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ABSTRACT : 

  The present paper provides some exact interior solutions of the Einstein’s field 

equations for a static spherically symmetric distribution of perfect fluid using judicious 

condition on metric potential. These solutions can be joined continuously to the 

Schwarzschild exterior solution and as such may be applicable to the investigation of stellar 

interiors where high central density and pressure are significant (i.e. massive bodies like non-

rotating neutron stars).     
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1. Introduction  

  The well know Schwarzschild interior solution representing the field of a fluid sphere 

of constant density was discovered more than hundred years ago and still holds a prominent 

place in relativity theory. Later on Tolman [7] expressed Einstein’s field equations in a 

mathematically convenient form and making suitable assumption on the metric co-efficients, 

obtained a number of interesting solutions including the solution for the Einstein universe, 

the Schwarzschild de-Sitter solution and the Schwarzschild interior solution.  

  In fact, exact solution to the Einstein’s field equations in closed analytic form are 

difficult to obtain due to high non-linearity of the equations. So a small number of exact 

solutions have been obtained. The problem of constructing a static model sphere of perfect 

fluid (e.g. neutron model) is usually solved by numerical methods using Tolman – 

Oppenheimer Volkoff [3, 4, 7] equation with an equation of state specified. A small number 
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of analytic solutions which have been obtained are valuable and interesting because one may 

study their properties in complete detail and with comparative case, specially their behaviour 

at high field intensity or high pressure and density. The analytic solutions are thus 

complementary to the numerical solutions obtained with reslistic equation of state. 

  For the case of a static spherically symmetric fluid of density  and pressure p, the 

field equations reduce to a set of three coupled ordinary differential equations involving these 

fluid variables and metric functions. With four unknows and three equations, the system is 

indeterminate. To determine the system completely we should be accompanied with one 

more relation. This we can achieved by specifying in some manner one of the unknows or to 

introduce a subsidiary relation between two of them i.e. specify an equation of state e.g. 

Adler [1] and Whitman [8] specified   in such a way that the system is easily determined, 

where as Yadav and Saini [11] have solved the field equations by taking  = p. Some other 

workers in this line are Singh and Kumar [6], Yadav and Sharma [9] and Yadav et. al. [10]. 

  In the present paper we have developed five solutions for the Einstein’s field 

equations in a quite different technique by specifying the metric potential g11 (i.e., ). The 

constants appearing in the solution have been evaluated by matching the solutions to the 

exterior Schwarzschild metric. Lastly we have given some properties and application of the 

system. 

2. The Field Equations 

  The Einstein equations for an ideal fluid [2] are  

(2.1) G 8 u u (g u u     
         

where G  is the Einstein tensor, uis four velocity of a fluid element and g  is the metric 

(throughout the investigation we set c and gravitation constants K to be unity by choice of 

units and specify a zero cosmological constant). For a static spherically symmetric system an 

appropriate metric is  

(2.2)  
2 2 2 2 2 2 2ds e dt e dr r (d sin d )         

where  and   are function of r only. 

  Then the field equations may be written [4, 7] as  
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(2.3)  

1 2

2 2

e 1 ( )
,

r r 4 2 4 2r

           
      

(2.4)  
2 2

1 1
8 p e

r r r

  
     

 
  

(2.5)  
2 2

1 1
8 e

r r r

  
    

 
 

where a prime denotes differentiation with respect to r. We have to solve equation (2.3) for  

and . This may be fulfilled by quadrature in a number of ways e.g. Tolman [7] specifics 

various conditions on the functions  and  that simplify the equation and allow immediate 

integration while Adler [1] and Whitman [8] find  by a judicious cnoice of v(r). We note 

that  may be obtained if v is given and vice-verse.  

  Once  and  are obtained, p and  follow directly from equations (2.4) and (2.5). We 

put 

(2.6) 
/ 2y e  

Then using equation (2.3) we get the differential equation. 

(2.7) 
2 2

1 e 1
y y y 0

r 2 r 2r r

    
        

   
 

  It is not always possible to get a traceable solution from the analytic specification of 

the equation of state. In these cases numerical and graphic techniques are easy to apply. Exact 

solutions in terms of known functions are most easily obtained by requiring one of the field 

variable to satisfy some subsidiary condition which simplify the full set of  equations. Once 

the field equations are solved in this manner, an equation of state can be extracted. Such 

solution may useful in understading a system in the extreme relativistic limit, where we 

cannot specify a prior what the equation of state might be.  

3. Solution of the field equations  

  As stated above the set or equations (2.3) – (2.5) cannot be solved without either 

choosing an equation of state or making a specific assumption an one of the functions p, ,  

and . 



 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 18  

Case I : 

  We choose have  

(3.1) e    

where   is a constant. Now (2.7) reduces to  

(3.2)  
2r y ry ( 1)y 0       

On putting q + 1 =   and p + 1 = 0 (3.2) is transformed into 

(3.3) 
2r y pry qy 0     

which is well known Euler’s Equation. The solution of equation (3.2) may now be written 

down and the metric potential (r)  is obtained. 

     To solve equation (3.2) or (3.3) there are three possible cases [5].  

Case I (a) 2   

The solution is  

(3.4) 
i j

1 1y b r c r ,e     

Where b1 and c1 are constants to be fixed by the boundary conditions and  

(3.5)  i 1 , j 1 for 2        

Pressure and density are given by 

(3.6)  

2
2 1 1

2

1

1 b (3 2 )r c (3 2 )
8 r p(r)

b r





     
   

   
 

(3.7)  
2 1

8 r (r) 1   


 

  The exterior metric which is extension of this present interior is necessarily the 

Schwarzschild metric. 

(3.8)  

1

2 2 2 2 2 2 22m 2m
ds 1 dt 1 dr r (d sin d )

r r



   
           
   

 



 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 19  

where m is the total mess of the sphere given by 

(3.9)  
0r 2

0
m 4 (r)r dr    

where r0 is the radius of the fluid sphere. 

Continuity of first and second fundamental forms across the surface of the fluid sphere 

implies 

(3.10)  
1

0

2m
1

r

  
   

 
 

(From continuity of grr using (2.2), (3.1), (3.8) 

(3.11)   
2

i j

1 0 1 0

0

2m
b r c r 1

r

 
   

 
 

(From continuity of gtt using (2.2), (3.4), (3.8) 

(3.12)  
i j i 1 j 1

1 0 1 0 1 0 1 0 2

0

m
(b r c r )(ib r jc r )

r

     

(From continuity of tt(g )
t




using (2.2), (3.4), (3.8) 

Equations (3.10), (3.11), (3.12) may besolved for  , b1, c1, 

(3.13)  

1

0

2m
1

r



 
   

 
 

(3.14)  
1 1

i 2
0

2 3
b

4 r

   


  

 

(3.15)  
1 1

j 2
0

2 3
c

4 r

   


  

 

Case I (b) : 2   

The solution in this case is  
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(3.16)  
2 2y r(b logr c )   

where b2 and c2 are constants  

pressure and density are  

(3.17)  
2 1

8 r (r) ,
2

    

(3.18)  
2 2 2

2 2

1 b (2 3logr)3c
8 r p(r) 1

2 b logr c

 
   

 
 

The constants b2 and c2 are given by 

(3.19)  
2 1

2
0

3
b

2r

 




 

(3.20)  
2 1

2
0

2 ( 3)log r
c

2r

  




 

Case I(c) : 2   

The solution is  

(3.21)  3 3y r (b cosx c sin x),e      

where x = logr and   will depend on  . From equations (2.4) and (2.5) pressure and 

density are given by 

(3.22)  
2 1

8 r (r) 1   


 

(3.23) 
2 3 3 3 3 3

3 3

1 (b 2 b 2 c )cosx (c 2 2 b )sin x
8 r p(r) 1

b cosx c sin x

         
     

  
   

where b3 and c3 are given by 

(3.24)  

0

1 1

02 2
3 0 0 1

1 2
r

sin x
b cosx r 1 2(1 )

2r

 





 
        

 
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(3.25)  

1 1

02 2
3 0 0 1

1 2
0

cosx
c sin x r

2r

 





   



 

where 
0 0x log r   

Case II  when 1   

Equation (3.2) reduces to  

(3.26)  
2 11 1r y ry 0   

whose solution is  

(3.27)  
1 1 2y b c r   

  where b
1
 and c

1
 are constants, specified by matching the solution to the exterior 

Schwarzschild solution at the boundary r = r0 

Pressure and density are given by  

(3.28)  
28 r (r) 0    

(3.29)  

1 2
2

1 1 2

2c r
8 r p(r)

b c r
 


 

Constants b
1
 and c

1
 are given by 

(3.30)  
1

1

2

5
b

4

 




 

(3.31)  
1

1

2 2
0

1
c

4r

 




 

4. Discussion and Application  

  For a realistic model p > 0 and  > 0 in the interior of fluid sphere. Hence in a 

addition these conditions will impose further restrictions on these solutions. We therefore 

restrict our solutions to only those values of constants for which pressure and density are 

positive. 



 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 22  

  The family of solutions obtained in this paper may be useful in the investigation of 

massive stars. They allow the investigator to very the equation of state in a continuous 

manner by choosing the value of parameter  . 

  If the fluid is considered adiabatic then the velocity of sound is given by the relation 

 
2d

dp


    

where  is the speed of sound in the fluid.  
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