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ABSTRACT: 

Singular homology and its applications in algebraic topology are the focus of this research 

paper, with emphasis on its foundations. This was primarily an attempt to explain the 

theoretical underpinnings of singular homology and its practical applications in various fields 

(mathematics, physics and computer science). We examined the entire body of existing 

literature, focusing on classics from Eilenberg and MacLane (1945) to Hatcher (2002) more 

recently.  

The employment of a single homology in the resolution of intricate topological issues was 

identified by virtue of employing analytical methods, which applied theoretical concepts 

together with pragmatic examples. Results concluded that the employment of singular 

homology as an effective technique to distinguish between topological spaces was achievable 

through computation of these homological groups with high accuracy. It demonstrated how 

these groups give crucial information regarding the topological structure of spaces, which 

makes manifolds classifiable, and facilitate identification of invariants. Additionally, the use 

of singular homology for data analysis was highlighted, showing that it can help close the gap 

between abstract mathematical ideas and data interpretation in reality using persistent 

homologists. 

Lastly, it was concluded that singular homology not only constitutes an integral component of 

algebraic topology but also finds extensive use with applications extending beyond pure 

mathematics. According to this research, the marriage of singular homology and computational 

methods has the potential to bring enormous benefits to both theoretical comprehension and 

practical application. 
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(I) Introduction: 

The cohomology and homology group theory has evolved to become one of the pillars of 

algebraic topology, providing deep insights into the intrinsic structure of topological spaces. 

Of these, singular homology is used quite extensively with great effectiveness to distinguish 

among various types and understand their structures along the algebraic axes. This essay will 

investigate the basic axioms of singular homology, explain its theoretical framework and its 

diverse applications across mathematics. 

At its core, singular homology is concerned with classification of topological spaces in terms 

of holes, or more precisely, boundaries and cycles. Its basic building blocks are single 

simplices, i.e., continuous maps from standard simplices to a topological space, and respective 

chain complexes that allow one to compute homology groups. These sets, embodied in (Hn(X)), 

contain important information regarding (n)-dimensional holes in a space (X). The ability of 

boundaries to interact with cycles allows us to construct homology classes, which are 

equivalence classes of cycles modulo boundaries, and thus set up a stable system to investigate 

topological invariants. 

The use of singular homology isn't just limited to basic classification; it also provides links 

between topological and algebraic properties. One such example bridging the gap between 

homology and cohomology is the Universal Coefficient Theorem, which illustrates how a 

space's algebraic structure is derived from its topological properties. This is then complemented 

with the bar resolution, which gives a free resolution of the integers and allows one to compute 

homology groups of different algebraic structures such as groups and modules. 

Beyond theoretical uses, singular homology has numerous applications. From data science to 

algebraic varieties and topological data analysis, singular homology has been instrumental in 

the discipline. In algebraic geometry, for example, the calculation of homology groups could 

possibly inform us about varieties' geometry, and in data science, topological data analysis 

(TDA) uses homological methods to identify features in data of high dimension. The versatility 

of singular homology highlights its applicability to current mathematical work and the promise 

for future investigation. 

In addition, the study of such sophisticated subjects as cohomology, module theory, and free 

groups enriches the discussion of singular homology further. The relationship between these 

areas not only illuminates the essence of homological algebra better but also provides potential 

directions for further study in the future. For example, the study of stem covers and central 

extensions clarifies the relationships between groups and their cohomological dimensions and 

thereby adds to the broader area of algebraic topology. 

We can say that in this paper, it will be an attempt to give an overview of singular homology 

and identify the major concepts, achievements, theory, and utility. We strive to use integrated 

literature to build new outcomes to contribute to current debate in algebraic topology and 

encourage future research attempts. The search for singular homology theory not only enhances 

the knowledge of topological spaces but also reinstates the association between algebra and 

topology and creates new avenues for novel solutions to abstract mathematical problems. 

(II) Previous Paper Review: 

2.1 Overview of Homology Theory 

Homology theory originated with Henri Poincaré, who was the first to give the idea of 

topological invariants. Later work by mathematicians like Émile Borel and John simplicial 

complexes formed the foundation for contemporary homology theory. The basic ideas of 

simplicial and singular homology have been well addressed in some texts like Munkres (2000) 
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and Hatcher (2002). These articles give a complete introduction to the simplices, simplicial 

complexes, and building of the homology group. 

2.2 Key Theorems and Results 

Some of the basic findings in homology theory have been established, e.g., the equality of 

simplicial and singular homology groups. One of the significant theorems is Theorem 

4.3(dicussed later in secion 4 below): The zero-dimensional homology group of a complex K 

over Z is isomorphic to  𝑍𝑝 =⊕𝑝 𝑍 where p is the number of connected components of K. In 

addition, the Excision Theorem and the long exact sequence in homology have been pivotal in 

understanding how the homology groups of spaces connect with subspaces of those spaces. 

2.3 Applications of Singular Homology 

The applications of singular homology also extend into non-mathematical areas like data 

analysis and computational topology. The work of Edelsbrunner and Harer (2008) on persistent 

homology is merely one instance of the strength of homological techniques in being capable of 

dismantling features from hard datasets. Data science and topology have formed a new field of 

study and application. 

(III) Methodology: 

3.1 Definitions and Constructs 

Central to the study of singular homology is the concept of a singular n-simplex, which is 

formally defined as a continuous map △𝑛→ 𝑋 from the standard n-simplex △𝑛 to a topological 

space X. The collection of all such singular n-simplices forms the singular chain group Cn(X), 

an abelian group under addition. The intricate structure of these chains is revealed through the 

boundary operator, 𝛿𝑛: 𝐶𝑛(𝑋) → 𝐶𝑛+1(𝑋), defined by the equation:  

𝛿𝑛(𝜎) =  ∑ (−1)2𝜎|[𝑣0,….,𝑣𝑖−1,𝑣𝑖+1,….,𝑣𝑛],𝑖 , 

where  𝛿𝑖: Δ𝑛−1 → Δ𝑛 denote the face maps. Subsequently, the singular homology groups Hn

(X) are constructed as the quotient group 𝐾𝑒𝑟(𝛿𝑛)/𝐼𝑚(𝛿𝑛+1), capturing essential information 

about the topological space X. 

3.2 Chain Complexes and Exact Sequences 

We can characterize chain complexes to be a series of abelian groups with boundary operators 

connecting them. The homology groups are derived from them, and chain maps from 

complexes result in homomorphism between the homology groups of them. Exact sequences, 

crucial in this context, are chain complexes characterized by the condition that the null space 

of each transformation coincides with the range of the preceding one. 

3.3 Relative Homology Groups 

Relative homology groups are established for a topological space X and its subspace A, 

designed to reflect the homology of the corresponding quotient space X/A(Hatcher, A., 2002), 

(Munkres, J. R., 1984) . This framework is significantly enhanced by the long exact sequence 

in homology, which provides a critical connection between the homology groups of a space, 

its subspace, and their quotient, thereby illuminating their intrinsic topological relationships. 

(IV) Theorems and Proofs 

4.1 “Connectedness” for Simplicial Complexes: 

The idea of connectedness is central in topology, explaining whether a space exists as one, 

continuous whole. In combinatorial structures, like simplicial complexes, the idea is well 

defined and is a key to understanding their topological nature. 
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4.2 Re-exploring the Definition of a Connected Complex: 

In algebraic topology, especially when dealing with combinatorial objects, a "complex" 

(typically implicitly a simplicial complex, considering the mention of 1-simplices) is a central 

object. Any complex K can be defined as “connected” if it cannot be written as “a disjoint 

union of two or more non-empty subcomplexes”. This definition gives a strict topological 

requirement for a space (or its combinatorial realization) to qualify as one piece, unbroken. 

“Simplicial complexes are built up from fundamental building blocks known as simplices, with 

0-simplices being vertices, 1-simplices being edges, and higher-dimensional simplices being 

put together by gluing these basic building blocks”.5 This combinatorial formulation enables a 

clean algebraic handling of topological spaces. 

4.3 The Idea of Path-Connectedness within Geometric Complexes: 

Parallel to the abstract concept of connectedness is the more concrete idea of path-

connectedness. For a geometric complex, path-connectedness would mean that for any pair of 

vertices in the complex, there is a series of 1-simplices (edges) that constitute a path joining 

them together. It offers a straightforward, constructive way of perceiving connectivity, and it 

proves useful in visualizing the shape of a complex. Definition of a "path-connected 

subcomplex" is important to use in the subsequent proofs, enabling separation of components 

according to reachability. 

4.4 Proving that path-connectedness and connectedness are equivalent: 

Theorem 4.1: For a complex K, path-connectedness is the same as connectedness (Path-

connected ⇔ connected). This is a ubiquitous and well-accepted fact in algebraic topology, 

commonly seen in survey texts like Hatcher's "Algebraic Topology" or Munkres's "Elements 

of Algebraic Topology"(Hatcher, A., 2002). This equivalence is especially useful for simplicial 

complexes because it permits the application of a more concrete, graph-theoretic notion (edge 

paths) to establish a more formal topological property (disjoint decomposition), making the 

topological study of discrete structures easier. This property is essential to the usability of 

algebraic topology over simplicial complexes, making possible the use of combinatorial 

reasoning to infer topological properties, which provides the basis for computability aspects of 

simplicial homology (Singh, H. K., 2020). 

Proof: The proof has been established by showing that two conditional statements are true, 

effectively proving an equivalence between two statements. This highlights the bidirectional 

nature of the proof. 

1.) Forward Direction (Path-connected ⇒ connected): let us assume, just for the 

intention of showing contradiction that K is a path-connected but not connected. In this 

case if K is not connected, it could be partitioned into two non-empty or say disjoint 

subcomplexes which are L and M, such that K=L ∪ M. Since we have assumed K as  

path-connected therefore there must exist a path which connect any vertex l0ϵ L to any 

vertex m0 ϵ M. Considering such a path which start  at l0 and end at m0. Here, let lk be 

the last vertex in that route which is present within L. Then, the next vertex in the path, 

lk+1, must be in M. So, the 1-simplex (edge) connecting lk to lk+1 is part of the path and 

thus also the  part of K. But, for this 1-simplex to exist as the part of K, it must be 

entirely contained either within L or within M (because L and M form a disjoint 

partition of K). If yet, it were in L, then it implies that lk+1would also be in L, which 

contradict the choice of lk being the last vertex in L. On other hand, if it were in M, then 

in this case lk would be in M, which again contradict the assumption that lk∈L. This 

leads to a contradiction and thus  demonstrate that a path-connected complex must 

necessarily be connected. 



 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 5  

 

2.) Reverse Direction (i.e. Connected ⇒ Path-connected): Conversing to the above 

assumption, here, let us assume, that K is a connected but is not a path-connected. This 

means that, since K being not path-connected, there exist at least two vertices which let 

be denoted by l0 and m0, in K which cannot be connected by any path which is composed 

of 1-simplices. Being that, let L be the maximal path-connected subcomplex of K which 

contain l0, and let M be the maximal path-connected subcomplex which contain m0. 

Here,  if L and M do share any common vertex, say v0 i.e. v0 ∈ L∩M, then there arises 

a path that could be formed from l0 to v0 (because, v0∈L) and from v0 to m0 (because, 

v0∈M). on combining these two paths, there results in a route from l0 to m0 which 

directly oppose the initial assumption that such a route does not exist. So therefore, 

L∩M = ∅. Because, L and M are non-empty subcomplexes whose union constitutes K 

(because every vertex in K must belong to some path-connected component), and they 

are disjoint also, this implies that K is not connected. These again contradict the initial 

assumption that K is connected. Thus, a connected complex must necessarily be path-

connected. This specific equivalence is the cornerstone for building homology theory 

on combinatorial structures, which bridge the gap between the discrete, combinatorial 

nature of simplicial complexes and the continuous, topological properties they are 

meant to model. 

4.5 The Zeroth Homology Group 

Zero-dimensional homology group which is normally denoted as H0(K; Z), tells us crucial 

information about the connected components of a topological space. Its nature is heavily 

connected with the notion of an index homomorphism and the 0-chain equivalence. 

4.6 The Index Homomorphism and Homology 

Proposition 4.2: If we consider K as a connected complex, then for any 0-chain which be 

denoted as x, the condition I(x) = 0 is equivalent to x∼0 (i.e., x is homologous to 0). 

Furthermore, the 0th  homology group i.e. H0(K; Z) is isomorphic to Z. 

This statement is a starting point for the comprehension of the structure of the lowest-

dimensional homology group in connected spaces. The index homomorphism which be 

denoted as I, is a map from the group of 0-chains C0(K) to Z (the integers). For a 0-chain 

x=∑ 𝑔𝑖𝑎 𝑖𝑖  (where ai are vertices and gi ∈ Z are coefficients), I(x) is the sum of its 

coefficients, ∑ 𝑔𝑖𝑖 . 

Proof of Equivalence: I(x) = 0 and x∼0 (Rotman, J. J., 1998): 

To prove Proposition 4.2  we proceed in two parts: 

Part 1: x∼0 ⇒ I(x) = 0 (Rotman, J. J., 1998):  When a 0-chain ‘x’ is homologous to 0, it means 

that x is a boundary. According to definition -  a 0-boundary is the image of a 1-chain under 

the boundary operator ∂1. That implies, x=∂1y for some 1-chain y∈C1(K). Let’s consider a 

single 1-simplex A1=(a0; a1) with coefficient g. Its boundary is ∂1(gA1) = ga1 − ga0. Applying 

the index homomorphism (as mentioned above), I(∂1(gA1)) = I(ga1−ga0) = g−g = 0. Because I 

is a homomorphism (i.e., I(x+y)=I(x)+I(y)), it follows that for any normal 1-chain 

y=∑ 𝑔𝑖𝐴1, 𝑖𝑖   , its boundary ∂1y will have I(∂1y) = ∑ 𝐼𝑖  (∂1(giA1,i))= ∑ 0𝑖  = 0.5 Therefore, any 

0-chain that is a boundary (and hence homologous to 0) must have an index of zero. 

Part 2: I(x) = 0 ⇒ x∼0 and H0(K; Z) ≅ Z (Rotman, J. J., 1998): Converse to Part 1, assume 

I(x)=0 (Rotman, J. J., 1998). The purpose is to show that x∼0. Given that K is connected, then 

as per Theorem 4.1, it is also path-connected. This implies that any two vertices, say v and w, 

in K could be connected by a path of 1-simplices. Let this path be represented by a 1-chain y =  

∑𝑖  = 0q−1gA1,i, where A1,i = (ai; ai+1), with a0 = v and aq = w (Rotman, J. J., 1998). The 
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boundary of this chain be ∂1y = gaq−ga0 = gw−gv. The index of this boundary is I(∂1y) = g−g 

= 0. because ∂1y is a boundary, it is homologous to 0. This implies gw−gv∼0, or equivalently, 

gw∼gv. This basic result shows that any two vertices in a connected complex are homologous. 

Let, consider an arbitrary 0-chain x = ∑ 𝑔𝑖𝑎𝑖𝑖  . Since each vertex aj is homologous to a fixed 

reference vertex v (i.e., aj∼v), it indicates that x∼∑ 𝑔𝑖𝑖𝑣 𝑖 = (∑ 𝑔𝑖𝑖𝑖 )v (Rotman, J. J., 1998). 

Recognizing that ∑ 𝑔𝑖𝑖  = I(x), which could be written as x∼I(x)v (Rotman, J. J., 1998). Hence, 

when I(x)=0, then x∼0v = 0. This establishes the proof of the equivalence I(x) = 0 ⇔ x∼0 

(Rotman, J. J., 1998). 

 
 

 

 

 

 

  

Figure 4.1: A simplicial structure on the circle 

 

 

4.7 Isomorphism to Z  

In singular homology, the 0th homology group, denoted H0(K; Z), fundamentally defined as 

quotient of 0-cycles (Z0(K)) by 0-boundaries (B0(K)) (Rotman, J. J., 1998). For a connected 

complex K, this group is isomorphic to the integers Z, a property as explored in Proposition 

4.2.  In singular homology, the boundary operator ∂0mapping from 0-chains to C−1(K) is 

conventionally defined as the zero map, implying that C−1(K) is trivial. Consequently, all 0-

chains are considered 0-cycles, leading to the equivalence Z0(K)=C0(K) (Frost, P., 2021). As 

demonstrated, the kernel of the index homomorphism I precisely corresponds to the set of 0-

boundaries, B0(K), establishing the equivalence x∼0⇔ I(x) = 0. The homomorphism I:C0

(K)→Z is surjective, given that any integer g∈Z can be represented as the index of a 0-chain 

formed by g times a 0-simplex v (i.e., I(gv)=g). This surjectivity implies that I(Z0(K))=Z. 

Therefore, by applying the First Isomorphism Theorem, the 0-dimensional homology group H0

(K; Z) can be expressed as the quotient Z0(K)/ker(I), which simplifies to Z0(K)/B0(K), and is 

thus isomorphic to Z (Rotman, J. J., 1998). 

4.8 Homology and Connected Components 

Theorem 4.3: For any complex K, its zero-dimensional homology group over the integers, H0

(K; Z), is isomorphic to 𝑍𝑝 = ⨁pZ, where p denotes the numbers of connected-components of 

K. This result logically follows from the equivalence of path-connectedness and connectedness 

established in Theorem 4.1, combined with Proposition 4.2, which details the structure of H0 

for a single connected component. Moreover, this result is widely recognized and forms a 

cornerstone of singular homology theory, often discussed in texts such as Hatcher's "Algebraic 

Topology" or Munkres's "Elements of Algebraic Topology" (Hatcher, A., 2002). 

The calculation of H0(K; Z) as 𝑍𝑝 for a complex K with p connected components reveals a 

profound topological invariant that directly quantifies the "number of pieces" of a space. The 

algebraic structure of H0(K; Z) directly mirrors the geometric concept of connected 

components. Consequently, each connected component of the space contributes an independent 

factor of Z to the 0-dimensional homology group. This arises because, within each component, 

all 0-chains are homologous to an integer multiple of a designated vertex, and the distinct 

topological nature of these components results in the 0-dimensional homology group being the 

direct sum of Z for every component. The 0-dimensional homology group, H0(K; Z), is formed 

as the direct sum of Z for each connected component of the complex. This structure reflects 

that within each component, all 0-chains are homologous to an integer multiple of a chosen 

a b 

c d 
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vertex, and the components themselves are topologically distinct; (Mahima Ranjan Adhikari's 

"Basic Algebraic Topology and its Applications"). This property is often the first characteristic 

computed when analyzing a topological space. The consistency of this result across different 

theories of homology, such as simplicial versus singular homology (Bredon, G. E., 1993), 

underscores its robustness as a topological invariant. This fundamental result provides 

algebraic meaning to a very intuitive geometric concept, making homology groups a powerful 

tool for classifying and understanding the basic structure of topological spaces. 

 

4.9  The Excision Theorem 

In algebraic topology, the Excision Theorem serves as an effective instrument for simplifying 

the calculation of relative homology groups through allowing certain subspaces to be "cut out" 

or "excised" without altering the homology. 

4.9.1 Statement of the Excision Theorem 

Theorem 4.4 (Excision Theorem) (Eilenberg, S. et al., 1952): “Let X be a topological space, 

and let A and Y be subspaces of X such that Y⊂A⊂X. If the closure of Y (denoted Y) is 

contained within the interior of A (denoted int(A)), then the inclusion map of the pair (X∖Y, 

A∖Y) into (X, A) induces an isomorphism on their relative homology groups for all dimensions 

n. Formally, the induced homomorphism Hn(X∖Y, A∖Y) → Hn(X, A) is an isomorphism for 

all n.”(Rotman, J. J., 1998) A basic principle in algebraic topology, the Excision Theorem 

(Eilenberg, S. et al., 1952), which is also known as one of Eilenberg-Steenrod axioms for 

homology theories (Eilenberg, S. et al., 1952). This theorem is important as it enables the 

simplification of homology calculations by permitting the removal or 'excision' of specific 

subspaces without affecting the relative homology groups. 

4.9.2  Intuitive Proof Sketch: Role of Barycentric Subdivision and Chain Homotopy 

While there are technicalities involved in the detailed proof of the Excision Theorem, it’s 

underlying geometric intuition is very clear(Rotman, J. J., 1998). The basic idea revolves 

around - modifying the given relative cycle in (X, A) to one that avoids the excised subspace 

Y, without changing its homology class. 

The central strategy involves repeatedly subdividing the simplices that constitute a relative 

cycle in (X, A). This is achieved through barycentric subdivision, a combinatorial process that 

replaces each simplex with a collection of smaller simplices (Eilenberg, S. et al., 1952). This 

subdivision is iterated until every simplex in the resulting chain is entirely contained within 

either the interior of A or the interior of X∖Y (Rotman, J. J., 1998). This is feasible because 

the interiors of A and X∖Y form an open cover of X, and singular simplices are compact, 

ensuring that such a subdivision can be achieved within a limited as well as predetermined  

numbers of steps (Rotman, J. J., 1998). 

Critical aspect in this process is that barycentric subdivision does not alter the homology class 

of the original chain (Rotman, J. J., 1998). This is guaranteed by the existence of a  specific 

relationship, defined by a sequence of homomorphisms, that exists between the operation of 

refining a space's structure (subdivision) and the action of a transformation that leaves 

homology classes unchanged (identity map) within the framework of homology theory 

(Rotman, J. J., 1998).  A chain homotopy essentially provides a "path" between two chain 

maps, ensuring that when they are applied to a topological space, produce identical 

homomorphisms between the homology groups of the spaces involved. This property is 

fundamental to many proofs in homology theory, confirming that the refinement of simplices 

does not change the algebraic invariants. The Excision Theorem's proof relies on this powerful 

technique of barycentric subdivision and the concept of chain homotopy, which are central to 

establishing many fundamental results in algebraic topology beyond just excision. This 

highlights a broader methodological principle in the field. The ability to subdivide simplices 

arbitrarily finely allows for the "localization" of chains within specific open sets. This 

localization, combined with the homology invariance under subdivision, is the core mechanism 
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that enables the Excision Theorem. It allows for the effective "removal" of parts of the space 

(those contained in int(Y)) without altering the homology, because any cycles in that region 

are homologous to cycles outside it. 

Once all simplices in the subdivided chain are localized to either int(A) or int(X∖Y), any terms 

(simplices) that lie entirely within int(Y) can be effectively "excised" or removed from the 

relative cycle without altering its homology class in Hn(X,A) (Rotman, J. J., 1998). This is 

because such simplices, being entirely within A, can be shown to be boundaries within A, and 

thus trivial in relative homology modulo A. The entire process demonstrates that every relative 

cycle in the pair (X, A) is homologous to a cycle, representing the same relative homology 

class, which completely avoids Y. This mathematical relationship ensures that when a specific 

portion (Y) is removed from a topological space (X) and its subspace (A), creating a modified 

region (X without Y, and A without Y), the way this modified region naturally fits within or is 

considered part of the original, complete space (X, A) leads to a profound structural 

equivalence concerning their fundamental "shapes" or "holes" ( A Dictionary of Mathematics ) 

(Ghrist, R., 2008), because it directly and perfectly matches the characteristic loops, voids, or 

higher-dimensional "holes"—known as cycles in topology—that exist within the smaller, 

altered region with equivalent loops or "holes" in the full, initial space, thereby maintaining the 

essential topological characteristics (Rotman, J. J., 1998). This methodological approach – 

transforming geometric problems into algebraic ones (via chain complexes) and then using 

algebraic tools (like chain homotopies) to prove topological invariants – is a recurring and 

powerful theme throughout algebraic topology. The Excision Theorem is a prime example of 

this interplay, demonstrating how local conditions (Y⊂int(A)) can lead to global homology 

isomorphisms. 

For a detailed and rigorous treatment of the Excision Theorem and its proof, readers are 

suggested to consult advanced texts such as Allen Hatcher's "Algebraic Topology" (specifically 

page 119) or Joseph J. Rotman's "An Introduction to Algebraic Topology" (Eilenberg, S. et al., 

1952). These texts provide the technical details of the chain homotopy (e.g., the "T operator" 

discussed in ) (May, J. P., 1999) that makes the proof work. 

(V) Findings: 

The study of singular homology reveals several basic findings: 

(i) Topological Invariants: Homology groups are robust topological invariants, 

enabling the classification of spaces according to their intrinsic properties. 

(ii) Homotopy Invariance: Homotopy invariance of singular homology is that any space 

homotopic to another induces homologous homology groups, and thus homotopic 

spaces verify homologous. 

(iii) Data Analysis Applications: The methods obtained from singular homology, 

especially in persistent homology, have far-reaching applications in data analysis 

and computational topology. 

 

(VI) Conclusion: 

Singular homology is a pillar of algebraic topology, providing a robust tool for studying and 

classifying topological spaces. This algebraic tool offers a methodical way to comprehend the 

inductive properties of spaces based on algebraic invariants, which play a pivotal role in 

separating various topological structures. The fundamental theories of singular homology, such 

as singular simplices, chain complexes, and the boundary operator, are the foundation that most 

of contemporary topology is constructed upon. 
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In its fundamental form, singular homology is characterized by continuous functions from 

standard simplices to topological spaces so that singular chains can be constructed. With the 

chains and boundary operator, homology groups can be defined, which contain vital 

information regarding the topology of the space. The quotient form of homology groups, 

𝐻𝑛(𝑋) = 𝐾𝑒𝑟(𝛿𝑛)/𝐼𝑚(𝛿𝑛+1), beautifully relates cycles to boundaries and offers a direct route 

to insight into connectivity and holes in a space. 

Their homology group properties, including the fact that they can be used as topological 

invariants, are especially significant. They enable mathematicians to put spaces into 

homeomorphism classes, i.e., spaces with the same homology groups will be topologically 

equivalent. This characteristic proves highly valuable across diverse mathematical disciplines, 

including algebraic geometry, differential topology, and mathematical physics, given that the 

topological attributes of spaces significantly influence physical system behavior. 

Additionally, the interdependence between homology groups of connected components, as 

pointed out in the paper, serves to stress the applicability of singular homology in 

comprehending the structure of more sophisticated spaces. As an example, H0(X) tells us about 

the number of path-connected components in a space, and information about higher-

dimensional holes is conveyed through the higher-dimensional homology groups. Such multi-

aspect analysis of spaces makes singular homology a highly adaptable tool in both theoretical 

studies and real-world applications. 

The article also explores the equivalence of singular homology and simplicial homology, 

showing that these two methods give identical algebraic invariants for simplicial complexes. 

This equivalence not only establishes the strength of homological techniques but also provides 

doors for importing technology from one field to another. With scientists continuing to study 

the relationships between various homology theories, the lessons learned will certainly make 

us better understand topological spaces. 

Aside from its theoretic significance, singular homology has a number of practical applications 

across various fields. Singular homology is a fundamental tool in algebraic topology for 

proving results about the classification of manifolds and studying fiber bundles. Within applied 

mathematics, singular homology is utilized within the domain of ‘data analysis’, particularly 

in what is known as ‘topological data analysis (TDA)’, for identifying significant 

characteristics in complex, high-dimensional datasets. This capability of representing the shape 

and structure of data through homological techniques has enabled new machine learning and 

data science techniques, which in turn has brought back focus on singular homology under 

these circumstances. 

With continuous developments in topology studies, the role of singular homology will 

definitely expand, paving the way for future discovery and breakthroughs. The creation of 

computational methods and software to calculate homology groups will bring these concepts 

to the masses, with more individuals having access to utilize and implement homological 

methods. Since interdisciplinary collaborations are on the rise, the integration of solo homology 

into other mathematical frameworks will definitely yield new means of solving complex 

problems. 

In a broad sense, singular homology is more than an abstract area of mathematics; it is part of 

the mathematical universe that unifies many areas and deepens our comprehension of the 

world. Its roots, properties, and applications all highlight its significance in theoretical and 

applied mathematics. As we peer deeper into the rich tapestry of algebraic topology, singular 

homology will still be a key player, guiding researchers towards new frontiers and further 

enriching our comprehension of topological spaces' intricate interconnections. 
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(VII) Future Research: 

Other areas of future research in singular homology are: 

a. Computational Techniques: Creating efficient algorithms for homology group 

calculation in complex spaces, particularly high-dimensional space. 

b. Interdisciplinary Applications: Exploring the applications of singular homology in 

machine learning, neuroscience, and materials science. 

c. Generalizations of Homology: Discuss generalizations of singular homology such as 

persistent homology and sheaf cohomology to capture more subtle topological features. 

References 

Assiniboine College. (2021). Academic Integrity in Math. 

https://assiniboine.libguides.com/ai-students/math 

Bendich, P., & Ghrist, R. (2020). Topological Data Analysis for the Study of Shape. Journal 

of the Royal Statistical Society: Series B (Statistical Methodology), 82(3), 1-20. 

Bott, R., & Tu, L. W. (1982). Differential Forms in Algebraic Topology. Springer-Verlag. 

Bott, R., & Tu, L. W. (2015). Differential Forms in Algebraic Topology. Springer. 

Bredon, G. E. (1993). Topology and Geometry. Springer. 

Bubenik, P., & Scott, T. (2020). Statistical Topological Data Analysis: A Review. Journal of 

Statistical Theory and Practice, 14(1), 1-20. 

Carlsson, G. (2009). Topology and Data. Bulletin of the American Mathematical Society, 

46(2). 

Chazal, F., & Michel, B. (2016). An Introduction to Topological Data Analysis. Proceedings 

of the IEEE, 104(1), 1-20. 

Chazal, F., & Michel, B. (2021). An Introduction to Topological Data Analysis. Proceedings 

of the IEEE, 109(5), 1-20. 

Edelsbrunner, H., & Harer, J. (2010). Computational Topology: An Introduction. American 

Mathematical Society. 

Eilenberg, S., & Steenrod, N. (1952). Foundations of Algebraic Topology. Princeton 

University Press. 

Fasy, B. T., et al. (2020). Introduction to the R Package TDA. Journal of Statistical Software, 

92(1), 1-30. 

Ghrist, R. (2008). Elementary Applied Topology. Createspace Independent Publishing 

Platform. 

Ghrist, R. (2014). Elementary Applied Topology. CreateSpace Independent Publishing 

Platform. 

https://assiniboine.libguides.com/ai-students/math


 

© Association of Academic Researchers and Faculties (AARF) 
A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. 

 

Page | 11  

Ghrist, R., & Mather, J. (2020). Topological Methods in Data Analysis. SIAM Review, 62(3), 

1-30. 

Hatcher, A. (2002). Algebraic Topology. Cambridge University Press. 

Katz, S., & Matz, M. (2021). Persistent Homology and Its Applications in Data Analysis. 

Journal of Computational and Graphical Statistics, 30(1), 1-15. 

Lefschetz, S. (1942). Algebraic Topology. American Mathematical Society. 

Leader, S. (1986). What is a differential? A new answer from the generalized Riemann 

integral. Amer. Math. Monthly, 93, 348–356. 

May, J. P. (1999). A Concise Course in Algebraic Topology. University Of Chicago Press. 

Munkres, J. R. (1984). Elements of Algebraic Topology. Addison-Wesley Publishing 

Company. 

Munkres, J. R. (2000). Topology. Prentice Hall. 

Munkres, J. R. (2018). Topology (2nd ed.). Pearson. 

Rotman, J. J. (1998). An Introduction to Algebraic Topology. Springer-Verlag. 

Singh, H. K. (2020). Simplicial Complexes and Simplicial Homology. 

http://webhome.auburn.edu/~hks0015/data2.pdf 

Spanier, E. H. (1966). Algebraic Topology. Springer-Verlag. 

Zomorodian, A. (2016). Topological Data Analysis. Proceedings of the National Academy of 

Sciences, 113(51), 14495-14500. 

 

 

http://webhome.auburn.edu/~hks0015/data2.pdf

