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1.1 Abstract 

In this paper, we use Lyapunov exponents to confirm the chaotic region and look at the graphs 

of time series analysis to back up our periodic orbits of periods 20, 21, 22 and so on, as well as 

the chaotic behavior on nonlinear discrete model: 

                               µ: [0,4] →[0,4],     µ(x) = cx2 -dx 

in which c = -1 and d is a tunable parameter in the range of [-4, -1]. 

Keywords: 

1.2 Introduction 

It has long been known that many nonlinear dynamical systems responses swirl around in a 

random like, seemingly irregular, but clearly defined manner rather than following straightfo 

ward, regular, and predictable paths. Such complex behavior can arise from even a simple 

strictly deterministic model, provided that the process involved is non-linear. 

Lyapunov exponents, or rates of orbital divergence or convergence, are unquestionably crucial 

to the understanding of chaos. Orbital divergence and chaos are indicated by positive Lyapunov 

exponents, which also establish the time scale at which state prediction is not feasible. The time 

scale on which transients or perturbations of the system's state will fade is determined by 

negative Lyapunov exponents [3, 4, 5, 7]. 

The idea of a time series of data for the system is the primary theoretical instrument for 

characterizing chaotic behavior [5]. One of the intriguing characteristics of chaotic systems is 

orbit complexity. The term "orbit complexity" refers to the unlimited number of unstable 

periodic orbits that coexist with the weird attractor and are crucial to the dynamics of the system 

in chaotic systems. However, in many real-world scenarios, one must deal directly with 

experimental data and lacks access to system equations the way a time series looks. 

In this paper, we calculate Lyapunov exponents to validate the chaotic region and present time 

series analysis graphs to bolster our periodic orbits for periods 20, 21, 22,… in relation to the 

nonlinear discrete model: 

                              µ: [0,4] →[0,4],  µ(x) = cx2 –dx 

in which c = -1 and d is a tunable parameter in the range of [-4, -1]. 

 

 

1.2 Calculating Lyapunov Exponents 

In order to formally calculate Lyaponuv exponents, we start by taking into account an attracto

r point x0 and a nearby attractor point x0 + ε. 

Next, for every value, we apply the iterated map function µ, n times while taking into 
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En=|𝜇𝑛(𝑥0 + 𝜀) − 𝜇𝑛(𝑥0)| 

If the behavior is chaotic, we anticipate that the separation above will increase exponentially 

with n. Therefore, we may write 

En = 𝜀𝑒𝛾𝑛  => 𝛾 =
1

𝑛
[

  |𝜇𝑛(𝑥0+𝜀)−𝜇𝑛(𝑥0)|

𝜀
] 

where 𝛾 is the trajectory's Lyaponuv exponent. 

By using the chain rule for differentiation and allowing ε to fall to zero, 𝛾 can be expressed in

 more understandable way in the form: 

𝛾(𝑡ℎ𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠)

=
1

𝑛
log (|𝜇/(𝑥0)||𝜇/(𝑥1)| … . |𝜇/(𝑥𝑛−1|) 

where 𝜇𝑛(𝑥0) = 𝜇/(𝑥0)𝜇/(𝑥1) … 𝜇/(𝑥𝑛−1) 

This implies    𝛾 =
1

𝑛
∑ 𝑙𝑜𝑔|𝜇/(𝑥𝑖)|𝑛−1

𝑖=0  

 

The beginning value may have an impact on the Lyapunov exponent's value. Therefore, by 

taking an appropriate number of points at a time, we may calculate the average Lyapunov 

exponent. To obtain the Lyapunov exponent, we follow the above steps with the aid of a 

computer program. 

For a particular value of the parameter d, if 𝑥1
𝑠 , 𝑥2

𝑠 , … … . . 𝑥𝑛
𝑠  are n stable periodic points, then 

the Lyapunov exponent 

               𝛾 =
1

𝑛
∑ 𝑙𝑜𝑔|𝜇/(𝑥𝑖)|𝑛−1

𝑖=0   , (where x0 is the initial value)  

becomes 

                     𝛾 = ∑ 𝑙𝑜𝑔|𝜇/(𝑥𝑖
𝑠)|𝑛

𝑖=1  

                 

When 𝑥0 is sufficiently close to one of 𝑥𝑖
𝑠, i=1,2, 3,…..n. 

 

This implies 𝛾 < 0, for  

|𝜇/(𝑥1
𝑠)𝜇/(𝑥2

𝑠) … . . 𝜇/(𝑥𝑛
𝑠)| < 1 

 

Therefore, as long as there are stable periodic points, γ will be negative. Nevertheless, if the 

normal maxima is a component of the attractor for that specific value of the parameter d, γ =-

∞, as      

| 𝜇/(𝑥𝑖
𝑠)|=0     for some value of i where the value of µ is at its maximum. 

 Let's say 

𝑑̂ be the bifurcation value and 𝑑̂ − 𝛿 be a parameter value where 2n stable periodic point occurs. 

Then as 𝛿 → 0+,  

                  𝜇1(𝑥1
𝑠). 𝜇1(𝑥2

𝑠) … … … . . 𝜇1(𝑥𝑟
𝑠) = −1 + 𝜗 

 

where        𝜗 → 0+, 𝑥1
𝑠 , 𝑥2

𝑠 , … . . 𝑥𝑟
𝑠 , 𝑟 = 2𝑛, 

are 2𝑛 stable periodic points. 

Hence,  

𝛾 = 𝑙𝑜𝑔|𝜇1(𝑥1
𝑠). 𝜇1(𝑥2

𝑠) … … . 𝜇1(𝑥𝑟
𝑠)|=lim

𝜗→0
𝑙𝑜𝑔|−1 + 𝜗|=0 

 

 Likewise, for 𝑑̂ + 𝛿  where 2𝑛+1  a stable periodic point occurs, we get 𝛾 = 0  

 

Hence,    lim
𝑑→𝑑̂

(𝛾) = 0, 𝑑̂ 

is a bifurcation value. 
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The estimated Lyapunov exponent values for a few parameter variables are provided below, t

aking into account an iteration size of 50,000 to determine which values have the maximum v

alue.  

        

Table 1.1 

Parameter 

Values 

Lyapunov Exponents Parameter 

Values 

Lyapunov 

Exponents 

𝑑1 -0.00020001 -3.56993 -0.00504842 

𝑑2 -0.00020242 -3.56995  0.00314049   

𝑑3 -0.00005442 -3.56994  0.00304046 

𝑑4 -0.00005672 -3.56997  0.00583024 

𝑑5 -0.00018182 -3.57000    0.0073192 

𝑑6 -0.00014146 -3.57200    0.0109608 

𝑑7 -0.00006972 -3.57400   0.0702856 

𝑑8 -0.00006810 -3.57600   0.0881221 

 

 

The graph of Lyapunov exponents against parameter values ranging from -2.9 to -4.0 is shown 

below. This figure's primary value is in its ability to clearly differentiate between regions that 

gravitate to a fixed point or a periodic orbit (i.e., γ < 0) and those that are chaotic (Lyapunov 

exponent γ > 0). We observe multiple places, the first of which is at d = -3, where the Lyapunov 

exponent strikes the horizontal line before turning negative once more. These are the 

bifurcations that double periods. The first three bifurcation points—-3.0, -3.44948974278…, 

and -3.54409035955—are supported by the figure.  

The first column of Table 1.1 displays the Lyapunov exponents computed at the first eight bif

urcation points, i.e dk (k = 1, 2,….,8), where the Lyapunov exponent is nearly zero.  

When the parameter value d= -3.56995 (approx.) is reached, the first chaotic region appears. 

Additionally, following the initial chaotic area, we see that some areas of the graph are in the 

x-axis's negative side. They represent that axis within the chaotic area as well they indicate that 

regular behaviors occur within the chaotic region as well at specific parameter values, followed 

by regular behaviors at additional parameter values, and then the chaotic region begins once 

more at those same parameter values. These windows actually mark the beginning of the 

chaotic region. These are the windows in the hectic area, actually. 

 

 
 

Figure 1.1: Graph of Lyapunov Exponents Versus Parameter d for                  
                 −𝟒. 𝟎 ≤ 𝒅 ≤ −𝟐. 𝟗 
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Cascades of Period-doubling: 

                                                             Table 1.2 

Period One of the Periodic Points Bifurcation Points 

1 𝑥1 = 2.000000000000 …. 𝑑1 = −3.000000000000 … 

2 𝑥2 = 1.517638080205 …. 𝑑2 = −3.449489742782 … 

4 𝑥3 = 2.905392825135 …. 𝑑3 = −3.544090359553 … 

8 𝑥4 = 3.138826940654 …. 𝑑4 = −3.564407266094 … 

16 𝑥5 = 1.24176887630 …. 𝑑5 = −3.568759419543 … 

32 𝑥6 = 3.178136192507 …. 𝑑6 = −3.569691609802 … 

64 𝑥7 = 3.178152098563 …. 𝑑7 = −3.569891259377 … 

128 𝑥8 = 3.178158223215 …. 𝑑8 = −3.569943176047 … 

256 𝑥9 = 3.178160120724 …. 𝑑9 − 3.569943176047 … 

512 𝑥10 = 1.696110052279 …. 𝑑10 = −3.569945137343 … 

1024 𝑥11 = 1.696240778303 …. 𝑑11 = −3.569945557392 

     …..     …..                 ….                      …..      ….         ….             …. 

1.2 Analysis of Time Series  

The difference equation in our situation is 

𝑥𝑛+1 = 𝑐𝑥𝑛
2 − 𝑑𝑥𝑛, 𝑐 = −1 𝑎𝑛𝑑 𝑛 = 0,1,2, … …. 

The vertical axis shows the amplitude for each iteration, while the horizontal axis shows the 

number of iterations (or "time"). Time series analysis graphs are displayed to demonstrate the 

presence of several periodic orbits with periods 2k, k = 0, 1, 2, …, as well as chaotic behavior. 

An attractor is the set that the n values converge towards. As we have shown, an attractor might 

be a limit cycle, a fixed point, or an attractor that is chaotic. The following figures show the 

time series graphs. 

Initial point x=2.0, parameter value d =-2.9 

 
No. of iterations 

Figure 1.2: The time Series Showing Behavior of Period One 

Initial point x=2.0, parameter value d =-3.1 
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           Figure 1.3: The time Series Showing Behavior of Period Two 

 

 

Graphs of Time Series 

Both periodic and bifurcation points are shown on the time series graph. The symbols B.P. and 

P.Ps. in the following figures represent the bifurcation point and periodic points, respectively. 

Parameter value d=2nd B.P. Initial point one of P.Ps. 

 

Showing behavior of period two 

 
No. of iterations 

                                                                Figure-1.4 

 

Parameter value d=3rd B.P. Initial point one of P.Ps. 

Showing behavior of period four 
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                                     No. of iterations 

Figure-1.5 

 

Parameter value d=4th B.P. Initial point one of P.Ps. 

Showing behavior of period eight 

 
                                                           No. of iterations 

                                                             Figure-1.6 

 

 

Parameter value d=5th B.P. Initial point one of P.Ps. 

Showing behavior of period sixteen 
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                                                           No. of iterations 

                                                               Figure-1.7 

 

 

Parameter value d=3.7, Initial point x=1.6 
Showing chaotic behavior 

 
                                                          No. of iterations 

                                                             Figure-1.8 

 

 

 

Conclusions 

With an initial nonzero value of x, consecutive points converge to a fixed point if we begin 

with a value of d that is slightly smaller than d1. However, for values of d that are marginally 

higher than d1, the fixed point "bifurcates," creating a period-2 periodic orbit. This splits once 

more, meaning that at a high value of d, the period doubles to a period- 4 periodic orbit, and so 

forth. In this manner, as d rises, the period keeps doubling at ever closer values of d until chaotic 

behavior results. It is possible to continue this phenomenon until d= -3.56994 (approx.). Then 

a chaotic attractor shows up. 
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