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ABSTRACT : 

  In the present paper taking Cylindrically Symmetric metric of Marder, we have 

constructed a non-static spatically homogeneous Petrov type I cosmological model assuming 

the energy momentum tensor to be that of a perfect fluid with an electromagnetic field and 

the four current is either zero or space like. Various physical and geometrical properties e.g. 

pressure, density rotation, expansion and shear tensor have been found and discussed. We 

have also discussed Doppler effect and Newtonian analogue of force in the model.   
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1. Introduction :  

  In recent years there has been a lot of interest in cosmological models in the presence 

of electromagnetic fields in general relativity. A cosmological model in the presence of 

magnetic field has been studied by Zeldovich [23] and later by Thorne [18]. Shikin [16] also 

constructed a uniform axially symmetric solution (model) of Einstein-Maxwell equations in 

the case of propagation by an ideal fluid in the presence of magnetic field directed along the 

axis of symmetry. Magnetic fields in stellar bodies was also discussed by Monoghan [11]. 

Gravitationaly collapse of a magnetic star was studied by Greenburg [6]. Jacobs [8, 9] has 

studied the behaviour of the general Bianchi-type I cosmological model in the presence of a 

spatially homogeneous magnetic field. This problem has been studied again by De [5] with a 

different approach. This work has been further extended by Tupper [20] to include Einstein-

Maxwell fields in which the electric field in non-zero. He has also interpreted certain type VI-

0 cosmologies with electromagnetic field (Tupper [21]). 
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Roy and Prakash [14], taking the cylindrically symmetric metric of Marder[10 (a)], 

have constructed a spatially homogeneous cosmological model in the presence of an incident 

magnetic field which is also anisotropic and non-degenerate Petrov type – I. Singh and Yadav 

[17] constructed a spatially homogeneous cosmological model assuming the energy 

momentum tensor to be that of a perfect fluid with an electromagnetic field. Some other 

workers in this like are Bali et. al. [1, 2] Berman [3], Bhar [4], Kumar [9 (a)], Rajesh and 

Singh [15] Yadav and Purushttom [22], Rendal [13]. 

  In this paper considering the cylindrically symmetric metric, we have also constructed 

a spatially homogeneous cosmological model assuming the energy momentum tensor to be 

that of a perfect fluid with an electromagnetic field and the four current as either zero or 

space like. Various physical and geometrical properties e.g., pressure, density, rotation, scalar 

of expansion and components of shear tensor have been found. We have also discussed 

Doppler effect and a Newtonian anologue of force in the model. When the cosmological 

constant 0  , it is found that in the absence of electromagnetic field pressure and density 

become equal (i.e. stiff matter) and conversely if pressure and density are equal, there is no 

electromagnetic field.  

2. SOLUTION OF THE FIELD EQUATIONS : 

  We consider the most general cylindrically symmetric space time in the form given by 

(Marder (10(a)) 

(2.1) 
2 2 2 2 2 2 2 2ds A (dt dx ) B dy C dZ     

  where the metric potentials A, B, C are functions of time t alone. This ensures that the 

model is spatially homogeneous.  

  The distribution consists of a perfect fluid and an electromagnetic field. The energy 

momentum tensor of the composite field is assumed to be the sum of the corresponding 

energy momentum tensors. Thus 

(2.2) ij ij ij i j ij ij

1
R g R g k[( p)u u pg E ]

2
         

(2.3) 
i j

ijg u u 1  
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(2.4) 
kl mn

ij ik j1 ij mn

1
E g F F g F F

4
   

(2.5) 
[ij;k]F 0  

(2.6) 
ij i

; jF j  

 where Eij is the electromagnetic energy momentum tensor, Fij is the electromagnetic field 

tensor,  is cosmological constant, J
i
 is current four vector and  and p are respectively, the 

density and pressure of the distribution. The co-ordinates are chosen to be comoving so that  

(2.7) 
1 2 3 4 1

u u u 0,u
A

     

We label the coordinates 
1 2 3 4(x,y,z, t) (x ,x ,x ,x ) , 

The off-diagonal components of (2.2) are  

(2.8a)  
2 2

12 24 13 34F F B F F C 0    

(2.8b)  
2 2

12 14 23 34F F A F F C 0    

(2.8c)  
2 2

13 14 23 24F F A F F B 0    

(2.8d)  
2 2

14 24 13 23F F A F F C 0    

(2.8e)  
2 2

14 34 12 23F F A F F B 0    

(2.8f)  
24 34 12 13F F F F 0   

which lead to three possible cases : 

(i) 
24 34 12 13F F F F 0    at least one of F14, F23 non-zero i.e., when the field Fij is in 

x-direction only. 

(ii) 14 34 12 23F F F F 0    at least one of F24, F13 non-zero i.e., when the field is in y-

direction only.  

(iii) 14 24 13 23F F F F 0    at least one of F34, F12 non-zero i.e., when the field is in z-

direction only. 
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  Hence the electromagnetic field is non-null and consists of an electric and/or magnetic 

field both of which are in the direction of same space axis. Without loss of generality, we 

may consider only case (i) in which the electric and magnetic fields are in the x-direction. We 

write  

(2.9) 
2 4 2 2 2 2

14 23F A F B C L     

The diagonal components of the equation (2.2) may be written as  

(2.10)  

2

44 44 44 4 4 4 4 4

2 2

2 A B C A C A B A
2

A A B C AC AB A

 
       

 
 

    
2K[L ( 3p)]     

(2.11)  

2

44 4 4 4 4 4

2 2

2 A A B A C A
2

A A AB AC A

 
     

 
  

 
2K[ L ( p)]     

(2.12)  
244 4 4

2

2 B B C
2 K[L ( p)]

A B BC

 
        

 
 

 

(2.13)  
244 4 4

2

2 C B C
2 K[L ( p)]

A C BC

 
        

 
 

where the suffix 4 indicates the ordinary differentiation with respect to time t after the 

symbols A, B, C. From these equations it is clear that L
2
, , p are each functions of time t 

alone.  

From equations (2.5) and (2.9) it follows that F23 is a constant and F14 is a function of time t 

only i.e. 

(2.14)  
2 2 2 2 2 1/ 2

23 14F k,F A (L k B C )      

where k is a constant. In the case when F14 = 0 which implies J
i
 = 0, we get the model due to 

Roy and Prakash [14]. Here we assume that 
14F 0 and find the only non-vanishing 

components of J
i
 to be 

(2.15)  
1 2 2 2 2 1/ 2

2

1
J [BC(L k B C ) ]

A BC t

 
  


 

Equation (2.15) shows that J
i
 is space – like, unless 

2 2 2L B C  l  
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where l is a constant in which case J
i
 = 0 

The four –current J
i
 is in general the sum of the convection current and conduction current 

(Licknerowicz) [10] and Creenberg [6] 

(2.16)  
i i ij

0 jJ u u F    

  where 0 is the rest charge density and  is the conductivity. In the case considered 

here we have 
0 0  i.e., magnetohydrodynamics. 

From equations (2.14), (2.15) and (2.15) we find that the conductivity is given by 

(2.17)  
1

4

1
D D

A

    

where 
2 2 2 2 1/ 2D BC(L k B C )    

  The requirement of positive conductivity in (2.17) puts further restrictions on A, B, C. 

Hence in the magnetohydro dynamics case metric functions are restricted not only by field 

equations and energy conditions (Hawking and Penrose [7]), they are also restricted by the 

requirement that the conductivity be positive for realistic model. 

  The equations (2.10) – (2.13) are four equations in six unknown A, B, C, , p and L. 

In order to determine them, two more conditions have to be imposed on them. For this we 

assume that the space – time is of degenerate Petrov type I, the degeneracy being in y and z 

directions. This requires that 
12 13

12 13C C . This condition is identically sstisfied if B = C. 

However, we shall take the metric potentials to be unequal. We further assume that F14 is 

such that  

 
2 2 1 1L f B C  where f is a constant. 

Equations (2.12) and (2.13) yield  

(2.18)  44 44B C
0

B C
   

Equation (2.18) with use of conditions 
12 13

12 13C C yields  

(2.19)  4 4 4A C B
0

A C B

 
  

 
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Since B C , equation (2.19) gives  

(2.20)  A = N (an arbitrary constant) 

From equations (2.11), (2.12) and (2.13), we have  

(2.21)  
2 244 4 4B B C

KL N
B BC

  . 

Integration of equation (2.18) gives  

(2.22)  
4 4 1 1B C BC k : k  being an arbitrary constant of integration. 

On letting 
B

C
  and BC =  equation (2.22) is reduced to 

(2.23)  4
1k

 
  

 
 

and equation (2.21) takes the form  

(2.24)  
2 24 4

4

1
KM N

   
    

    
 

Equations (2.23) and (2.24) give  

(2.25)  
2 244 2KL N





 

which after the use of condition L
2
 = f

2
 B

–1
 C

–1
 reduces to  

(2.26)  44 = 2Kf
2
 N

2
 

Equation (2.26) on integrating gives  

(2.7)  [4]
2
 = 4 Kf

2
 N

2
  + k2 

where k2 is constant of integration from (2.22) and (2.27)  

We get  
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(2.28)  1 1

2 2 3
3

dd k d k

k k1 1 K
k

2

  
 

  


 

where  

(2.29)  

2 2

3

2

4KN f
k

k
  

The transformation  

(2.30)  k3  = y 

reduces (2.28) to the form 

(2.31)  1

3/ 2

2 3

d k y
dy

k k 1 y




 
 

Which on integrating gives  

(2.32)  1

3/ 2

4 2 3

k y
log dy k (y)

k k k 1 y


  

 (say) = KF() 

Where k4, k K are constants. 

Equation (2.32) may be also written as  

(2.33)  
KF( )

4k e    

Hence we have  

(2.34)  
2 KF( )

4B k e    

and  

(2.35)  
2 KF( )

4

C e
k

 
  

Therefore the metric (2.1) can be written as  

(2.35)  

2
2 2 2 2 2 2 2

2

d
ds N dx dy C dc

(d /dt)

 
    

 
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Which by use of equations (2.19), (2.27), (2.32) and (2.33) takes the form  

(2.37) 

2
2 2 2 KF( ) 2

4

d
dS N dx k e dy

(a P )

 
     

  

KF( ) 2

4

e dz
k

 
  

Where P = k2 k3 and K2 = a  

On letting a + P = T, equation (2.37) may be further transformed to 

(2.38)  

2
2 2 2 2g (T) 2dT

ds N dx (T a)e dY
T

 
     

 
 

  
1 2g (T) 2(T a) e dZ      

where g is another constant. 

3. SOME PHYSICAL FEATURES  

(A) The distribution in the model. 

  For the model (2.38) pressure p and density  given by 

(3.1)  

2
2 2 2 11 Kf

K (T a) g ( (T)) (T a)
4 2

           

(3.2)  

2
2 2 2 11 3Kf

K.p (T a) g ( (T)) (T a)
4 2

          

The model has to satisfy the reality conditions (Ellis [5(a)] 

(i)  + p > 0, 

(ii)  + 3p > 0 

which requires  

(3.3) 

2
2 2 1 21 2g

(T a) 2f (T a) { (T)}
2K K

        

and  

(3.4)  

2 2
2 1 21 f 2 4g

(T a) (T a) { (T)}
K 2 K K

         
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In the case of stiff matter ( = p)   

(3.5)  
2 1K

f (T a)
2


    

and  

(3.6)  
2 2 2 2 1

p

1
K K (T a) g { (T)} Kf (T a)

4

          

The flow vector u


 of the distribution is given by 

(3.7)  u
1
 = u

2
 = u

3
 = 0, 

 
4 3/ 21

u (T a) T
N

   

Tensor of rotation Wdefined by 

(3.8) ; ;W u u       

is identically zero. Thus the fluid filling the universe is non-rotational. The scalar of 

expansion ;u   is given by 

(3.9)   
3/ 21

T a T
N


    

The components of the shear tensor defined by 

(3.10)  ij i; j j;i ij i j

1 1
(u u ) (g u u )

2 3
    e  

are given by 
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(3.11) 

3/ 2

11

2g (T)
3/ 2 1/ 2

22

2g (T)
3/ 2 1/ 2

33

3/ 2 1/ 2
1/ 2

44

N(T a)
T

3

e 1 1
(T a) . g (T)(T a) (T a) T

N 2 3

e 1 1
(T a) . g (T)(T c) (T a) T

N 2 3

1 (T a) (T a)
N(T a)x { : (T c) } x{T s)T 1}

2 T 3 T





 




 
 

  

         
 

  
         

 
   
         
  

   

(b) The Doppler Effect in the Model  

  The path of light in the model (2.38) is given by 

(3.12) 

2 2 2

2g (T) 2g (T)dX dY dZ
(T a)e (T S)e 1

dT dT dT

       
         

     
  

and for the case when the velocity is along Z-axis, equation (3.12) gives  

(3.13)  
1/ 2 g (T)dZ

N(t a) e (T)
dT

       

(3.14)  
2

1

T Z

T 0
(T)dT dZ    

Hence 

(3.15)  2 2 1 1 1 1 1 z 1

dZ
)(T) T (T) T T (T) T u T

dT
            

where z

dZ
u

dT
 is the Z –component of the velocity of the particle at the time of emission 

and 
1 (T) and 

2 (T) are the value of  (T) for T = T1 and T = T2 respectively. From the 

above equation we get  

(3.16)  1 z
2 1

2

(T) u
T T

(T)

  
   

 
 

The proper time interval T1 between successive wave crests as measured by the local 

observer moving with the source is given by 
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(3.17) 

1/ 2
22

0 2 2g (T) 2 2g (T) 2

1 1

N dX
T N (T a)e dY (T a)e dZ T

T dT

  
   

         
   

  

This can be written as  

(3.18)  

1/ 2
2

0 2

1 1

N
T u T

T

 
    

 
 

where u is the velocity of source at the time of emission. 

Similarly we may write  

(3.19)  
2 1/ 2 1/ 2

0 2T N(T a) T T     

As the proper time interval between the reception of the two successive wave crests by an 

observer at rest at origin. Hence following Talman [19], the red shift in this case is given by 

(3.20)  

0 1/ 2 1/ 2 e (T)

2 1 1

0 2 1 2 2 1/ 2 1 2g (T)

1 2 2 2

T (T a) [N(T a) e

T [N (T a) T U ] (T a) e

 

   

     
 

    
 

 

 

(c) Newtonian Analogu of Force in the Model. 

  The vectors R1 and S1 are defined as follows (Narlikar and Singh, [12]). 

(3.21)  1 j1

H,i
R j

H
    

(3.22)  
jk jk

1 jk 1i 1i,k

H,i
S 1g g g g

H
     

where  

H g /   

For the line element (2.38) we have  
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(3.23)  

2

11

2g (T)

22

2g (T)

33

2

44

g N

g (T a)e

g (T a)e

N
g

T



 

  


  
   






 

and  

11

2

1
g

N
   

22 2g (T)1
g e

(T a)

 


 

(3.24)  
33 2g (T)1

g e
(T a)

 


 

 
44

2

T
g

N
  

(3.25)  
4 2g N (T a)    

The corresponding flat metric ij is taken to be that of special relativity 

(3.26)  dS
2
 = – dX

2
 – dY

2
 – dZ

2
 + dT

2
 

(3.27)  y [ 1, 1, 1,1]      

and 

(3.28)  y = –1. 

From equations (2.35) and (2.36) we have  

(3.29)  
2g

H N (T a)  


 

From (2.21) and (2.22), we get  

(3.30)  
1

iR [0,0,0(t a) ]   
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(3.31)  
1

iS [0,0,0 (T a) ]    

  Thus we find that R1 and S1 both are null force vectors. R4 and S4 have no Newtonian 

analogues. 

  In the absence of electromagnetic field, we see  

(3.32)  
i

1
R [0,0,0, ]

T
    

and  

(3.33)  
i

1
S [0,0,0, ]

T
   

Also pressure and density are found in this case  

(3.34)  
2 2

0 12

1
K g ( (T ))

4T
       

(3.35)  
2 2

0 12

1
Kp g ( (T ))

4T
      

where 
0
 is the value of  when there is no electromagnetic field. 

4. CONCLUSION  

  When the cosmological constant 0  , we see that in the absence of electromagnetic 

field, pressure and density become equal and conversely if pressure and density are equal 

there is no electromagnetic field.  
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