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Abstract:  

  In this paper we establish the Wintner oscillation criterion for system by using matrix 

Riccati type transformation, the generalized averaging pairs and positive linear functional. By 

using the positive linear functional, including the general means and Riccati technique, some 

new oscillation criteria are established for the second order matrix differential equations    

 

 (r(t)P(t) (X(t))K(X (t))) + p(t)R(t) (X(t))K(X (t))     

 
0+Q(t)F(X (t)G(X(t)) = 0;t t > 0   

  The results improve and generalize those given in some previous papers. We study the 

qualitative behaviour of the positive solutions of second order matrix differential equations 

with damping equation with initial conditions being positive linear functions, and parameters. 

More precisely, we investigate existence of positive solutions, boundedness and persistence, 

and stability analysis of a second-order matrix differential equations with damping equations. 

1. Introduction  

  Consider the second order matrix differential equations of the form 

 (r(t)P(t) (X(t))K(X (t))) + p(t)R(t) (X(t))K(X (t))     

0+Q(t)F(X (t))G(X(t)) = 0;t t > 0      (1.1) 
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where 
0t 0 and r,p,P, ,K,R,Q and G  satisfy the following conditions : 

(1) 
1

0 0r C ([t );(0, )),p C([t , );( , ));        

(2) 
T T

0P(t) P (t) 0,Q(t) 0,R(t) R (t) 0for t t ,      P, Q and R are     n × n 

matrices real valued continuous functions on the interval 
0[t , ) , and P(t) and R(t) are 

commutative. By AT we mean the transpose of the matrix. A;  

(3) 
2 21 n n 1 1 1,K,G,F C (R ,R ), and (X(t)),K (X (t))and G (X(t))      

exist for all X 0 and F(X ) 0  for all X 0 .    

We now denote by M the linear space of n × n real matrices, In M the identity matrix and S 

the subspace of all symmetric matrices in M. For any A, B, C  S, we write A > B to mean 

that A – B > 0, that is, A – B is positive semi-definite and A > B to mean that A – B > 0, that 

is   A – B is positive definite. If A and B are positive definite matrices, then B–1 – A–1 is positive 

definite matrix. Note that A ± B and A  are also symmetric matrices, where  denotes the first 

derivative. We will use some properties of this ordering, that is, A > B implies that CTAC > 

CTBC. 

  We call a matrix function solution 
22 n

0X(t) C ((t ;1);R ) of (1.1) is prepared 

nontrivial if det X(t) 0  for at least one 
0t [t ;1) and X(t) satisfies the equation 

T T TG (X(t))P(t) (X(t))K(X (t))) (K(X (t))) (X(t))P(t)G(X(t) 0     )  

         (1.2)   

T T TG (X(t))P(t) (X(t))K(X (t))) (K(X (t)) (X(t))R(t)G(X(t) 0      

(1.3) 

and  

T 1 T 1 T(X(t))G (X(t))X (t)K (X (t)) (K (X (t))) (X (t))T(G (X(t)))         

0x(t) 0, t t 0           (1.4) 

  A prepared solution X(t) of (1.1) is called oscillatory if det X(t) has arbitrarily large 

zeros; otherwise, it is called non oscillatory. 
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  For n = 1, oscillatory and non oscillatory behaviour of solutions for various classes of 

second-order differential equations have been widely discussed in the literature (see, for 

example, [3, 5, 10, 13-16, 19-21, 23, 24, 27, 34, 35, 36, 37-39, 42-48] and references quoted 

there in). In the absence of damping, there is great number of papers [24, 29, 30, 33, 34, 38, 

40, 41, 46] dealing with particular cases of equation (1.1) for n = 1 such as the linear equations. 

 x (t) q(t)x(t) 0         (1.5) 

 (r(t)x (t)) q(t)x(t) 0          (1.6) 

and the nonlinear equations 

 (r(t)x (t)) q(t)1(x(t)) 0         (1.7) 

 (r(t)(x(t))x (t)) q(t)g(x)(t)) 0        (1.8) 

In 2000, the second order nonlinear differential equation 

 x (t) q(t)f (x(t))g(x (t)) 0        (1.9) 

has been studied by Li and Agarwal [29]. Motivated by the ideas of Li [28] and Rogovchenko 

[43], they obtained new oscillation criteria for oscillation by using a generalized Riccati 

technique.  

  For n = 1, oscillation of nonlinear differential equations with a linear damping term of 

the form (1.1) that is, 

 (r(t)x (t)) p(t)x (t) q(t)f (x(t)) 0        (1.10) 

has been addressed in the monograph of Agarwal et. al. [2] and papers by Elabbasy et al. [11]. 

Grace and Lalli [19], Hao and Lu [22], Kirane and Rogovchenko [25], Li and Agarwal [30], Li 

et al. [32], Rogovchenko [39], Rogovchenko and Tuncay [41], [42], to mention a few, whereas 

oscillation criteria for the general equation 

 (r(t) (x(t)x (t)) p(t)x (t) q(t) q(t)f (x(t)) 0        (1.11) 

were suggested, for instance, Grace [13, 15], Grace and Lalli [17, 18] and Monojlovic [35], 

Rogovchenko and Tuncay [40]. 
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  In 2014, the oscillation of a second-order nonlinear differential equation with damping. 

(r(t)(x )) ) p(t)(x (t)) q(t)f (x(t)) 0         (1.12) 

studied by Li et. al. [31] for 1  is a ratio of odd positive integers. They extended the results 

of Rogovchenko and Tuncay [41]. 

  Recently, there has been an increasing interest in studying oscillation and non 

oscillation of different classes of differential equations. For n > 1, p-Laplace equations have 

some applications in continuum mechanics as seen from [3, 4]. Zhang et al. [34] concerned 

with the problem of oscillation and asymptotic behavior of a higher-order delay damped 

differential equation with p-Laplacian like operators 

(n 1) p 2 (n 1) (n 1) p 2 (n 1)(a(t) | x t | x t (r(t) | x t | x t q(t)         

(n 1) p 2| x g(t) | x(g(t)) 0         (1.13) 

where p > 1 is a real number. They obtained oscillation results by using the integral averaging 

technique for Eq. (1.13). Also, they obtained asymptotic results by using the comparison 

technique. In the special case when p = 2 and n = 2, Eq. (1.13) reduces to Eq. (1.10). 

  In recent years, there has been an increasing interest in studying oscillatory behaviour 

of solutions to various classes of dynamic equations on time scales. In particular, oscillation of 

dynamic equations with demping has become an important area of research due to the fact such 

equations arise in many real life problems; see e.g. [6-8, 44] and the references cited therein. 

In 2015, the following dynamic equations with damping studied by several authors. 

 (a(x ) ) (t) p(t)((x ) )(t) q(t)x ( (t)) 0           (1.14) 

  (r(x ) ) (t) p(t) (x ) (t) q(t)f (x)( (t) 0
          (1.15) 

And  

 (a(t) x(t)(x )(t)) p(t) (x ) (t) q(t)f (x (t)) 0         (1.16) 
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where 
0 0t [t ; )T : [t ; ) T,T      is a time scale which is unbounded above. In the special 

case when T = R, equations (1.14) and (1.16) reduce to equations (1.10) and (1.11). Agarwal 

et al. [1] studied for Eq. (1.14). They obtained new oscillation criteria for Eq. (1.14) by using 

the generalized Riccati transformation technique.  

  Bohner and Li [9] established a new Kamenev-type theorem for Eq. (1.15) by using the 

generalized Riccati transformation technique. Wang et al. [51] considered with Eq. (1.16). 

They obtained several suient conditions for the oscillation of solutions for Eq. (1.16) by using 

the Riccati transformation and integral averaging technique.  

  For n > 1, self-adjoint second order matrix differential systems arise in many dynamical 

problems studied by several authors (e.g., see [12, 26] and references quoted therein). In the 

special cases of (1.1), Eq. (1.1) reduces to the following second-order matrix differential 

equations : 

0(P)(t)X (t)) Q(t)X(t) 0; t t 0       (1.17) 

0(P(t)X (t)) p(t)P(t)X (t) Q(t)X(t) 0 t t 0        (1.18) 

0(P)(t)X (t)) R(t)X (t) Q(t)X(t) 0; t t 0        (1.19) 

0(r(t)X (t)) p(t)X (t) Q(t)G(X(t)) 0; t t 0        (1.20) 

0(r(t)X (t)) p(t)X (t) Q(t)F(X (t))G(X(t)) 0; t t 0         (1.21) 

and  

0(r(t)P(t)X (t)) p(t)P(t)X (t) Q(t)F(X (t)G(X(t)) 0 t t 0          (1.22) 

The oscillatory solution properties of equations (1.1) and (1.17) - (1.22) are important in the 

mechanical systems associated with (1.1) 

  Therefore, such properties have been studied quite extensively (see [12, 29, 30] and 

references quoted therein). Eq. (1.20) the results of Li and Agarwal [30] for scalar cases. In 

2005 and 2006, Sun and Meng [47, 48] established some oscillation criteria by using the 

positive linear functional for (1.19). Also, in 2008, motivated by [26], Xu and Zhu [53) obtained 
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several Wintner-type oscillation criteria for system (1.19). These results improved and 

generalized most known results. In 2013, by using a matrix Riccati type transformation and 

matrix inequalities, Shi et al. [45] obtained some new oscillation criteria for the second order 

nonlinear matrix differential systems with damped term 

0(P(t)X (t)) R(t)X (t) F(t,X(t),X (t)) 0 t t         (1.23)   

  Motivated by the idea of Li and Agarwal [29], in this paper we establish the Wintner 

type oscillation criterion for system of (1.1) by using matrix Riccati type transformation, the 

generalized averaging pairs and positive linear functionals, we establish the Wintner type 

oscillation criterion for system of (1.1). 

  In section 2 several definitions and Lemmas are given. Section 3 establish Wintner type 

oscillation criteria. Finally, in section 4 several examples that dwell upon the sharpness of our 

results are presented. 

2. Definitions and Lemmas  

  Definition 2.1. Denote by M the linear space of a real matrices, by 
nI M the identity 

matrix and S the subspace of all symmetric matrices in M. A linear functional L on M is said 

to be “positive” if L (A) > 0 for any A S and A > 0. 

  Definition 2.2. A pair of real-valued functions (f, g) defined on 
0[t , ) is called an 

averaging pair if  

(i) f is nonnegative and locally integrable on 
0[t , ) satisfying 

0t
f (s)ds 0



 ; 

(ii) g > 0 is absolutely continuous on every compact subinterval of 
0[t , ) ; and  

(iii) for 0 < k < 1, 

0 0 0

1 k
t s s

2

t
t t t

lim f (s) g(u)f (u)du f (u)du ds





    
      
    
    

    
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Definition 2.3. Let L be a positive linear functional and B = B(t) a real valued matrix 

function which is invertible for each 
0t [t , )  . A quartet of real-valued functions (f, g, 

L, B) defined on 
0[t , ) is a generalized averaging quartet if the conditions (i) and (ii) in 

Definition 2.2 and the following conditions (iii) hold  

(iii) for 0 < k < 1, 

0 0 0

1 k
t s s

2

t
t t t

lim f (s) g(u)f (u)L(B(u))du f (u)du ds





    
      
    
    

    

Lemma 2.4 

(I) Let conditions in Definition 2.3 hold then 
0t
f (s)ds



   

(II) Let 
0

0
t

c C([t , ),R) and f (s)ds ;


   then 

0 0

1

t
t t

lim f (s)ds f (s)c(s)ds ds


 



  
    
  
  

   

Implies  

 

1

0
t
lim f (s)ds f (s)c(s)ds ds , t t


 


 

  
       
   
   

Lemma 2.5. [36] Let L be a positive linear functional on M. Then, for any A;B S , we 

have  

 (L[AT B])2 < L[ATA]L[BTB] 

Lemma 2.6. Let L be a positive linear functional on M. For any R M,B S and B 0  

, then for all 
0v C([t , ),(0, ))    

 
T 1 1 21

L R BR (vL[B ] (L[R])
v

  
 

 
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Lemma 2.7. Let X(t) be a nontrivial prepared solution of (1.1) and det X(t) 0  for t0 > 

0. Then for all 
1

0a C ((t , ),(0, ))   the matrix function 

 
1W(t) a(t)r(t)P(t) X(t))K(X (t))G (X(t))    (2.1) 

Satisfies the equation  

 
1a (t) p(t)

W (t) W(t) R(t)p (t)W(t) a(t)Q(t)F(X (t))
a(t) r(t)


     

 

1 1 1W(t)G (X(t))X (t)K (X (t) (X(t))P (t)W(t)

a(t)r(t)

     
  (2.2) 

3. Main Results  

  In this section, by using matrix Riccati type transformation, the generalized averaging 

pairs and positive linear functionals, we establish the Wintner type oscillation criterion for 

system of (1.1) 

  Theorem 3.1. Assume that all conditions stated in Section 1 are satisfied; suppose for 

any solution X(t) for (1.1), 

 
1 1G (X(t))X (t)K (X (t)) (X(t)) 0      

For t > t0, and P(t) and R(t) are commutative with 
1 1G (X(t))X (t)K (X (t)) (X(t))    . 

Suppose further that there exists a function a 
1

0C ([t , ),(0, ))   and a generalized 

averaging quartet 

 
1 1(f ,ar,L;P(t) (X(t))K(X (t))(X (t)) (G (X(t))) )    , 

where L is a positive linear functional on M, satisfying  

 
0

t

t 0
x
LimL J(t , t)


           (3.1) 

and the matrix J defined by 
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1

0 n

1
J(t , t) (a (t)r(t)I a(t)p(t)R(t)P (t))P(t) (X(t))

2

    

  
11K(X (t))(X (t)) G (x(t))
    

 
1

1
t

n

t

(a (s)r(s)I a(s)p(s)R(s)P (s))
a(s)Q(s)F(X (s))

4a(s)r(s)

 
  


  

 P(s) (X(s))K(X (s))(X (s)) 1GXs 1d(s)       (3.2) 

and 
0

t

t : M M  is the linear operator defined by 

  0
0 0

1
t t

t

t
t t

U(t) f (s)ds f (s)U(s)ds


        (3.3) 

Then every prepared solution of (1.1) is oscillatory on 
0[t , ) . 

Proof : Suppose the Theorem 3.1 is not true and X(t) is any nontrivial prepared solution of 

(1.1) in 
1[t , ) which is nonoscillatory. Without loss of generality, assume that det 

1 0X(t) 0, t t t   . Then by Lemma 2.7, W(t) is symmetric and satisfies the Riccati 

equation (2.2). 

That is, 

 
1a (t) p(t)

W (t) W(t) R(t)P (t)W(t) a(t)Q(t)F(X (t))
a(t) r(t)


     

 

1 1 1W(t)G (X(t))X (t)K (X (t)) (X(t))P (t)W(t)

a(t)r(t)

     
  (3.4) 

Integrating both sides of (3.4) from t1 to t, we obtain 

W(t) 

= W(t1) 

1

t
1

t

a (t) p(t)
W(t) R(t)P (t)W(t) a(t)Q(t)F(X (t))

a(t) r(t)


  


  
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1 1 1W(t)G (X(t))X (t)K (X (t)) (X(t))P (t)W(t)
ds

a(t)r(t)

     
 


 (3.5) 

Now use of previous lemma and integrate them we get which contradicts the fact  

1 1(f , ar, L, P(t) (X(t))K(X (t))(X (t)) (G (X(t))) )     

is a generalized averaging quartet.  

Corollary 3.2. If the above conditions hold and  

 
1 1 1G (X(t))X (t)K (X (t)) (X(t))P (t) A 0         

and  

0F(X (t)) B 0 t [t , )      

where A, B S are constant positive definite matrices, and A is commutative with P(t) and 

R(t). Suppose further that there exist an averaging pair (f, ar), where 
1

0a C ([t , ),(0, )  

and L is a positive linear functional on M satisfying (3.1), where  

  1 1

0 n

1
J(t , t) a (t)r(t)I a(t)p(t)R(t)P (t) A

2

    

 
1

1 2
t

1n

t

(a (s)r(s)I a(s)p(s)R(s)P (s))
a(s)Q(s)F(X (s)) A d(s)

4a(s)r(s)


 

  
 

  

and 
0

t

t :S S  is the linear operator defined by (3.3). Then any prepared solution of (1.1) is 

oscillatory on 
0[t , ) . 

Remark 3.3. Theorem 3.1 and Corollary 3.2 are improvement and generalize of theorem 3.1 

and Corollary 3.1 by Yang [56]. In fact, Theorem 3.1 in [56] is not applicable if we choose 

such that 

 
0

t

1 1tt

ds
lim

a(s)r(s)L[P(s) (X(t))K(X (t))(X (t)) (G (X(t))) ] 


    

or P(t) R(t)  
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Remark 3.4. Theorem 3.1 is improvement and generalize of Theorem 3.1 by Xu and Zhu [53]. 

In fact. Theorem 3.1 in [53] is not applicable if we choose such that  

 
0

t

1 1tt

ds
lim

a(s)r(s)L[P(s) (X(t))K(X (t))(X (t)) (G (X(t))) ] 


    

Remark 3.5. Theorem 3.1 and Corollary 3.2 are improved and generalize of Theorem 3.1 and 

Corollary 3.1 by Yang and Tang [59]. In fact, Theorem 3.1 in [57] is not applicable if we choose 

such that P(t)  R(t). But when P(t) = R(t),  (X(t)) = In and K(X (t)) X (t)  in Theorem 

3.1 and Corollary 3.2 give Theorem 3.1 and Corollary 3.2 in [57], respectively. Also, when 

G (X(t)) 0  and P(t) > 0 in Theorem 3.1 [57], the product of these positive definite matrices 

is not necessarily positive definite. 
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