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Abstract:  

The present paper provides the boundary layer equation for the two-dimensional flow of a 

power law fluid along with solutions of free stream velocity u(x) and scaling function g(x). We 

have also discussed here the theory of similar solutions of the boundary layer equations for 

power low fluids on the same lines as is usually done for Newtonian fluids. 
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1. INTRODUCTION  

  A power low fluid is heated by passing it under conditions of laminar flow through a 

long tube whose wall temperature varies in the direction of flow [1]. Fluid flows through porous 

media present important applications in many fields of engineering and science. For instance, 

it is very relevant in geometrics due to the distinct rock and soil types varying properties where 

sub surface flows occur [2, 5-8, 11]. Here we discuss the theory for similar solutions of the 

boundary layer equations for power law fluids on the same lines as is usually done for 

Newtonian fluids. In this manner we obtain a generalisation of the Falker-Skan equation. 

2. BASIC EQUATIONS  

  The boundary layer equation for the two-dimensional flow of a power-law fluid are, as 

obtained by Kapur [3, 4] 

n 1

u u du v u u
u v u .

x y dx y y y

     
    

      

     (2.1) 

and 
u v

0
x y

 
 

 
         (2.2) 
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  where u and v are two components of velocity along and perpendicular to the wall. U(x) 

is the free stream velocity,  is the density of the fluid and  

n 1

22 . /


      

  The equation of continuity is integrated by introducing the stream function (x, y)  

which is such that  

u ;v
y x

 
  
 

       (2.3) 

The boundary layer equations then reduce to 

n 1
2 2 2 2

2 2 2

dU(x)
. . U(x) .

y x y x y dx y y y

           
     

         

  (2.4) 

We introduce new variables and functions; 

1

n 1
1x y.R

;
L Lg(x)



           (2.5) 

1

n 1
1(x.y)R

f ( , )
L.U(x).g(x)


         (2.6) 

Where R1 is the modified Reynold’s number defined by  

n

1 h 2

L
R

U 






        (2.7) 

  L and U
are the reference length and velocity respectively, and g(x) is a suitable 

scaling function to be chosen later. In terms of these variables, we get 

f
u U(x)

y

 
 
 

       (2.8) 

11

n 1
d f g

v L.f (Ug) Ug L / R
x dx g


    

        
    

  (2.9) 
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2 2 1
1

2

u f U(x) f f g (x)
U (x) L .

x L g(x)

    
    

    
    (2.10) 

2

2

u f
U(x). .

y y

  


 
        (2.11) 

Substituting in (2.1) and remembering that for similar solutions f(x, y) should be independent 

of  , we get after consideration simplifications, the basic equation as  

2n n 1 1| f | .f ff (1 f ) 0            (2.12) 

where  

n n 2

(x)

(x) (x)n 1

(x)

Lg U d
(U .g )

nU dx






       (2.13) 

and  

n 1 n 2

(x) 1

(x)n 1

(x)

Lg U
U

nU

 




         (2.14) 

  We choose U(x) and g(x) so that  and  are constants. For n = 1, the equation (2.12) 

reduces to the well known Falker-Skan equations. 

2m 1f ff " (1 f ) 0          (2.15) 

with  

(x) (x)

Lg(x) d
(U .g )

U dx

   

2 1

(x) (x)Lg U

U

         (2.16) 

In general the velocity component u will increase from its zero value at the wall to the value 

U(x) at the edge of the boundary layer and thus in this case u / y  would be non-negative. 

From (3.6) and (2.11) it would then appear that if g(x) can be chosen to be a non-negative 
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function, we can take f   to be non-negative. Thus we can make the assumption that f   is non-

negative function and integrate.  

 
2"n 1 1f .f ff ' (1 f ) 0            (2.17) 

Subject to the boundary conditions. 

 0   for f = 0 and f1 = 0 

 
1for f 1           (2.18) 

The assumption made can then be tested against the solution so obtained. 

 

3. SOLUTION FOR U(x) AND g(x) 

  From (2.13) and (2.14) we have  

h 1 2 n

(x) (x) h 2

d n
g .U [(n 1) (2n 1) ]

dx LU

 





            (3.1) 

Integrating the above equation for  

(n 1) (2n 1) 0       

We get  

 h 1 2 n

(x) (x) n

n
g .U (n 1) (2n 1) x

LU

 



          (3.2) 

Also from (5.2.13) and (5.2.14) we get 

U (x) g (x)
( )

U(x) g(x)

 
          (3.3) 

which gives on integration  
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(x)

(x)

U
kg

U







 
 

 
       (3.4) 

where k is a dimensionless constant. 

Solving for U(x) and g(x) we get  

2 n 1
1

n 1 n 1
(x)U nx

K {(n 1) (2n 1) }
U L

 


  




   
        

  
  (3.5) 

and  

1
2 n(2 n)

n 11
(n 1)( )( )(n 1)

(x)

nx
g k {(n 1) (2n 1)}

L

   
  

 
          

 
 (3.6) 

From (2.13) and (2.14) it is seen that the result is independent of any common factor of  and 

 and, as it can be includd in g(x). Therefore as long as a 0 , we can put  = 1 without loss 

of generally. Also introducing a new parameter m defined by 

 
m(n 1)

m or
(n 1) (2n 1) 1 m(2n 1)

 
  

      
   (3.7) 

we get  

 

m

(x) 1 m(2n 1)
U n(n 1) x

(k) .
U 1 m(2n 1) L

 



   
    

   
   (3.8) 

or simply m

(x)U C.x  

Where C is a constant of propertionslity. 
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and 

1
2 n n 1

(x)

n(n 1) z U
g(x) . .

1 m(2n 1) L U

 



  
        

    (3.9) 

or simply 

1 2m mn

n 1
1g(x) C (z)

 

  

where C1 is a constant of proportionslity. 

Also from (2.8) and (3.9) 

1
2 n n 1

v

1 m(2n 1) U

n(n 1) x

 


  
   

 
     (3.10) 

The case (n 1) (2n 1) 0      left earlier leads to the 

n 1 2 n
(x) (x)g .U constant C
 

        (3.11) 

n 1 n 3 1

x x(n 1).g .g (x) C(n 2)U U (x)        

and 
1

n 2 (n 2) U (x)
( ) C.L.U . .

n(n 1) U(x)






  


     (3.12) 

Integration of (3.12) gives 

1 2m mn
x

n 1

2U(x) C e

  
 

        (3.13) 

and also 3 2

(n 2)(1 2m mn)
g(x) C e .x

(n 1)

  



    (3.14) 

where C2 and C3 are constants of proportionality.   
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4.   SCHUWALTER DISCUSSION OF SIMILARITY SOLUTIONS 

  Schuwalter (1960) [9, 10] has independently attacked the problems of similarity 

solutions in three-dimensional case of the flow past a flat plate where potential velocity vector 

is not perpendicular to the leading edge, and this is a much more restrictive result than is 

obtained for Newtonian fluids in three dimensional flow.  

  The object of the present section is to point out a discrepancy is the mathematical 

development of Schuwalter (1960) and to give necessary corrections. 

  We use the notations or Schowalter’s paper. Equation (14), (15) and (16) of the text are  

 
0 1 0 0 0

2

0 1 0 0 0

.
. . 1 1

( )

 



  
         

n n

n

g U g W U U
F FF F G

U x U z
 

1 0 0
0

0 1 0 0 2 0 0 1 0
"

( ) ( ) ( )

n n n

n n n

g w g g g w g
GF FF F G

U z U x U x



  

  
  

  
 

1
12

( 1) 1 2

22 0
. " " ;

( )




 



 
    

         
 

n
n

N n

xn

W KLg
R F G F f

U U U
 

 
0 0

2 0

0 1 0 0

1
. . " 1 ' ' 1

( ) 

 
      n

U tuU
F FF W F G

U x x
 

0 0

0 1 0 0 1 0 0 1 0

1 1
. " " "

( ) ( ) ( )  

  
  

  n n n

w lug W lug
GF FF F G

u x U x U x
 

1
2 2

2

21 2 0

1
" " . . ;

( )

n

xn n

W KL
F G F f

g n U U U







 
    

     
     

 

 

 
0 0

2 0

0 1 0 0

1
. ' " 1 ' ' 1

( )n

w In w
G GG U F G

W z x

 
      

 

0 0

0 1 0 0 2 0 0 1 0

1 1
. " " . "

( ) ( ) ( )  

 
  

  

u

n n n

lU lug U
FG GG FG

w x W z W x
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1
2 2

2

21 2 0

1
. ' " . ;

( )







 
    

     
     

 

h

xn n

U KL
G F G f

g W U W
    

Their correct forms should be respectively. 

 
1 0 1 0 0

2

0 1 0 0 0
" 1 . '6 1

( ) ( )

 



 
      

n n

n n

g U g W U
F FF F

U x U z
 

1 0 0

0 1 0 0 2 0 0 2 0
, . " " "

( ) ( ) ( )



  

  
  

  

n n n

n n n

g W g g g W g
GF FF FF

U x U x U z
 

1
2 12

( 1) 1 2

22 0

.
( ) " " ;

( )




 



 
    

     
     

 

n

n
N n

xn

W K Lg
R F G F f

u U U
  (4.1) 

0 0 0
2

0 1 0 0 1 0

1
' " 1 . [ ' ' 1]

( ) ( )n n

U W uU
F FF F G

U x U z 

 
      

 

0 0

0 1 0 0 1 2 0 1 0

1 1
. . " " "

( ) ( ) ( )n n n

W lug W luj
GF F F F G

U z U x v x  

  
  

  
  

1
2 2

2

21 2

1 .
. . " " "

( ")

n

yn n

W K L
F G F f

g U U U







 
    

     
     

 

   (4.2) 

and  

0 0 0
2

0 1 0 0 1 0

1
. , ' " 1 . [ ' ' 1]

( ) ( )n n

W U luW
G GG F G

W x W x 

 
      

            

0 0

0 1 0 0 2 0 0 1 0

1 1
. , . "

( ) ( ) ( )  

  
   

  n n n

U lug U lug
FG GG FG

W x W x W x
 

1
2 2

2

2 0

1 .
. " " " . 2

( )

n

n n

U K L
G F G f z

g W U W







 
    

     
     

 

   (4.3) 
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Thus the modified form of the equation (17) of the above text (Schuwalter paper) is 

00 0
0 1 0 0 1 0 1

1 22 2 0
( ) ( ) ( )n n nul UU w
U aW U U

x x z

   
  

  
 

 0 2 0 1 0

3 0 0
( ) ( )n n

n

ug ug
a U a v W

x x

  
 

 
 

 
0

0 1

5 61 0

1
( ) .n

n

W
a a W

g x






 


 

0 0
0 0 1 0 1

7 80 0
( ) . ( ) .n nW U

a U W a W
x x

  
 

 
  

0 2 0 1

9 100 0
( ) . ( ) .n nlug g

a W a W
x x

  
 

 
    (4.4) 

The requirement of proportionality between U0 and W0 as obtained from (4.4) may be stated 

as  

 
0 0

10W k U         (4.5) 

and therefore (4.4)  

 

0 0 0
0 1 0 1 0 1

1 0 2 00 0 2
( ) . ( ) ( )n n nU U U
U a K U a k U

x x x

    
 

  
 

0 2 0 2

3 42 0

( ) ( )
.

n n

n

U y U g
a a k

g x g x

  
 

 
 

0
0 1

5 6 0 01 0

1
( ) n

n

U
a a v U K

g z






 


 

0 0
0 1 0 1

7 0 8 02 2
( ) . ( ) .n nU U

a k U a K U
x x

  
 

 
 

0 2 2
10

9 10 02 0

( ) ( )
.

n h
nk U g Ug g

a a K
g x g x

 
 

 
 

   (4.6) 

where K0 is a constant, and 

 
1 1 1

7 0 8 0 1 2 6 01 ;     n n na K U K a a a k  

1 1

2 10 0 4 0:  n n

ga a K a a k       (4.7) 
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we also get  

 

0

1 0 30 0 0

ln ln ln
. .

U g g
a K a

x z z

  
 

  
 

0 2

4 0 20 1

ln ( )n

n

g U
a k a

z g






 


      (4.8) 

Integrating (4.8) for U0 and g separately, we get 

0 0 0( )U T x Az         (4.9) 

0 0[ ( )]pg f x Az         (4.10) 

Where  

 
0 3 41 , . .aa k A a p a k A p         (4.11) 

and  

[( 1) ( 1)]

5'    n p nf a f        (4.12) 

  Here A and p are arbitrary constants and f is an arbitrary function. The constant p 

corresponds to 
3 


of our discussions in the proceeding sections.  

  Integration (4.12) and using (4.5), we get 

0 0 0( )mU C X Az          (4.13) 

0 0

0 ( )n mW ck x Az         (4.14) 

and 

0 0( )p pmg c x Az         (4.15) 

where 
1

[ ( 1) ( 2)]


  
m

p n n
 

top the case when ( 1) ( 2) 0 0p n n and a     . 

  If p (n + 1) – (n – 2 ) = 0 ; we get the solutions 

0 00 . ( )B p x AzU Ce         (4.16) 

  
0 00 ( )

0

Bp x AzW k         (4.17) 
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0 0 2
( )

1





n

B x Az p
ng C e        (4.18) 

  In the above equation, we can regard k0, B, C and C   as arbitrary constants and then 

(4.17) and (4.18) would determine a1 to a10. 

  From (4.18), we find that the potential velocity is in a fixed direction and from (4.13) 

and (4.14) we find that “similar solution” are possible when the potential velocity is 

proportional to some power of the distance from a fixed stagnation straight line.  

5. DISCUSSION 

  By putting k0 = 0 and A = 0, we get the two dimensional case and the corresponding 

equations for  

 ( 1) ( 2) 0 1P n n and a     reduce to 

 
0 0 0( ) ( )mU x c x        (5.1) 

which is the same as (3.8) 

and  

 

1 2

0 0 1( ) ( )
m mn

p ng x c x
 

  

Which again is the case as (3.9) 

For p(n + 1) – (n – 2) = 0 equation (4.16) reduces to 

 
00 0( ) BpxU x Ce  

0

1

1 2

1

m mn
c e x

n

  
  

 
      (4.2) 

  Which again is the same as the value of U(x) obtained in equation (3.13), also we get  

 
02

0 1( ) '
n

Bp x
ng x C e


  

0

2

( 2)(1 2 )
'

( 1)

n m mn
C e x

n

  


      
(4.3) 

  which is the same as (3.14). Thus we see that Schualter’s statement gives result which 

are the same as ours after the mathematical error is corrected. 
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