International Research Journal of Natural and Applied Sciences

ISSN: (2349-4077)

Impact Factor 5.46 Volume 5, Issue 03, March 2018

Website- www.aarf.asia, Email: editor@aarf.asia, editoraarf@gmail.com

Comparative Study of Amorphous and Crystalline Silicon Solar Cells

Atul K. Agarwal S G S G Government College, Nasirabad (Ajmer) India agarwalatul75@gmail.com

Abstract

The harnessing of solar energy through photovoltaic (PV) cells has emerged as a promising solution to address global energy and environmental challenges. Among the various materials used for solar cells, silicon-based technologies have dominated the commercial market due to their favorable electronic properties and abundance. This research paper presents a comprehensive comparative study of two types of silicon-based solar cells: amorphous silicon (a-Si) and crystalline silicon (c-Si), with a focus on their efficiency, performance, cost, environmental impact, and real-world applications.

The literature review provides an overview of solar cell technologies, historical developments, and recent advancements in both amorphous and crystalline silicon solar cells. Amorphous silicon solar cells were among the first thin-film technologies developed, and early versions faced challenges with low efficiency and degradation. However, with advancements in manufacturing techniques, modern amorphous silicon solar cells now achieve efficiencies ranging from 9% to 13%. On the other hand, crystalline silicon solar cells, particularly monocrystalline silicon, demonstrate higher efficiencies above 20%, albeit with higher manufacturing costs.

The comparative analysis reveals that crystalline silicon solar cells outperform amorphous silicon solar cells in terms of conversion efficiency and power output. However, amorphous silicon cells offer benefits in flexibility, lower manufacturing costs, and superior performance under low-light conditions, making them ideal for specific applications such as building-integrated photovoltaics and indoor solar energy harvesting. The choice between the two technologies depends on application-specific requirements, economic considerations, geographic location, and desired performance characteristics.

Environmental impact and sustainability considerations are crucial in evaluating solar cell technologies. Amorphous silicon cells generally have a shorter energy payback time (EPBT) compared to crystalline silicon cells due to their simpler manufacturing process. However, the latter may have a higher carbon footprint during manufacturing, necessitating careful consideration of end-of-life recycling and disposal methods for both types.

The research paper also discusses potential synergies between amorphous and crystalline silicon technologies, particularly in the form of hybrid solar cells that combine the advantages of both types. Such developments can lead to improved overall performance and cost-effectiveness in solar energy generation.

© Association of Academic Researchers and Faculties (AARF)

Overall, this study provides valuable insights into the strengths and weaknesses of amorphous and crystalline silicon solar cells, guiding policymakers, industry stakeholders, and researchers in making informed decisions about the most suitable solar cell technology for different applications. As the world transitions towards renewable energy, this comparative study contributes to the development of sustainable and efficient solar energy solutions to meet the growing global energy demands.

Keywords: Comparative study, Amorphous silicon, Crystalline silicon, Solar cells, Efficiency, Sustainability.

I. Introduction

The utilization of solar energy has gained significant attention in recent years due to its potential to address the global energy and environmental challenges. Solar cells, also known as photovoltaic (PV) cells, play a crucial role in converting sunlight into electricity. They have become a key technology in the renewable energy sector, offering a sustainable and ecofriendly alternative to conventional fossil fuel-based power generation. One of the most widely used materials for solar cells is silicon due to its abundance and favorable electronic properties.

In this paper, we aim to conduct a comparative study of two types of silicon-based solar cells: amorphous silicon solar cells and crystalline silicon solar cells. Amorphous silicon (a-Si) and crystalline silicon (c-Si) differ significantly in their structure and manufacturing processes, leading to distinct characteristics and performance metrics. By understanding their differences and similarities, we can gain insights into the strengths and weaknesses of each technology, which can aid in the development and optimization of solar cell technologies.^[1]

II. Literature Review

A. Overview of Solar Cell Technologies

Solar cells are semiconductor devices that convert solar radiation into electrical energy through the photovoltaic effect. The photovoltaic effect occurs when photons from sunlight strike the surface of the solar cell, exciting electrons and creating an electric current. Various materials have been explored for solar cell technology, including thin-film materials, organic materials, and inorganic materials. Silicon-based solar cells, especially amorphous and crystalline silicon, have dominated the commercial market due to their efficiency, stability, and mature manufacturing processes.^[1]

B. Historical Development of Amorphous Silicon Solar Cells

Amorphous silicon solar cells were among the first thin-film solar cell technologies to be developed. In the late 1970s and early 1980s, researchers began investigating the potential of amorphous silicon for photovoltaic applications. Unlike crystalline silicon, which has a well-ordered atomic structure, amorphous silicon lacks long-range order in its atomic arrangement. This disordered structure offers advantages such as flexibility and the potential for low-cost manufacturing using deposition techniques like plasma-enhanced chemical vapor deposition (PECVD).

© Association of Academic Researchers and Faculties (AARF)

However, early amorphous silicon solar cells faced challenges with low conversion efficiency and degradation over time due to light-induced degradation (LID) or the Staebler-Wronski effect. Researchers and engineers made significant strides in addressing these issues by optimizing deposition techniques and introducing hydrogen into the material during the manufacturing process to passivate defects.^[3]

C. Historical Development of Crystalline Silicon Solar Cells

Crystalline silicon solar cells have a longer history and have been extensively studied since the 1950s. They are divided into two main categories: monocrystalline silicon (single-crystal silicon) and polycrystalline silicon (multi-crystal silicon). Monocrystalline silicon cells are more efficient due to their uniform crystal structure, but they are also more expensive to manufacture. Polycrystalline silicon cells, on the other hand, have a lower efficiency but are more cost-effective.

The manufacturing process of crystalline silicon solar cells involves cutting thin wafers from a solid ingot of silicon, followed by several cleaning and doping steps. The dopants create regions of positive (p-type) and negative (n-type) conductivity, forming a p-n junction that facilitates the separation of charge carriers and the generation of electricity when exposed to sunlight.

Advancements in crystalline silicon technology have led to higher conversion efficiencies, with modern monocrystalline silicon cells reaching efficiencies above 20% and polycrystalline silicon cells approaching 18%.

D. Comparative Study of Amorphous and Crystalline Silicon Solar Cells

To undertake a comprehensive comparative study of amorphous and crystalline silicon solar cells, we will evaluate several key parameters:

Efficiency and Performance Comparison: We will analyze the conversion efficiency and power output of both types of solar cells under standard testing conditions (STC). The comparison will consider factors that influence performance, such as temperature, shading, and incident angles of sunlight.

Cost Analysis and Economic Considerations: Cost is a critical factor in solar cell technology adoption. We will assess the manufacturing costs and economies of scale for both amorphous and crystalline silicon solar cells, taking into account initial investments, production costs, and levelized cost of electricity (LCOE) over the system's lifetime.

Environmental Impact and Sustainability Analysis: Solar energy is celebrated for its low carbon footprint, but the environmental impact of the entire life cycle of solar cells must be considered. We will examine energy payback time, which is the time required for a solar cell to generate the same amount of energy used in its production, as well as greenhouse gas emissions associated with manufacturing and recycling processes.

By conducting an in-depth comparative analysis of these aspects, we aim to provide valuable insights into the relative strengths and weaknesses of amorphous and crystalline silicon solar cells, aiding decision-makers in the renewable energy sector and guiding future research and development efforts.^[2]

© Association of Academic Researchers and Faculties (AARF)

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories.

III. Methodology

A. Research Design and Approach

To achieve the research objectives, we will adopt a mixed-method research design, combining quantitative analysis and qualitative assessment. The quantitative analysis will involve testing and comparing amorphous and crystalline silicon solar cells in a controlled environment to measure conversion efficiency and power output accurately. Additionally, we will use data from existing literature and industry reports to gather information on manufacturing costs, environmental impacts, and performance metrics.

B. Data Collection Methods

Primary data collection will involve conducting experiments in a laboratory setting to measure the efficiency and performance of both solar cell types. Secondary data will be obtained from published research papers, academic journals, industry reports, and reputable online sources. Care will be taken to ensure the reliability and credibility of the data sources.

C. Criteria for Comparing the Two Types of Solar Cells

We will use the following criteria to compare amorphous and crystalline silicon solar cells:

- Conversion Efficiency: The primary metric to assess the ability of solar cells to convert sunlight into electricity.
- Power Output: The total electrical power generated by the solar cells under specific conditions.
- Manufacturing Cost: The cost associated with producing each type of solar cell, including material, equipment, and labor costs.
- Energy Payback Time (EPBT): The time required for a solar cell to recover the energy consumed during its manufacturing and installation.
- Greenhouse Gas Emissions: The amount of greenhouse gases emitted during the entire life cycle of the solar cells.

D. Data Analysis Techniques

Quantitative data obtained from the experiments will be analyzed using statistical tools such as t-tests and analysis of variance (ANOVA) to identify significant differences between the performance of amorphous and crystalline silicon solar cells. Qualitative data from the literature review will be analyzed thematically to synthesize relevant findings and insights.^[2]

IV. Comparative Study of Amorphous and Crystalline Silicon Solar Cells

A. Efficiency and Performance Comparison

One of the key parameters for evaluating solar cell technologies is their efficiency, which measures the ability to convert sunlight into electricity. In recent years, both amorphous and crystalline silicon solar cells have seen advancements in efficiency.

- Amorphous Silicon Solar Cells: Historically, amorphous silicon solar cells had lower
 conversion efficiencies compared to crystalline silicon cells, often below 10%.
 However, with ongoing research and development, modern amorphous silicon solar
 cells can achieve efficiencies ranging from 9% to 13%. The bandgap of amorphous
 silicon can be engineered for better performance under lower light conditions, making
 them suitable for indoor applications or regions with less sunlight.
- Crystalline Silicon Solar Cells: Crystalline silicon solar cells, particularly monocrystalline silicon, have higher efficiencies. Monocrystalline cells typically achieve efficiencies above 20%, while polycrystalline silicon cells hover around 18%. The well-ordered atomic structure of crystalline silicon enables better charge carrier transport, leading to higher conversion efficiency under standard outdoor conditions.
- Power Output: The power output of a solar cell is directly related to its efficiency and
 the amount of sunlight it receives. Crystalline silicon solar cells generally produce
 more power due to their higher efficiencies. In large-scale installations, the power
 output difference between the two types can be substantial, affecting the overall
 energy yield of a solar power system.
- Performance under Different Environmental Conditions: Both amorphous and crystalline silicon solar cells show variations in performance under different environmental conditions. Amorphous silicon has a higher temperature coefficient, meaning its efficiency decreases more rapidly with increasing temperature compared to crystalline silicon. On the other hand, crystalline silicon tends to perform better at higher temperatures due to its well-defined crystal lattice. [3]

B. Cost Analysis and Economic Considerations

Cost is a critical factor in determining the feasibility and widespread adoption of solar cell technologies.

- Manufacturing Cost: Amorphous silicon solar cells have an advantage over crystalline silicon cells in terms of manufacturing cost. The production process for amorphous silicon involves depositing thin films on various substrates, which can be more cost-effective compared to the energy-intensive process of slicing wafers from large silicon ingots used in crystalline silicon solar cells. However, advancements in crystalline silicon manufacturing and economies of scale have significantly reduced the cost difference between the two technologies in recent years.
- Levelized Cost of Electricity (LCOE): LCOE is a metric that considers the total cost
 of a solar power system over its lifetime, including initial installation, operation,
 maintenance, and decommissioning costs. While amorphous silicon solar cells may
 have lower manufacturing costs, their lower efficiency can result in higher LCOE
 compared to more efficient crystalline silicon cells. However, in certain applications,

such as building-integrated photovoltaics (BIPV) or flexible solar panels, amorphous silicon can offer unique advantages that may outweigh the higher LCOE.

• Economic Viability: The economic viability of solar cell technologies depends on regional factors such as government incentives, solar energy policies, electricity prices, and availability of raw materials. The cost of solar panels, regardless of their type, has been decreasing steadily, making solar energy more economically competitive with traditional fossil fuel-based power generation. [4]

C. Environmental Impact and Sustainability Analysis

As the world moves towards a more sustainable future, it is essential to assess the environmental impact of solar cell technologies throughout their entire life cycle.

- Energy Payback Time (EPBT): EPBT is a crucial metric that measures the time required for a solar cell to generate the same amount of energy used in its manufacturing and installation processes. Amorphous silicon solar cells generally have a shorter EPBT compared to crystalline silicon cells due to their simpler manufacturing process and lower energy requirements during production.
- Greenhouse Gas Emissions: Solar cell manufacturing involves the emission of greenhouse gases. Crystalline silicon solar cells typically have a higher carbon footprint during manufacturing due to the energy-intensive process of producing silicon wafers. On the other hand, amorphous silicon solar cells have a lower carbon footprint but may contain more toxic materials like hydrogenated amorphous silicon (a-Si:H) and phosphine gas. It is crucial to consider the environmental impact of these materials during the recycling and disposal phases of solar cells.
- End-of-Life Considerations: Both types of solar cells are recyclable, and efforts are being made to develop efficient recycling processes to reduce waste and environmental impact. Crystalline silicon solar cells have a more straightforward recycling process due to their well-defined structure, while recycling amorphous silicon solar cells can be more challenging due to the presence of more complex materials.

D. Technological Advancements and Future Prospects

The field of photovoltaics is continually evolving with ongoing research and development efforts.

Advancements in Amorphous Silicon Solar Cells: Researchers are exploring new
materials and deposition techniques to enhance the efficiency and stability of
amorphous silicon solar cells. Tandem solar cells, where multiple layers of materials
are stacked to absorb different parts of the solar spectrum, hold promise for further
improving amorphous silicon cell efficiency. Additionally, researchers are

investigating the use of other thin-film materials like cadmium telluride (CdTe) and copper indium gallium selenide (CIGS) for thin-film solar cell applications.

- Advancements in Crystalline Silicon Solar Cells: The research focus in crystalline silicon technology is on improving efficiency while reducing manufacturing costs. Passivation techniques and surface texturing methods are being developed to minimize energy loss at the cell surface and improve light absorption. Additionally, bifacial solar cells, which can capture sunlight from both sides of the panel, are gaining attention for their potential to enhance overall energy yield.
- Synergies between Amorphous and Crystalline Silicon: A potential future direction is the combination of amorphous and crystalline silicon technologies to create hybrid solar cells. This approach could leverage the advantages of both types, such as higher efficiency from crystalline silicon and lower manufacturing costs from amorphous silicon. Hybrid solar cells could be manufactured using tandem structures, where one layer is amorphous silicon and the other is crystalline silicon, allowing for complementary light absorption and improved overall performance. [5]

V. Case Studies and Real-World Applications

A. Case Studies of Successful Implementations of Amorphous Silicon Solar Cells

- Building-Integrated Photovoltaics (BIPV): Amorphous silicon solar cells have found applications in BIPV, where solar panels are integrated into building facades, roofs, or windows. These applications take advantage of the flexibility of amorphous silicon, enabling solar cells to be incorporated into various architectural designs and surfaces.
- Indoor Solar Energy Harvesting: Amorphous silicon solar cells are well-suited for indoor applications, such as powering low-energy electronic devices, smart sensors, and wearables. Their ability to generate electricity under lower light conditions makes them ideal for such scenarios.

B. Case Studies of Successful Implementations of Crystalline Silicon Solar Cells

- Utility-Scale Solar Power Plants: Crystalline silicon solar cells dominate the utilityscale solar power industry, providing large-scale electricity generation in solar farms and solar parks. Their high efficiency and economies of scale make them attractive for these applications.
- Rooftop Solar Installations: Residential and commercial rooftop solar installations commonly use crystalline silicon solar panels. Their efficiency and reliability make them a popular choice for generating on-site renewable energy. [6][7]

C. Comparison of Performance and Benefits in Real-World Scenarios

When comparing the performance of amorphous and crystalline silicon solar cells in real-world scenarios, several factors come into play:

- Geographical Location: The geographic location of a solar power system significantly impacts the performance of solar cells. Crystalline silicon cells generally perform better in regions with ample sunlight, while amorphous silicon cells may offer better performance in areas with lower solar radiation or where space constraints require flexibility.
- Temperature and Climate: The temperature coefficient of solar cells determines how
 their efficiency is affected by temperature changes. Crystalline silicon cells have a
 more favorable temperature coefficient, making them more suitable for hot climates,
 while amorphous silicon cells may outperform crystalline silicon cells in cooler
 environments.
- Application: The intended application of the solar cells also influences the choice between amorphous and crystalline silicon. Amorphous silicon's flexibility and adaptability make it an excellent choice for integration into architectural elements and low-light environments. In contrast, crystalline silicon's high efficiency is preferable for large-scale electricity generation.
- Cost Considerations: The upfront cost and long-term cost of a solar power system impact the economic viability of both types of solar cells. While crystalline silicon may have a higher initial investment, its higher efficiency may result in a faster return on investment in certain applications.

D. Challenges Faced and Lessons Learned

Both amorphous and crystalline silicon solar cells have faced specific challenges during their development and implementation.

- Challenges with Amorphous Silicon Solar Cells: The Staebler-Wronski effect, which
 causes degradation in efficiency upon exposure to light, was a significant challenge
 for amorphous silicon solar cells in the past. However, improved manufacturing
 techniques and the introduction of hydrogen during the deposition process have
 mitigated this issue to a large extent. Stability and degradation issues are still areas of
 ongoing research for amorphous silicon.
- Challenges with Crystalline Silicon Solar Cells: The primary challenge with crystalline silicon solar cells has been reducing the manufacturing cost without compromising efficiency. The high energy consumption during the silicon wafer

production process contributes to the overall cost of crystalline silicon solar cells. Researchers and manufacturers are continually seeking innovative methods to optimize material usage and streamline manufacturing processes.

• Lessons Learned: The research and development of both types of solar cells have provided valuable insights into material science, device physics, and manufacturing processes. The successful implementation of solar cell technologies has demonstrated the importance of continuous improvement and innovation to address the challenges faced in each technology. As the solar energy industry advances, these lessons will be critical in guiding the development of future solar cell technologies. [7]

VI. Discussion

A. Summary of Findings from the Comparative Study

The comparative study of amorphous and crystalline silicon solar cells has revealed distinct characteristics and performance metrics for each technology. Crystalline silicon solar cells demonstrate higher efficiency and power output, making them suitable for large-scale electricity generation. On the other hand, amorphous silicon solar cells offer advantages in flexibility, lower manufacturing costs, and better performance under low-light conditions, making them appealing for certain niche applications.

B. Identification of Key Factors Influencing the Choice Between the Two Technologies

Several factors influence the choice between amorphous and crystalline silicon solar cells:

- Application-specific Requirements: The specific requirements of the application, such as power output, available space, and environmental conditions, play a significant role in determining which technology is more suitable.
- Economic Considerations: The overall cost of the solar power system, including installation, operation, and maintenance costs, is a crucial factor in the decision-making process.
- Geographical Location: The solar radiation and climate of the location where the solar power system will be installed impact the choice of solar cell technology.
- Flexibility vs. Efficiency: The trade-off between the flexibility of amorphous silicon and the higher efficiency of crystalline silicon needs to be carefully evaluated based on the specific requirements of the application.

C. Potential Synergies Between Amorphous and Crystalline Silicon Solar Cells

Hybrid solar cells that combine both amorphous and crystalline silicon technologies hold potential for achieving improved overall performance and efficiency. By leveraging the

complementary characteristics of each type, hybrid solar cells could lead to a more efficient and cost-effective solution for solar energy generation.

D. Implications for Future Solar Cell Research and Development

The comparative study underscores the importance of continued research and development efforts in the field of solar cell technologies. Advancements in material science, manufacturing processes, and device engineering can lead to further improvements in efficiency, stability, and cost-effectiveness for both amorphous and crystalline silicon solar cells.^[7]

VII. Conclusion

In conclusion, this research paper has provided a comprehensive comparative study of amorphous and crystalline silicon solar cells. Through the evaluation of efficiency, performance, cost, environmental impact, and real-world applications, we have identified the strengths and weaknesses of each technology.

Crystalline silicon solar cells excel in efficiency and are ideal for large-scale electricity generation. Amorphous silicon solar cells, on the other hand, offer flexibility, lower manufacturing costs, and better performance under low-light conditions, making them suitable for specialized applications.

The choice between amorphous and crystalline silicon solar cells depends on specific requirements such as application, economic considerations, geographical location, and desired performance characteristics. Additionally, future research efforts should explore the potential synergies between the two technologies to create hybrid solar cells with improved overall performance.

As the world transitions towards renewable energy sources, understanding the comparative advantages of different solar cell technologies will be instrumental in developing sustainable and efficient solar energy solutions to address global energy challenges.

References:

- 1. Choudhury, Tamalika, "Comparative study of amorphous and crystalline silicon solar cells: A review." Renewable and Sustainable Energy Reviews 66 (2016): 332-346.
- 2. Konenkamp, Rolf. "Material and device characteristics of amorphous and crystalline silicon thin-film solar cells." Journal of Applied Physics 100.1 (2006): 014509.
- 3. Kumar, Saurabh, and Rajiv K. Singh. "Crystalline silicon solar cells: A review on material properties and solar cell performance." Solar Energy Materials and Solar Cells 148 (2016): 85-99.
- 4. Yin, Shiyu,"Amorphous Silicon Solar Cell with Improved Efficiency by Nanostructured Antireflection Coating." Journal of Solar Energy Engineering 138.4 (2016): 041010.
- 5. Prakash, Jai, and Sanjay Kumar. "Comparative Analysis of Amorphous Silicon and Crystalline Silicon Solar Cells." International Journal of Science and Research (IJSR) 6.5 (2017): 302-305.

6.	Van Sark, WGJHM, "Amorphous and microcrystalline silicon solar cells in a
	multicrystalline silicon roof tile system." Solar energy materials and solar cells 92.8 (2008): 940-944.
7.	Shen, Wenzhong. "Characterization and simulation of amorphous silicon solar cells." Solar Energy 150 (2017): 246-255.