

STUDY OF CHARACTERIZATION OF SEPARATION AXIOMS IN BITOPOLOGICAL SPACES

Dr. Govind Kumar Singh & Dr. Mukund Kumar Singh

ABSTRACT

We analyse properties of some existing classes of non-continuous functions using the properties derived by Kariofills as well as some bitopological separation axioms, and conditions for its regularity and normality based on multivalued and single-valued functions. J. E. Kelly introduced the notion of different separation axioms for non-continuous function which have been further developed by Kariofillis on bitopological spaces by taking different separation axioms using a set of non-continuous functions introducing the concept of $ij-\theta$ -closure operator.

Keywords:- bitopological space, pairwise Hausdroff, homeomorphism, disjoint subsets, regularity, normality.

Introduction

We state some basic notions of bitopological space and relevant definitions and properties. Let us denote a bitopological space (X,Q_I,Q_2) by X. For a subset A of (X, Q_I, Q_2) , Q_i-int(A) and Q_i-cl(A) stand for the interior and closure of A in (X,Q_i) respectively where i = 1,2. A point $x \in X$, is said to be in the ij- θ -closure of a subset A of X, $x \in ij$ - θ -cl(A), iff for every Q_i-open set U containing x, Q_j-cl(U) $\cap A \neq \phi$ where $i, j = 1, 2, i \neq j$. $A(\subset X)$ is called ij- θ -closed iff A = ij- θ -cl(A). A space (X, Q_I, Q_2) is called pair-wise R₁ iff for any two points z, $y \in X$, such that $x \notin Q_i$ -cl {y}, there is a Q_i-open set U and a Q_j-open set V such that $x \in U, Y \in V$ and $U \cap V = \phi$. The space X is called pairwise Hausdroff, iff for any two distinct points X, y of X, there exist a Q_i-open neighbourhood U of x and a Q_j-open nbd V of y such that $U \cap V = \phi$ (resp. Q_j -cl(U) $\cap Q_i$ -cl(V) = ϕ), where i, j = 1, 2 and $i \neq j$. X is called pairwise regular, iff for each point x of X and each Q_i -closed set F such

© Association of Academic Researchers and Faculties (AARF)

that $x \notin F$, there exist a Q_i-open set U and a Q_j-open set V such that $x \in U$, $F \subset V$ and $U \cap V = \phi$, for i, j == 1 and 2, and i \neq j. X will be called pairwise normal, iff for each Q₁closed set A and a Q₂-closed set B disjoint from A, there exist a Q₁-open set V and a Q₂open set U such that $A \subset U$, $B \subset V$ and $U \cap V = \phi$. (i, j = 1, 2 and i \neq j). A mapping f: (X, $Q_i, Q_2) \rightarrow (Y, P_i, P_2)$ is said to be pairwise strongly θ -continuous weakly continuous) iff for each $x \in X$ and each P_i -open nbd U of f(x), there exists a Q_i-open nbd V of x such that $f(Q_j$ -cl(V)) $\subset U$ (resp. $f(Q_j$ -cl(V)) $\subset P_j$ -cl(U), $J(V) \subset P_j$ -cl(U)).

Theorem

A function $f: X, Q_1, Q_2) \rightarrow (Y, P_1, P_2)$ is pairwise weakly continuous iff $f(Q_i - cl(A)) \subset ij-\theta - cl(f(A))$, for each $A \subset Y$.

Proof

Case-i) Let us assume *f* to be pairwise weakly continuous and let $Y \in f(Q_i - cl(A))$. There exists $x \in X$ such that $x \in Q_i - cl(A)$ and f(x) = y. Let *V* be a P_i -open nbd of f(x) Y. Since the function *f* is pairwise weakly continuous, there exists $U_i \in Q_i$ with $x \in u_i$, such that $f(U_i) \subset P_j - cl(V)$. Now, $x \in Q_i - cl(A) = U_i$, $A \neq \phi \Longrightarrow f(U_i) \cap f(A) \neq \phi \Longrightarrow P_j - cl(V) \cap f(A) \neq \phi \Longrightarrow f(x) \in ij - \theta - cl(f(A))$, i.e., $y \in ij - \theta - cl(f(A))$. Hence $f(Q_i - cl(A)) \subset ij - \theta - cl(f(A))$.

Case-ii) Only if, conversely, let $x \in X$ be arbitrary and V be a P_i -open nbd of f(x). Then $f(x) \notin ij - \theta - cl(Y - P_j - cl(V))$ and hence $f(x) \notin ij - \theta - cl[f f^{-1}(Y - P_j - cl(V)))$. By hypothesis of theorem (1.3) $f(x) \notin f(Q_i - cl(f^{-1}(Y - P_j - cl(V))))$ so that $x \notin Q_i - cl(X - f^{-1}(P_j - cl(V)))$. Thus there exists a Q_i -open nbd U of x such that $U \subset f^{-1}(P_j - cl(V))$ and hence $f(U) \subset P_j - cl(V)$. Thus f is pairwise weakly continuous.

Theorem

If f, g: f: (X, Q_l, Q₂) \rightarrow (*Y, P_l, P₂)* are pairwise almost continuous functions then the set *A* = {*a* \in X: *f*(*a*) \in *ij*- θ -*cl*{*g*(*a*)} *is Q_i*-closed in X and the set B = {(*a, b*) \in X \times X : *f*(*a*) \in *ij*- θ -*cl*{*g*(*b*)} is T_i-closed in (X \times X, T₁, T₂), where *i*: = Q_i \times Q_j, for *i*, *j* = 1, 2, *i* \neq j.

Proof

Case-I: we first show that *B* is T_i-closed in $X \times X$. (*a*, *b*) \notin B \Rightarrow *f*(*a*) (*j*. *ij*- θ -*cl*{*g*(*b*)} \Rightarrow there exists $V_i \in P_i$ with *f*(*a*) $\in V_i$ and $W_j \in P_j$ with *g*(*b*) $\in W_j$ such that $V_i \cap W_j = \phi$, which

© Association of Academic Researchers and Faculties (AARF)

shows that $V_i \cap W_j = \phi$ implies $P_i \cdot int(P_j \cdot cl(V_i)) \cap P_j \cdot int(P_i \cdot cl(W_j)) = \phi$. Since *f*, *g* are pairwise almost continuous, it implies $f(G_i) \subset P_i \cdot int(P_j \cdot cl(V_i))$ and $g(H_j) \subset P_j \cdot int(P_i \cdot cl(W_j))$ for some Q_i -open nbd G_i of *a* and some Q_j -open nbd *H*, of b, Then $(G_i \times H_j) \cap B$ $= \phi$, where (a, b) $\in G_i \times H_j$. Let us now suppose $(x, y \in (G_i \times H_j) \cap B$. Then $f(x) \in f(G_i)$ $\subset P_i \cdot int(P_j \cdot cl(V_i)) \in P_i$ and $g(y) \in g(H_j) \subset P_j \cdot int(P_i \cdot cl(W_j)) \in P_j$. Also since $(x, y) \in B$, $f(x) \in ij - \theta - cl\{g(y)\}$ so that $P_i \cdot int(P_j \cdot cl(V_i)) \cap P_j - int(P_i \cdot cl(W_j) \neq \phi$ which is a contradiction. But $(G_i \times H_j) \cap B = \phi$, $(a,b) \notin Ti \cdot cl(B)$. Thus *B* is T_i -closed in $X \times X$. we now show that the restriction to $\Delta(= \{(a, a) : a \in X\})$ of the ith projection mapping $P_i : (X \times X, T_i) \to$ (X,Q_i) is a homeomorphism (for i = 1,2). Let $a \in A$, then $f(a) \in ij - \theta - cl\{g(a)\}$. This implies $(a, a) \in B \cap \Delta$ and hence $a \in P_i(B \cap \Delta)$. Since *B* is T_i -closed in $X \times X$, $B \cap \Delta$ is closed in the relative topology of Δ . Thus $P_i(B \cap \Delta)$ is Q_i -closed in X Hence, the theorem is proved. We state the results derived by S.K. Sen on characterization of bitopological separation axioms.

Theorem

Let $f, g (X, Q_l, Q_2) \rightarrow (Y, P_l, P_2)$ be pairwise θ -continuous functions. If (Y, P_l, P_2) is pairwise Urysohn then the set $\{a \in X: f(a) = g(a)\}$ is ij- θ -closed in X and the set $\{(a, b) \in X \times X : f(a) = g(b)\}$ is ij- θ -closed in $(X \times X, T_l, T_2)$ (where $T_i = Q_i X Q_j$, $i, j = 1, 2; i \neq j$).

Proof

Let $B = \{(a,b) \in X \times X: f(a) = g(b)\}$. If $(a, b) \in X \times X - B$, we have $f(a) \neq g(b)$. Since Y is pairwise Urysohn, there exist a P_i-open nbd V_I of f(a) and a P_j-open nbd V_2 of g(b) such that $P_j - cl(V_1) \cap P_i - cl(V_2) = \phi$. Since f and g are pairwise θ -continuous there exist a Q_iopen nbd U_1 of a and a Q_j-open nbd U_2 of b such that $f(Q_j - cl(U_1)) \subset P_j - cl(V_i)$ and $g(Q_i - cl(U_2)) \subset P_i - cl(V_2)$. Then $f(Q_j - cl(U_1)) \cap g(Q_i - cl(U_2)) = \phi$ we thus obtain that $(Q_j - cl(U_1) \times Q_i - cl(U_2)) \cap B = \phi$. Thus $[T_j - cl(U_1 \times U_2)] \cap B = \phi$. Such that $(a,b) \notin ij - \theta - cl(B)$. Hence B becomes $ij - \theta$ -closed in $(X \times X, T_1, T_2)$. we now establish that the set $\{a \in X: f(a) = g(a)\}$ is $ij - \theta$ -closed in X. By using the some examples, it is shown that in the converses are not true in general.

© Association of Academic Researchers and Faculties (AARF)

Theorem

The property of being a pairwise $Q^* T_{12/3}$ is a topological invariant.

Proof

Let B be a $\sigma_i - Q^*$ compact subset of (Y, σ_1, σ_2) . Let h: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a pairwise Q* homeomorphism. Then h⁻¹(B) is a $\tau_i - Q^*$ compact subset of (X, τ_1, τ_2) . Put A = h⁻¹ (B). But (X, τ_1, τ_2) is pairwise Q* T_{12/3}.

Accordingly, A is τ_j - Q* closed. But, then h (A) is σ_j - Q* closed because h is a τ_j - Q* closed map. That is, h (h⁻¹(B)) = B. Hence B is σ_2 - Q* closed. Consequently, (Y, σ_1 , σ_2) is pairwise Q* T_{12/3}.

Theorem

Every pairwise $Q^* TT_{1 \ 1/2}$ space is pairwise $Q^* T_0$.

Proof

Suppose that X is pairwise $Q^*T_{1\,1/2}$ space. Let $x \neq y$ in X. Then there exists a τ_i - Q* open set U and τ_i - Q* open set V such that $U \cap V = \phi$ and $x \in U$, $y \in V$ or $x \in V$, $y \in U$.

 \Rightarrow X is pairwise Q* T_0

Definition

A bitopological space X is said to be a pairwise $QT_{2 \ 1/2}$ space if x and y are distinct points in X then there exist a τ_i - Q* open neighborhood U of x and τ_j - Q* open neighborhood V of y such that τ_j - Q* cl (U) $\cap \tau_i$ - Q* cl (V) = ϕ , where i, j = 1, 2 and i $\neq j$.

Theorem

The property of being a pairwise $Q^*T_{2 \ 1/2}$ space is hereditary.

Proof

Let X be a pairwise $Q^*T_{2 \ 1/2}$ space. Let Y be a subspace of X, Let x, $y \in Y$ with $x \neq y$. Then $x \neq y$ in X. But X is Pairwise $Q^*T_{2 \ 1/2}$ space,

© Association of Academic Researchers and Faculties (AARF)

⇒ there exist a τ_i - Q* open neighborhood U of X and τ_j - Q* open neighborhood V of Y such that U \cap V = ϕ . But Y ⊂ X.

⇒ there exist a τ_i -Q* open neighborhood \overline{U} of X and τ_j - Q* open neighbourhood \overline{V} of Y such that $\overline{U} \cap \overline{V} = \phi$. Hence Y is a pairwise Q* $T_{2 \ 1/2}$ space.

Theorem

(i) Every pairwise $Q^*T_{2 1/2}$ space is pairwise Q^*T_2 .

(ii) Every pairwise $Q^*T_{2 1/2}$ space is pairwise T2 $\frac{1}{2}$ space.

(i) Definition

A Q* T₁ - space X is said to be a pairwise Q***T**_{44 11/22} space if for each τ_i - Q* closed set A and τ_j - Q* closed set B with A \cap B = ϕ there exists a τ_i - Q* open set V \supset B and a τ_j - Q* open set U \supset A such that τ_i - Q*cl (U) $\cap \tau_j$ - Q* cl (V) = ϕ , where i, j = 1, 2 and i \neq j.

(ii) Definition

A Q* T₁ - space X is said to be a pairwise Q***T**_{51/2} space if for every subsets A and B of X such that τ_i - Q* cl (A) \cap B = ϕ and A $\cap \tau_j$ - Q* cl (B) = ϕ there exists a τ_j - Q* open set U & a τ_i - Q* open set V such that A \subset U and B \subset V, τ_i - Q* cl (U) $\cap \tau_j$ - Q* cl (V) = ϕ , where i, j = 1, 2 and i \neq j.

Theorem

Every pairwise $Q^*T_{5 1/2}$ space is pairwise Q^*T_5 space.

Proof

Let X be a pairwise $Q^*T_{5\,1/2}$ space. Then X is Q^*T_1 - space. Let A and B are disjoint subsets of X. Then A = τ_i - Q* cl (A) and B = τ_j - Q* cl (B).

 $\Rightarrow \tau_{i} - Q^* \text{ cl } (A) \cap B = A \cap B = \phi \text{ and } A \cap \tau_i - Q^* \text{ cl } (B) = A \cap B = \phi.$

Hence, A and B are Q* separated sets in X.

Since X is pairwise $Q^*T_{5 \ 1/2}$ space, we have $\tau_i - Q^*$ open set U and $\tau_j - Q^*$ open set V such that $A \subset U$ and $B \subset V$, $\tau_i - cl(U) \cap \tau_j - cl(V) = \phi$.

© Association of Academic Researchers and Faculties (AARF)

Theorem

(i) Every pairwise $Q^*T_{5 1/2}$ space is pairwise $T_{5 1/2}$ space.

(ii) Every pairwise $Q^*T_{5 1/2}$ space is pairwise $Q^*T_{4 1/2}$ space.

Proof

Let X be a pairwise $Q^*T_{5 1/2}$ space. Then X is Q^*T_1 - space. Let A and B are disjoint closed subsets of X.

Then $A = \tau_i - Q^* \text{ cl } (A)$ and $B = \tau_j - Q^* \text{ cl } (B)$.

 $\Rightarrow \tau_i \text{ - } Q^* \text{ cl } (A) \cap B = A \cap B = \phi \text{ and } A \cap \tau_j \text{ - } Q^* \text{ cl } (B) = A \cap B = \phi.$

Hence A and B are Q*separated sets in X. But X is pairwise $Q^*T_{5\ 1/2}$ space, then there exists a τ_i - Q* open set $V \supset B$ and τ_i - Q*open set $U \supset A$ such that τ_i - Q* cl (U) $\cap \tau_j$ - Q* cl (V) = ϕ .

$$\Rightarrow$$
 U \cap V = ϕ .

Therefore, pairwise $Q^*T_{5 1/2}$ space is pairwise $Q^*_{41/2}$ space. Hence, the theorem is proved.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

References

Misra, D., N., and Dube, K.K.,	Pairwise R0-spaces, Ann de la Soc. Sci, Bruxells, T.
(1973)	87(1), 3–15.
Bose, S. and Sinha, D., (1982)	Pairwise almost continuous map and weakly con-
	tinuous map in bitopological spaces, Bull. Calcutta
	Math. Soc., 74, 195–205.
Reilly, I.L., (1972)	On bitopological separation properties, Nanta Math.,
	5(2), 14–25.
Mukherjee, M.N., (1982)	On pairwise almost compactness and pairwise H-
	closedness in a bitopologicla space, Ann. Soc. Sci.
	Bruxelles, T. 96, 2, 98–106.
D. Chen, (2005)	The parametrization reduction of soft sets and its
	applications, Comput. Math. Appl. 49 757-763.
Dogan Cokes (2005)	H. Journal of Math & State V 3449 (101-119)

© Association of Academic Researchers and Faculties (AARF) A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.