ( T 
1/2

 x, T 
1/2

 y) | < || T 
1/2

 x ||  || T 
1/2

 y || 

 =  (T 
1/2

 x, T 
1/2

 x) 
1/2

  (T 
1/2

 y, T 
1/2

 y) 
1/2

 

 = (Tx, x) 
1/2

 (Ty, y) 
1/2

 

   For all x, y, E H. 

Now X E H then, 

If T x = 0, then inequality holds. 

Let T x # 0. We write y = Tx, we obtain, 

||Tx||
2
< (Tx, x) 

1/2
 (T

2
 x, Tx) 

1/2
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Since, 

 (T
2
x , Tx) < ||T

2
 x, T x) 

1/2
 

  < ||T||   ||Tx||
2
 

We have 

 || Tx ||
2
< ( Tx, x) 

1/2
  || T || 

1/2
  || Tx || 

 And division by  || Tx || 

|| T x || < (Tx, x) 
1/2

  || T || 
1/2

 

 Thus quadratic operator in linear space with Hilbert space has been discussed and proved. 

Lemma 4 :(operators related to T) - the operators just defined have the following properties : 

(a) B, T 
+
 and T 

-
 are bounded and self-adjoint. 

(b) B, T 
+
 and T 

-
 commute with every bounded linear operator that T commutes with; in 

particular. 

 (A) BT = TB; T
+
 T = TT 

+
; T 

-
 T = TT 

-
; T 

+
 T 

-
 = T 

-
 T 

+
 

(c) ∈ commutes with every bounded self-adjoint linear operator that T commutes with; in 

particular: 

 (B) ET = TE  EB = BE 

(d) Furthermore, 

 (C) T 
+
 T 

-
 = 0  T 

-
 T 

+
 = 0 

 (D) T 
+
 E = ET 

+
 = 0 T 

-
 E = ET 

-
 = T 

-
 

 (E) TE = - T 
-
  T ( 1-E) = T 

+
 

 (F) T 
+
> 0  T 

-
< 0 

Proof :(a) is clear since T and B are bounded and self-adjoint. 

 (b) Suppose that TS = ST. Then T
2
S = TST = ST

2
, and BS-SB 

follows from theorem 2 applied to T
2
 

Hence, 

 T + S = 1/2  (BS + TS) = 1/2  (SB + ST) = ST 
+
 

The proof of T
-
S = ST 

-
 is similar. 

   (c) For every x E H we have y = Ex Ey = N (T
+
). 

Hence,  T
+
 y = 0  ST 

+
 y = SO = O. From TS = ST and (b) we have 

ST 
+
 = T 

+
 S Ex = T 

+
 Sy = 

 ST 
+
 y = 0.  Hence  SEx Ey. Since E projects H onto y. 

We thus have ESE x = SE x for every X E H, 

that is, ESE = SE. A Projection is self-adjoint by projection 

 ES = E
* 
S

* 
= (SE)

*  
= (ESE)

* 
= E

* 
S

* 
E

*  
= ESE = SE. 

(d) We prove (C) - (F). 
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 Proof of (C) : 

From B = (T
2
) 

1/2
, we have B

2
 = T

2
, Also BT = TB by (A). 

 Hence, again by (A), 

T 
+
 T 

-
 = T 

-
 T 

+
 = 1/2  ( B - T ) 1/2( B + T) 

 =  1/4  (B
2
 + BT - TB - T

2
) = 0 

Proof of (D) : 

By definition, E x EN (T
+
), so that T

+
 Ex = 0 for all x E H. 

Since T 
+
 is self adjoint, we have ET 

+
 x = 

 0 by (A) and (C), that is ET 
+
 = T

+
 E = 0 

Again T 
+
 T

-
 x = 0 by (C) so that T 

-
x E N (T

+
). Hence ET 

-
 x = T 

-
 x. 

Since T 
-
 is self-adjoint (C) yields 

 T 
-
 Ex =  ET

-
x = T

-
x for all x E H, that is 

                          T 
-
 E = ET 

-
 = T 

-
. 

Proof of (E) : 

 From (4) by Introduction and (D) we have, 

TE = (T 
+
 - T 

-
)  E = - T 

-
 and this again by (4), 

T  ( 1 - E ) = T - TE = T 
+
. 

Proof of (F) : 

 By (D) and (5) of introduction and theorem (1), 

 T 
-
 = ET

-
 + ET

+
 = E (T 

-
 + T

+
) = EB > 0. 

 because  1 - E > 0. 

Lemma 5 :  (Operators related to Tx) : The previous lemma remains true if we replace T, 

B, T
+
, T 

-
, E  by  T,  B, T

+
, T

-
, E, respectively, were  is real. Moreover, for any real K, 

, V, L the following operators all commute : 

 Tk, B, T
+
, E1. 

Proof : The first statement is obvious. To obtain the second statement, we not that IS 

= SI and 

T = T -  I = T - I + ( - ) I = T  + ( - ) I  ------------------------------- (ix) 

Hence, 

 ST = TS    ST = TS  ST = T  S  SB = BS, SB = BS, 

          For S = T k that gives Tk B = B Tk, etc. 

Thus we have proved that for a given bounded self-adjoint linear operator T we may define 

spectral family =  ( E) in a unique fashion. 
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CONCLUSION 

 In this way we are have discussed elaborately the Quadratic operators in linear space with 

reference to Hilbert Space and furthermore the role of Quadratic operator with Spectral 

family has been presented and examined. Application of quadratic operator will be 

considered in Spectral family of a bounded self-adjoint linear operator. Quadratic operator 

will play a basic role in connection with the Spectral representation of bounded self adjoint 

linear operators. 
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