CONVERGING PERSPECTIVE OF ACCOMMODATION OPERATIONS & MANAGEMENT IN SMALL SIZED COMMERCIAL HOTELS IN INDIA: A FUZZY MULTIPLE CRITERIA DECISION MAKING APPROACH

Dr. Saroj Kanta Biswal,

Assistant Professor (Finance & Control) Institute of Business & Computer Studies Faculty of Management Studies Siksha 'O' Anusandhan University Bhubaneswar 751003, Odisha, India.

ABSTRACT

The three components of tourism, universally accepted are: attraction, accommodation and access. In the present study, one of the components - accommodation is being studied here, specifically the small-sized commercial hotels. Small-sized commercial hotels in city centers are poised to grow, nurture, slowly shaping themselves to be a class to reckon with. Not being in any star category they are big enough now to function in the lines of full service hotels providing all sorts of facilities in a compact manner like their big counterparts. The principal aim of the study is to present a fuzzy multi-criteria decision making model (FMCDM) for evaluating the determinants of hotel operation & management. The proposed approach comprises of two steps. In step 1, we identify the determinants of hotel operation & management. In step 2, those determinants are assigned fuzzy numbers and a fuzzy multi-criteria decision making method is used to overcome vaguely judgment in evaluation. The crisp survey results were collected via a forty five criteria questionnaire from three hundred and twenty hotels and computed using Best non-Fuzzy Performance and Degree of Similarity. Based on the concept of the defuzzification, the ranking of determinants is obtained. Degree of Similarity provides the level of agreeableness and its degrees for each criterion. The fuzzy approach provides not only intelligence but also allows such knowledge to be effectively captured in an enterprise-wide data warehouse. In addition, it helps managers to develop a group decision making model using fuzzy logic to establish customer preferences.

Key Words: Small-sized Commercial Hotels, Fuzzy Multi Criteria Decision Making Model (FMCDM), Best Non- Fuzzy Performance (BNP), Degree of Similarity, Defuzzification

1. Introduction

Looking at the basic premise, the fast changing market dynamics matched perfectly with Indian economy booming at an almost 10% average growth every year, a lot of business activities are expected. Most of these activities would require executives to travel more. Average Indian having more disposable income and venturing into tourist activities, coupled with foreign tourist influx, all these would result in higher increase in demand for the midrange and economy hotels for these itinerant executives / tourists etc. on business call.

Now, they are being recognized as business class, compacted with basic facilities for the discerning business travelers, targeting a specific market segment of mid rank business executives and price sensitive corporate. This was a lack luster and dormant segment for a very long time. The inertia has given way to humming activities in their standard, style and professionalism etc. Budget /economy/ small hotels are being redefined with new concepts, innovations and strategies. Spectacular upward development can be experienced in the areas of infrastructure, accommodation, facility, food and beverage, atmosphere and professionalism exhibit a sea change in general.

2. Relevance of the Study

The new genre budget / small-sized commercial hotels in city centers are poised to grow, nurture, slowly shaping themselves to be a class to reckon with. (Florentino, 1995)^[5], vividly supports the fact that the budget hotel product concept provides more value for money to the new value conscious travelers, because they represent an innovative product concept. They are now a cluster of hotels; recognised as business class, having a definite market segment, catering to the needs of mid rank business executives who are on the demand side. This segment forms the main business block. They are the repeat guests, their needs such as accommodation; conferences, meeting, convention etc. are the main stay of this operation. Ready to offer reasonably priced accommodation, offering world of facilities and

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **GE- International Journal of Management Research (GE-IJMR)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

professionalism which most business executives / travelers in the above segment are on the lookout on a recurring basis.

To woo the potential guests, activities are in top gear. Successful models are getting replicated. Structural changes to existing operational properties are being done to redefine it. Many individual hotel properties are refining their product mix to come up with a winning model. Market survey of this class hotels indicates that they have been able add touches a glamour to an extent. The professional management and operations are still limited to those hotels which are being operated under the banner of established branded names. Still there is no scope or existence of professionalism in many units/multi units.

(Swig, 2000)^[8] has explained candidly, how broadening the foundation of services and technology can strengthen the independent hotels. Regardless of above current trends, independent small and mid-scale hotels will continue to be a viable brand alternative. Changing customer demographics, evolving products with new environments and new technologies will add strength to this sector. The success of independent hotels depends on their ability to be distinctive in their market. They are more introspective in relation to their customers only. They seek to develop their service operation and link them to the specific consumer demand source. Use of new technology as a vehicle can lower the competitive barriers. Adequately trained staff can exploit their product more in the market and will offer more visibility, presence, marketing and distribution than others.

3. Statement of the Problem

"Converging Perspective of Accommodation Operations & Management in Small Sized Commercial Hotels in India". Managing such properties could be an extremely uphill task. Professional operations of these hotels cannot be said to be a smooth journey, because, expectations of the guests are liable to run high. Central to successful and profitable operations are right human resources. A crystal clear need of professionally qualified managerial cadre as well as the staff team is essential. Barring few, many of these hotels face a dire shortage of trained and skilled human resource. However, this is all evasive, because staff shortage is a situation many hoteliers of all categories would admit to. Past has witnessed how this category of hotels were poles away in adopting hospitality management procedures and greater even as unwillingness of technically skilled personnel of hospitality industry to work here.

4. Objective of the Study

The principal aim of the study is to present a fuzzy multi-criteria decision making model (FMCDM) for evaluating the determinants of hotel operation & management. The proposed approach comprises of two stages.

- In stage 1, the objective is to find out the key determinants that affect the efficiency of hotel operations & management of small-sized commercial hotels.
- In stage 2, the objective is to determine the degree and level of importance of those factors in hotel operations & management those determinants are assigned fuzzy numbers and a fuzzy multi-criteria decision making method is used to overcome vaguely judgment in evaluation.

5. Research Methodology

5.1 Data Collection

5.1.1 Population:

Small-sized Commercial Hotels in India

5.1.2 Sampling Frame:

- 1. Metros (80) Delhi. Mumbai, Kolkata, Chennai
- 2. Cosmopolitan Cities (80) Hyderabad, Bangalore, Pune, Ahmedabad
- 3. State Capitals (80) Bhubaneswar, Ranchi, Bhopal, Raipur
- 4. Small Cities (80) Cuttack, Jamshedpur, Siliguri, Ludhiana

5.1.3 Sampling Unit:

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **GE- International Journal of Management Research (GE-IJMR)** Website: <u>www.aarf.asia</u>. Email: <u>editoraarf@gmail.com</u>, <u>editor@aarf.asia</u>

Operational head of 20 small-sized commercial hotels from each city

5.1.4 Sampling Technique:

Proportionate Convenient (Random) sampling

Sample Size:

$$N = \frac{Z^2.p.q}{e^2} = = 339.75$$

The 'z' value represents the Z score from the standard normal distribution for the confidence level desired by the researcher. In our research, we have a 95% confidence level. Hence, our Z value is 1.96 and Z^2 is 3.8416. The 'p' is the frequency of occurrence of something expressed as a proportion. In our research, out of 3 hotels, 1 is small-sized commercial hotel. Hence, our 'p' value is 1/3 or 0.33. The 'q' is simply the frequency of non-occurrence of the same event, and is calculated as (1-p). In our research, the 'q' value is (1 - p) = 0.67. The 'e' is called tolerable error in estimating the variable in question. This can be decided only by the researcher for the study. In our research, we have a 95% confidence level. This means we can afford to have 5% error or e = 5% or .05, thus $e^2 = 0.0025$. Now, putting the values of Z^2 , p, q and e in the above equation we get the sample size N = 339.75. But for our convenient and uniformity we have take the sample size of 320

5.2 Research Instrument

A structured questionnaire was developed to collect data on the variables in this study. The questionnaire forty five in number includes various items that are related to the characteristics of hotel operation & management in a five point rating scale. The items are refined and paraphrased in both wording and contextual application as appropriate to suite research purposes. A pilot study was conducted which administered to 50 respondents.

5.3 Statistical Analysis

In the first phase, the interdependence techniques used for the present research is Factor Analysis, which was used for examining variable interdependence. This is done via a forty five criteria questionnaire from three hundred and twenty hotels and the determinants of hotel operations and management is determined. Then in the second phase, the crisp survey

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **GE- International Journal of Management Research (GE-IJMR)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

results collected via questionnaire is computed using Best non-Fuzzy Performance and Degree of Similarity. Based on the concept of the defuzzification, the ranking of determinants is obtained. Degree of Similarity provides the level of agreeableness and its degrees for each criterion. The fuzzy approach provides not only intelligence but also allows such knowledge to be effectively captured in an enterprise-wide data warehouse. For the above computation SPSS 19 and MATLAB is used.

6. Analysis and Discussion

6.1 Reliability Analysis

According to the table below, the Cronbach's alpha value for overall scale is equal to 0.898 and Cronbach's alpha based on standardized items is .901.

Reliability Statistics							
	Cronbach's Alpha Based on						
Cronbach's Alpha	Standardized Items	N of Items					
.898	.901	45					

The reliability coefficient for all 45 items is displayed as a simple Alpha, and a Standardized alpha. An Alpha score above 0.70 is generally taken to indicate a scale of high reliability, 0.5 to 0.70 is generally accepted as indicating a moderately reliable scale, while a figure below this generally indicates a scale of low reliability. Since our overall alpha coefficient (standardized) is 0.898 and alpha coefficient of each question is above 0.80, we may conclude that our questions are reliable enough to making the measurements correct and accurate.

	Item-Total Statistics									
	Scale Mean	Scale	Corrected	Squared	Cronbach's					
	if Item	Variance if	Item-Total	Multiple	Alpha if Item					
	Deleted	Item Deleted	Correlation	Correlation	Deleted					
Q1	95.55	357.985	.570	.639	.894					
Q2	95.16	364.402	.377	.543	.896					
Q3	95.21	350.421	.671	.653	.892					
Q4	95.31	356.382	.563	.601	.893					

Q5	94.93	350.503	.619	.649	.892
Q6	94.70	350.576	.491	.589	.894
Q7	95.19	352.824	.598	.587	.893
Q8	94.88	359.158	.448	.554	.895
Q9	94.62	346.125	.572	.630	.892
Q10	94.99	352.868	.564	.518	.893
Q11	95.41	355.516	.563	.591	.893
Q12	95.03	359.610	.388	.496	.895
Q13	94.90	366.075	.273	.425	.897
Q14	94.94	364.002	.376	.411	.896
Q15	95.03	356.516	.467	.524	.894
Q16	95.28	352.717	.584	.624	.893
Q17	95.22	354.454	.514	.650	.894
Q18	95.14	351.204	.621	.620	.892
Q19	94.73	346.892	.612	.669	.892
Q20	94.88	349.714	.601	.643	.892
Q21	94.89	358.825	.429	.511	.895
Q22	95.64	368.744	.303	.366	.896
Q23	95.67	366.603	.351	.464	.896
Q24	95.77	370.203	.244	.506	.897
Q25	95.78	369.038	.268	.455	.897
Q26	95.20	352.883	.614	.564	.892
Q27	94.83	358.546	.365	.428	.896
Q28	95.03	363.099	.376	.482	.896
Q29	94.59	351.408	.491	.542	.894
Q30	95.24	366.541	.292	.572	.896
Q31	95.33	365.195	.296	.520	.896
Q32	94.89	357.387	.393	.599	.895
Q33	94.48	365.128	.234	.477	.898
Q34	95.47	367.284	.303	.360	.896
Q35	94.51	388.376	311	.489	.905
Q36	93.92	390.376	307	.452	.907
Q37	95.04	368.331	.206	.387	.897
Q38	94.47	369.955	.111	.527	.899
Q39	95.00	372.762	.059	.334	.900
Q40	95.41	374.105	.048	.384	.899
Q41	95.11	356.424	.458	.588	.894
Q42	95.63	364.542	.411	.442	.895
Q43	94.68	350.984	.436	.530	.895
Q44	94.17	342.778	.600	.608	.892
Q45	95.18	360.145	.356	.444	.896

6.2 Factor Analysis

Factors Affecting the Efficiency of Hotel Operations

The primary data consisted of 320 replied questionnaires with 45 separate metric variables pertaining to operation of small-sized commercial hotel related factors. In this research, the perceptions of operation of small-sized commercial related factors on forty five attributes are examined to first understand if these perceptions can be grouped and secondly reduce the forty five variables to a smaller number.

KMO and Bartlett's Test							
Kaiser-Meyer-Olkin Measure of Sampling .845							
Adequacy.							
Bartlett's Test of	Approx. Chi-Square	6520.778					
Sphericity	df	990					
	Sig.	.000					

Bartlett's Test of Sphericity lets us know if there is a relationship between the variables. If no relationship is found then there is no point proceeding with the factor analysis. Considering the data in this research, the correlations, when taken overall, are significant at the 0.0001 level (according to KMO and Bartlett's Test table) which is 6520.778. Since we have found p<0.001 we can conclude that there are relationships with our variables and it does makes sense to continue with the factor analysis.

By observing the above results we can see that it falls in the acceptable range of (above 0.5) with a value of 0.845. Therefore, we can proceed with our factor analysis.

In factor analysis we are looking for variability in one variable common to other variables, as this indicates that they are linked by an underlying factor.

Using our criterion of selecting eigen values over 1, we can see from the highlighted numbers in the Total Variance Explained table that twelve components (or factors) have been produced that have eigen values greater than 1 so we therefore have twelve factors which can explain a cumulative 65.39 percent of the variance in the data.

	Total Variance Explained										
				Extr	action Sum	s of Squared	Rota	Rotation Sums of Squared			
	Ini	tial Eigen	values		Loadi	ngs	Loadings				
		% of	Cumulativ		% of	Cumulative		% of	Cumulative		
Component	Total	Variance	e %	Total	Variance	%	Total	Variance	%		
1	10.620	23.600	23.600	10.62	23.600	23.600	4.406	9.792	9.792		
				0							
2	3.423	7.606	31.206	3.423	7.606	31.206	3.919	8.710	18.501		
3	2.523	5.606	36.812	2.523	5.606	36.812	3.430	7.622	26.123		
4	2.225	4.944	41.756	2.225	4.944	41.756	2.501	5.557	31.680		
5	1.869	4.153	45.909	1.869	4.153	45.909	2.354	5.231	36.912		
6	1.614	3.588	49.497	1.614	3.588	49.497	2.105	4.677	41.589		
7	1.488	3.308	52.805	1.488	3.308	52.805	2.087	4.637	46.226		
8	1.328	2.950	55.755	1.328	2.950	55.755	1.936	4.301	50.528		
9	1.177	2.615	58.370	1.177	2.615	58.370	1.854	4.119	54.647		
10	1.110	2.467	60.838	1.110	2.467	60.838	1.840	4.088	58.735		
11	1.046	2.324	63.161	1.046	2.324	63.161	1.518	3.373	62.108		
12	1.003	2.230	65.391	1.003	2.230	65.391	1.477	3.283	65.391		
13	.985	2.189	67.580								
14	.893	1.983	69.563								
15	.837	1.860	71.424								
16	.821	1.823	73.247								
17	.763	1.696	74.943								
18	.749	1.664	76.606								

19	.683	1.518	78.125						
20	663	1 472	79 597						
20	.005	1.172	90.007						
21	.630	1.400	80.997						
22	.591	1.313	82.310						
23	.576	1.281	83.590						
24	.554	1.231	84.821						
25	.530	1.178	85.999						
26	.523	1.163	87.162						
27	.494	1.097	88.259						
28	.471	1.046	89.305						
29	.426	.948	90.253						
30	.391	.870	91.122						
31	.387	.860	91.982						
32	.364	.810	92.792						
33	.339	.754	93.545						
34	.330	.734	94.279						
35	.326	.724	95.003						
36	.295	.655	95.658						
37	.286	.635	96.293						
38	.256	.570	96.863						
39	.246	.547	97.410						
40	.233	.518	97.928						
41	.218	.484	98.412						
42	.207	.460	98.872						
43	.188	.418	99.290						
44	.173	.385	99.675						
45	.146	.325	100.000						
	Extraction Method: Principal Component Analysis.								

Rotated Component Matrix ^a												
	Component											
	1	2	3	4	5	6	7	8	9	10	11	12
Q1	.682											
Q2	.635											
Q3	.662											
Q4	.583											
Q5	.602											
Q6									.567			
Q7	.556											
Q8	.593											
Q9		.523										
Q10		.514										
Q11	.470											
Q12					.537							
Q13	.537											
Q14												.635
Q15						.446						
Q16		.657										
Q17		.712										
Q18		.638										
Q19		.593										
Q20			.530									
Q21						.651						
Q22				.649								
Q23				.604								
Q24				.838								
Q25				.591								

Q26	.381										
Q27								.770			
Q28									.687		
Q29		.556									
Q30									.709		
Q31			.7	792							
Q32				766							
Q33											.606
Q34									369		
Q35						730					
Q36						707					
Q37					.751						
Q38		.574									
Q39										757	
Q40							.740				
Q41							.560				
Q42							.528				
Q43		.737									
Q44		.614									
Q45										.425	
Extractio	n Method:	Principa	l Comp	oner	nt Anal	ysis.					
Rotation	Method: V	/arimax	with Ka	iser	Norma	lization	•				
a. Rotatio	on converge	ed in 18	iteration	18.							

Factor	Variables						
1	technology adoption						
2	employee training						
3	employee morale						

4	experience of the employee
5	maintenance of hotels
6	accessibility of hotels
7	promotional aspects
8	hotel tariffs
9	legal aspects
10	service quality
11	the taxation policy by the government
12	socio-political change in hotel operation

6.3 Fuzzy Multiple Criteria Decision Making

Step 1: Setting a triangular fuzzy number

Based on responses from questionnaire, first of all we assign triangular fuzzy number to the linguistic scale as given below

Chang and Yeh, (2002)^[4], (Bademar & Gottwald, 1995 p. 56)^[2]

No.	Linguistic Scale	Score	TFN
1	Strongly Disagree	1	(1, 1, 2)
2	Disagree	2	(1, 2, 3)
3	Undecided	3	(2, 3, 4)
4	Agree	4	(3, 4, 5)
5	Strongly Agree	5	(4, 5, 5)

Step 2: Computation of Aggregate Fuzzy Weight

Hassall (1999)^[6]

Let W_i^1 represents the Triplet Fuzzy Number (TFN) assigned by the 1st respondent to the decision element C_i , W_i^2 represents the Triplet Fuzzy Number (TFN) assigned by the 2nd respondent to the decision element C_i , W_i^3 represents the Triplet Fuzzy Number (TFN) assigned by the 3rd respondent to the decision element C_i and so on up to W_i^k which represents the Triplet Fuzzy Number (TFN) assigned by the k^{th} respondent to the decision element C_i . If there are *n* numbers of decision elements, and *k* numbers of respondents, we can generalize the function as W_i^j . Where, *i* is the

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **GE- International Journal of Management Research (GE-IJMR)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

decision element i = 1, 2, 3... n (In our case n = 45) j number of respondents j = 1, 2, 3, ..., k (In our case k = 320)

Let W_{1k} represents aggregate fuzzy weights vector representing the fuzzy importance weights of decision element C₁ perceived by *k* respondents, W_{2k} represents aggregate fuzzy weights vector representing the fuzzy importance weights of decision element C₂ perceived by *k* respondents and so on. Then, W_{ij} represents aggregate fuzzy weights vector representing the fuzzy importance weights of decision elements C_i (*i* = 1, 2, 3... *n*) perceived by R_i (j = 1, 2, 3... *k*) number of respondents.

The TFN score or the aggregate fuzzy weight for given decision element C is given by:

$$W_{ij} = (L_{ij}, M_{ij}, U_{ij})$$
(1)

If W_{ik} represents the aggregate fuzzy weight of i^{th} criteria given by k number of respondents, the aggregate fuzzy weights W_{ik} is given by the following equation:

(3)

$$W_{ik} = \frac{1}{k} \otimes (w_i^1 \oplus w_i^2 \oplus w_i^3 \dots \oplus w_i^k)$$
⁽²⁾

 $W_{ik} = (L_{ik}, M_{ik}, U_{ik})$

⊗ Represents fuzzy multiplication

 \oplus Represents fuzzy addition

Decision			Resp	Aggregate Fuzzy				
Elements (C _i)			j = 1	Weights				
i = 1, 2, 3 n	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						$(\mathbf{W_{ij}})$
1	W_{1}^{1}	W_1^2	W_{1}^{3}	W_{1}^{4}			W_1^k	$W_{1k} = (L_{1k}, M_{1k}, U_{1k})$
2	W_{2}^{1}	W_{2}^{2}	W_{2}^{3}	W_{2}^{4}			W_2^k	$W_{2k} = (L_{2k}, M_{2k}, U_{2k})$
3	W_3^1	W_3^2	W_{3}^{3}	W_{3}^{4}			W_3^k	$W_{3k} = (L_{3k}, M_{3k}, U_{3k})$

4	W_4^1	W_{4}^{2}	W_{4}^{3}	W_4^4	 	W_4^k	$W_{4k} = (L_{4k}, M_{4k}, U_{4k})$
п	W_n^1	W_n^2	W_n^3	W_n^4	 	W_n^k	$W_{nk} = (L_{nk}, M_{nk}, U_{nk})$

In our study, it is observed that for the decision element C_1 under aspect C^1 represented by C_1^1 (The hotel should be equipped with up to date instruments) given by 320 (k = 320) respondents, following table shows the decisions of the respondents.

As we know that $W_{11} = (L_{11}, M_{11}, U_{11})$, hence it is calculated as follows:

Hence, the aggregate fuzzy weight or the TFN score of decision element C_{11} given by 320 respondents is given by (15.22, 19.55, 21.47).

Step 3: Defuzzification

Defuzzification is a technique to convert the fuzzy number into crisp real numbers; the procedure of defuzzification is to locate the Best Non-fuzzy Performance (BNP) value. In other words, defuzzification is a technique to convert the fuzzy number into crisp real numbers. This helps in ranking the decision criteria according to their importance. The procedure of defuzzification is locating the Best Non-fuzzy Performance (BNP) value. In this paper, the formula to get the Best Non-fuzzy Performance that is defined as:

$$BNP_{ij} = \frac{1}{3} [(U_{ij} - L_{ij}) + (M_{ij} - L_{ij})] + L_{ij}$$
(4)
(i = 1, 2, 3... n & j = 1, 2, 3... k)

As we have calculated the aggregate fuzzy weight of decision element C_{11} given by 320 respondents $[W_{11} = (L_{11}, M_{11}, U_{11})]$ as (15.22, 19.55, 21.47). This implies $L_{11} = [15.22]$, $M_{11} = [19.55]$ and $U_{11} = [21.47]$

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **GE- International Journal of Management Research (GE-IJMR)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

Hence, the BNP value for decision element C_{11} is calculated as:

$$BNP_{11} = \frac{1}{3} [(U_{11} - L_{11}) + (M_{11} - L_{11})] + L_{11} = 18.75$$

Sl.	Aspects	Decision	Aggregate	Defuzzification	Rank
No.	(C ^{p})	Elements	Fuzzy Weights	(BNP _{ij})	
	(p = 1, 2,12)	(C ^p _i)	(\mathbf{W}_{ij})		
1	C ¹	C_{1}^{1}	(15.22, 19.55, 21.47)	18.75	6
2		C_2^1	(12.26, 16.19, 19.18)	15.88	19
3		C_{3}^{1}	(12.98, 16.96, 19.20)	16.38	15
4		C_4^1	(13.51, 17.60, 19.83)	16.98	11
5		C_{5}^{1}	(11.29, 14.99, 17.40)	14.56	26
6		C_{6}^{1}	(12.88, 16.83, 19.14)	16.29	17
7		C_7^1	(10.75, 14.39, 17.29)	14.14	32
8		C_{8}^{1}	(14.36, 18.55, 18.55)	17.79	8
9		C^{1}_{9}	(10.78, 14.45, 17.55)	14.26	31
10	C^2	C_1^2	(10.07, 13.37, 15.48)	12.97	37
11		C_2^2	(11.66, 15.41, 17.88)	14.98	25
12		C_{3}^{2}	(13.59, 17.64, 19.70)	16.98	11
13		C_4^2	(13.23, 17.22, 19.25)	16.56	12
14		C_{5}^{2}	(12.60, 16.50, 18.78)	15.96	18
15		C_{6}^{2}	(10.46, 13.92, 16.14)	13.51	35
16		C_7^2	(12.93, 16.90, 19.20)	16.34	16
17	C^3	C_{1}^{3}	(11.15, 14.77, 17.20)	14.37	28
18		C_2^3	(9.74, 13.04, 15.35)	12.71	38
19		C_{3}^{3}	(8.77, 11.95, 14.65)	11.79	41
20		C_4^3	(10.71, 14.05, 15.94)	13.56	34
21		C_{5}^{3}	(7.99, 10.79, 12.67)	10.49	42

22	C^4	C_{1}^{4}	(15.61, 20.05, 22.05)	19.24	4
23		C_{2}^{4}	(15.95, 20.42, 22.15)	19.51	3
24		C_{3}^{4}	(16.60, 21.16, 22.69)	20.15	2
25		C_4^4	(16.75, 21.32, 22.72)	20.26	1
26	C^5	C_{1}^{5}	(11.91, 15.72, 17.95)	15.19	22
27		C_2^5	(13.73, 17.83, 20.09)	17.22	10
28		C_{3}^{5}	(11.34, 14.96, 17.32)	14.54	27
29	C ⁶	C_{1}^{6}	(11.95, 15.75, 18.01)	15.24	21
30		C_{2}^{6}	(10.93, 14.57, 17.41)	14.30	30
31		C_{3}^{6}	(11.64, 15.46, 18.37)	15.15	23
32	C ⁷	C_{1}^{7}	(8.85, 12.12, 14.71)	11.89	39
33		C_{2}^{7}	(6.66, 9.11, 11.38)	9.05	43
34	C^8	C_{1}^{8}	(14.07, 18.26, 20.72)	17.68	9
35		C_{2}^{8}	(12.51, 16.38, 18.55)	15.81	20
36		C ⁸ 3	(15.63, 20.05, 21.88)	19.18	5
37	C ⁹	C_{1}^{9}	(10.48, 13.86, 16.07)	13.47	36
38		C ⁹ 2	(10.96, 14.53, 16.83)	14.11	33
39	C ¹⁰	C^{10}_{1}	(11.58, 15.38, 18.31)	15.09	7
40		C^{10}_{2}	(12.90, 16.91, 19.76)	16.52	13
41		C ¹⁰ ₃	(14.44, 18.70, 21.02)	18.05	7
42	C ¹¹	C^{11}_{1}	(11.69, 15.44, 18.13)	15.09	7
43		C ¹¹ ₂	(13.08, 17.02, 19.09)	16.39	14
44	C ¹²	C^{12}_{1}	(10.84, 14.56, 17.69)	14.36	29
45		C^{12}_{2}	(8.73, 11.93, 14.73)	11.80	40

Step 4: Value of Membership Functions

Membership Functions for Linguistic Variables

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **GE- International Journal of Management Research (GE-IJMR)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

No.	Linguistic Scale	1	2	3	4	5
1	Strongly Disagree	1	0.75	0.5	0	0
2	Disagree	0.5	1	0.75	0.25	0
3	Undecided	0	0.5	1	0.5	0
4	Agree	0	0.25	0.75	1	0.5
5	Strongly Agree	0	0	0.5	0.75	1

The overall value of membership functions for the decision elements (C^{p}_{i}), where i = 1, 2, 3...45and p = 1, 2, 3...12, is computed by the help of the following formula:

$$\mu_{x}(x) = \sum_{j=1}^{k} \mu_{x_{j}}$$
(5)

To find out the overall value of membership functions first of all we need to calculate the membership value of the total respondents for a given decision element (μ_{xj}) .

$$\mu_{x_j} = \sum_{j=1}^k V_j \otimes M_s \tag{6}$$

Where, V_j is the value of weights and M_s is the membership functions for linguistic variable of scores (s = 1, 2, 3...5) of each respondents.

$$V_{j} = \frac{U_{j}}{\sum_{j=1}^{k} U_{j}}$$
 (7)
Where U_{j} is weight of each score and it is given as:

$$U_j = \sum_{j=1}^k S_j \tag{8}$$

The overall value of membership functions of all the 45 decision elements (C_1^1 to C_2^{12}) for all the 320 respondents is represented as follows:

Sl.	Aspects	Decision	The overall value of membership functions for				
No.	$(\mathbf{C}^{\mathbf{p}})$	Elements		the de	ecision ele	ments	
	(p = 1, 2,	(C ^p _i)			$\mu_{x}\left(x ight)$		
	12)						
1	C^1	C_{1}^{1}	0.00719	0.12563	0.61862	0.83411	0.75557
2		C_{2}^{1}	0.01345	0.22943	0.71163	0.87263	0.56329
3		C ¹ ₃	0.02109	0.19629	0.66875	0.7998	0.64141
4		C_4^1	0.01372	0.18197	0.66311	0.81021	0.66006
5		C^{1}_{5}	0.03523	0.25545	0.70889	0.7651	0.54698
6		C_{6}^{1}	0.01962	0.19643	0.67347	0.80867	0.63344
7		C ¹ ₇	0.03146	0.28019	0.73937	0.81463	0.4898
8		C_8^1	0.01634	0.15342	0.63113	0.80368	0.7214
9		C^{1}_{9}	0.02959	0.28212	0.74345	0.84827	0.48352
10	C^2	C_{1}^{2}	0.08433	0.28896	0.68515	0.71792	0.54537
11		C_2^2	0.03386	0.24216	0.69818	0.79273	0.56978
12		C_{3}^{2}	0.02224	0.17331	0.64571	0.80426	0.68635
13		C_4^2	0.03115	0.18867	0.64603	0.7903	0.67679
14		C_{5}^{2}	0.02464	0.20707	0.67607	0.79491	0.62321
15		C_{6}^{2}	0.06200	0.28056	0.70151	0.72498	0.53499
16		C_7^2	0.01955	0.1984	0.67318	0.80473	0.63409
17	C^3	C_{1}^{3}	0.04248	0.25637	0.70348	0.77443	0.55055
18		C_2^3	0.08303	0.31019	0.70434	0.72809	0.5083
19		C_{3}^{3}	0.08038	0.35622	0.75502	0.74019	0.40957
20		C_4^3	0.08461	0.25248	0.65392	0.72435	0.60756
21		C_{5}^{3}	0.15158	0.37421	0.68947	0.61737	0.46947
22	C^4	C_{1}^{4}	0.00141	0.12113	0.61901	0.84789	0.76056
23		C_{2}^{4}	0.00350	0.10892	0.6042	0.82745	0.78811
24		C ⁴ ₃	0.00137	0.09110	0.58904	0.82158	0.82055
25		C_4^4	0.00342	0.08561	0.581	0.81254	0.83459

26	C^5	C_{1}^{5}	0.03023	0.23407	0.6924	0.75735	0.58497
27		C_{2}^{5}	0.01363	0.17335	0.65632	0.82627	0.67373
28		C ⁵ ₃	0.04237	0.24195	0.69364	0.77903	0.57034
29	C ⁶	C_{1}^{6}	0.02776	0.23	0.69388	0.76449	0.58449
30		C_{2}^{6}	0.03986	0.27354	0.72137	0.8257	0.51739
31		C ⁶ ₃	0.02692	0.25184	0.71452	0.85012	0.54405
32	C^7	C_{1}^{7}	0.09082	0.37157	0.74172	0.71712	0.42573
33		C_2^7	0.16244	0.41849	0.74827	0.63882	0.34101
34	C^8	C_{1}^{8}	0.00817	0.16642	0.65639	0.86293	0.67905
35		C_{2}^{8}	0.02882	0.20877	0.67214	0.77922	0.6269
36		C ⁸ ₃	0.00636	0.11979	0.61025	0.83004	0.77314
37	C ⁹	C_{1}^{9}	0.06804	0.26791	0.68935	0.74396	0.55327
38		C_{2}^{9}	0.04996	0.26163	0.69897	0.75258	0.55211
39	C^{10}	C^{10}_{1}	0.01959	0.25143	0.72571	0.84163	0.52898
40		C^{10}_{2}	0.01162	0.20333	0.69055	0.88071	0.60728
41		C ¹⁰ ₃	0.00586	0.15623	0.64799	0.85183	0.69817
42	C ¹¹	$C^{\Pi}{}_{1}$	0.03045	0.2393	0.70288	0.82942	0.56379
43		C^{Π}_{2}	0.02907	0.18696	0.65161	0.79379	0.66771
44	C ¹²	C^{12}_{1}	0.0201	0.28224	0.75461	0.84129	0.47069
45		C^{12}_{2}	0.0734	0.35867	0.76644	0.74619	0.39371

Step 5: Degree of Similarity

Degree of similarity helps the researchers in obtaining the level and degree satisfaction or importance or agreeableness as in our study. Turksen and Willson (1994), proposed a formula for calculating degree of similarity which involved the calculation of Euclidean distance between fuzzy sets given as:

$$Sim(\mu_{x}, M_{x}) = \frac{1}{1 + \sqrt{\sum_{j=1}^{5} (\mu_{x_{j}} - M_{s_{j}})^{2}}}$$
(9)

Where, μ_x represents the overall value of five membership functions (j = 1, 2, 3...5) and M_x represents the membership functions of five linguistic variables (j = 1, 2, 3...5) for the 45 decision element (C¹₁ to C¹²₂) for all the 320 respondents.

As we know that the degree of similarity is a measure of degree of agreeableness to a particular statement, hence, The degree of similarity between the overall values of five membership functions and the membership functions of five linguistic variables for the numerical results of the degree of agreeableness of decision element C_1^1 with respect to five rating scales is given as follows:

Strongly Disagree:	Sim $(\mu_{1}, M_{1}) = 0.38026$
Disagree:	Sim $(\mu_{1}, M_{2}) = 0.41812$
Undecided:	<i>Sim</i> $(\mu_{1}, M_{3}) = 0.50404$
Agree:	Sim $(\mu_{1}, M_{4}) = 0.73832$
Strongly Agree:	Sim $(\mu_{1}, M_{5}) = 0.76279$

These ordinal results of five rating scales, then were brought to the conclusive measurement at Sim $(\mu_x, Ms)_{max} = 0.76279$.

This implies that the consensus for 320 respondents is 'strongly agree' in rating the level of agreeableness for decision element C_1^1 with 0.76279 degree of agreeableness. The evaluation procedures for other criteria and customers are executed with the similar fashion.

Decision Elements	Degree of	Level of
(C ^p _i)	Agreeableness	Agreeableness
	Sim $(\mu_{x}, Ms)_{max}$	
C_{1}^{1}	0.76279	Strongly Agree

C ¹ ₂	0.87006	Agree
C ¹ ₃	0.79077	Agree
C ¹ ₄	0.78614	Agree
C ¹ ₅	0.80279	Agree
C ¹ ₆	0.79870	Agree
C ¹ ₇	0.83963	Agree
C ¹ 8	0.74985	Agree
C ¹ 9	0.86290	Agree
C_{1}^{2}	0.76491	Agree
C ² ₂	0.81471	Agree
C ² ₃	0.76894	Agree
C ² ₄	0.76847	Agree
C ² ₅	0.79665	Agree
C ² ₆	0.77531	Agree
C ² ₇	0.79677	Agree
C ³ 1	0.80666	Agree
C ³ ₂	0.77263	Agree
C ³ 3	0.76588	Agree
C ³ ₄	0.75619	Agree
C ³ 5	0.69676	Agree
C ⁴ 1	0.76369	Strongly Agree
C ⁴ ₂	0.78657	Strongly Agree
C ⁴ ₃	0.81207	Strongly Agree
C ⁴ ₄	0.82471	Strongly Agree
C ⁵ 1	0.79009	Agree
C ⁵ 2	0.78479	Agree
C ⁵ 3	0.80482	Agree
C ⁶ 1	0.79447	Agree
C ⁶ 2	0.84500	Agree

C ⁶ 3	0.86025	Agree
C ⁷ 1	0.75211	Agree
C ⁷ 2	0.68549	Agree
C ⁸ 1	0.79479	Agree
C ⁸ 2	0.78678	Agree
C ⁸ 3	0.77487	Strongly Agree
C ⁹ 1	0.78276	Agree
C ⁹ 2	0.79177	Agree
C ¹⁰ ₁	0.85910	Agree
C ¹⁰ ₂	0.84909	Agree
C ¹⁰ ₃	0.77903	Agree
C ¹¹ 1	0.83973	Agree
C ¹¹ 2	0.77411	Agree
C ¹² ₁	0.85773	Agree
C ¹² ₂	0.76613	Agree

In summary, the degree of agreeableness and the level of agreeableness according to all 45 criteria are presented in the following table.

Sl.		Decision Elements or Criteria	Degree of	Level of
No	(C ^p _i)		Agreeablene	Agreeablene
•			SS	SS
1	C^{1}_{1}	The hotel should be equipped with up-to-date	0.76279	Strongly
		instruments.		Agree
2	C_2^1	Reservation and guest record keeping should be	0.87006	Agree
		automated.		
3	C^{1}_{3}	For cash handling and accounting adequate software	0.79077	Agree
		should be installed.		
4	C^{1}_{4}	Guest information like arrival and departure should	0.78614	Agree

		be automated.		
5	C ¹ ₅	There should be provision of hotel booking through	0.80279	Agree
		internet.		
6	C ¹ ₆	Housekeeping and room service should be fully	0.79870	Agree
		automated.		
7	C ¹ ₇	There should be provision for currency conversion.	0.83963	Agree
8	C ¹ ₈	The hotel should have fully automated grievance	0.74985	Agree
		handling cell.		
9	C ¹ 9	The hotels should have EFT facilities.	0.86290	Agree
10	C_{1}^{2}	All the employees should be computer savvy.	0.76491	Agree
11	C_2^2	The employees should be professionally trained.	0.81471	Agree
12	C_{3}^{2}	Trained employee positively affects the overall	0.76894	Agree
		functioning of the hotel.		
13	C_4^2	Specialized persons are required for specialized	0.76847	Agree
		services.		
14	C_{5}^{2}	Employees handling cash should be well trained in	0.79665	Agree
		accounting packages.		
15	C ² ₆	Regular training should be provided to all the	0.77531	Agree
		employees.		
16	C_7^2	The employees need to work in different hotels to get	0.79677	Agree
		more knowledge on hotel operation and management.		
17	C_{1}^{3}	A team of highly motivated employee eases the hotel		Agree
		operation and its management.	0.80666	
18	C ³ ₂	Employees should be given incentives to work for		Agree
		long hours.	0.77263	
19	C ³ ₃	In spare time employees should be allowed for		Agree
		recreation to recharge themselves.	0.76588	
20	C ³ ₄	In regular time interval, the employees should be		Agree
		allowed to be with their families.	0.75619	

21	C ³ 5	Highly satisfied staff give hundred percent to its		Agree
		work.	0.69676	
22	C_{1}^{4}	Employees with rich experience are essential for any	0.76369	Strongly
		hotel.		Agree
23	C ⁴ ₂	Prior knowledge in handling office automation eases		Strongly
		hotel operation.	0.78657	Agree
24	C ⁴ ₃	Fair knowledge of customer relationship management		Strongly
		do wonders in hotel operation.	0.81207	Agree
25	C ⁴ ₄	Experience people in food & beverage section are		Strongly
		very essential.	0.82471	Agree
26	C ⁵ 1	The hotel's physical facilities should be visually		Agree
		appealing.	0.79009	
27	C ⁵ 2	The staffs needed to be well dressed and appear neat.	0.78479	Agree
28	C ⁵ ₃	The physical facilities including the food and		Agree
		beverages should be excellent.	0.80482	
29	C ⁶ 1	Best place for a hotel is to be situated near bus stand,		Agree
		railway station or taxi stand.	0.79447	
30	C ⁶ ₂	The hotel should be nearby to tourists destinations.	0.84500	Agree
31	C ⁶ ₃	The employees' should reside nearer to the hotel.	0.86025	Agree
32	C ⁷ 1	The people should be well aware of the hotel and its		Agree
		facilities in order to manage the hotel.	0.75211	
33	C ⁷ 2	The hotel should promote its facilities as well as its		Agree
		various offers adequately.	0.68549	
34	C ⁸ 1	Pricing or tariff of hotel is a major reason of smooth		Agree
		operation of hotel.	0.79479	
35	C ⁸ 2	Discount offers on tariff attract more tourists to the		Agree
		hotel.	0.78678	
36	C ⁸ ₃	The hotels spends less on promotion in order to	0.77487	Strongly
		make-up any deficiency in finance because of		Agree

		discounts and other related facilities.		
37	C ⁹ 1	Over emphasis on environmental issues and legal		Agree
		implications there after severely affects the hotel		
		operation.	0.78276	
38	C ⁹ 2	Unexpected crack down on hotels sometimes create a		Agree
		negative impact on the customers' mind.	0.79177	
39	C ¹⁰ 1	Prompt service is a must for any efficient and		Agree
		effective hotel operation.	0.85910	
40	C ¹⁰ ₂	Providing individual attention to the guests smoothen		Agree
		the hotel operation and management.	0.84909	
41	C ¹⁰ ₃	There should not be any fixed operating hours in the		Agree
		hotel for the guests in an effectively managed hotel.		
			0.77903	
42	C ¹¹ 1	The service tax imposed by government creates		Agree
		financial burden on the hotel which sometimes ceases		
		or postpones its innovations.	0.83973	
43	C ¹¹ ₂	Entertainment tax or such types, creates bottleneck in		Agree
		holding back the tourists for more days and		
		entertaining the guests more.	0.77411	
44	C ¹² 1	Life-style of tourists influences the way the hotel		Agree
		operates.	0.85773	
45	C ¹² 2	Changing attitude toward life directly affects the taste		Agree
		of tourists thus the entire hotel operation.	0.76613	
1	1			

The overall value of membership functions of all the 45 decision elements (C_1^1 to C_2^{12}) for all the 320 respondents is represented as follows:

$$\mu(C_p) = \frac{1}{l} \left(\sum_{k=1}^{l} \mu_x(x)_k \right)$$
(10)

Where l is number of criteria in each aspect

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **GE- International Journal of Management Research (GE-IJMR)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

Sl.	Aspects	The overall value of membership functions for the				
No.	$(\mathbf{\tilde{C}}^{\mathbf{p}})$	Aspects				
	(p = 1, 2,	$\mu(C^p)$				
	12)					
1	C^1	0.020854	0.211214	0.684269	0.817456	0.610608
2	C^2	0.039681	0.22559	0.675119	0.77569	0.610083
3	C^3	0.088416	0.309894	0.701246	0.716886	0.50909
4	C^4	0.002425	0.10169	0.598313	0.827365	0.800953
5	C^5	0.028743	0.216457	0.680787	0.78755	0.60968
6	C^{6}	0.031513	0.251793	0.709923	0.813437	0.548643
7	C^7	0.12663	0.39503	0.744995	0.67797	0.38337
8	C^8	0.01445	0.164993	0.64626	0.824063	0.69303
9	C ⁹	0.059	0.26477	0.69416	0.74827	0.55269
10	C^{10}	0.012357	0.203663	0.688083	0.858057	0.611477
11	C^{11}	0.02976	0.21313	0.677245	0.811605	0.61575
12	C^{12}	0.04675	0.320455	0.760525	0.79374	0.4322

	Degree of Similarity Sim (µ _x , M _x)						
Aspects (C ^p)	Strongly Disagree Sim (C ^p , M ₁)	Disagree Sim (C ^p , M ₂)	Undecided Sim (C ^p , M ₃)	Agree Sim (C ^p , M ₄)	Strongly Agree Sim (C ^p M ₅)	Degree of Agreeableness Sim (C ^p , Ms) max	Level of Agreeableness
C ¹	0.39612	0.44536	0.55229	0.81458	0.67342	0.81458	Agree
C^2	0.40260	0.45235	0.55738	0.79053	0.67312	0.79053	Agree
C^3	0.42448	0.48526	0.60136	0.76533	0.61666	0.76533	Agree
C ⁴							Strongly
	0.37613	0.41108	0.49170	0.71090	0.79608	0.79608	Agree
C ⁵	0.39986	0.44937	0.55604	0.79821	0.67392	0.79821	Agree
C ⁶	0.40309	0.45810	0.57507	0.83373	0.64007	0.83373	Agree
C ⁷	0.44501	0.52244	0.65776	0.71791	0.55996	0.71791	Agree
C ⁸	0.38770	0.43025	0.52435	0.77282	0.72181	0.77282	Agree
C ⁹	0.41277	0.46803	0.58115	0.78733	0.64185	0.78733	Agree
C ¹⁰	0.39132	0.44003	0.54672	0.83560	0.67136	0.83560	Agree
C ¹¹	0.39742	0.44623	0.55108	0.80805	0.67626	0.80805	Agree
C ¹²	0.41556	0.48256	0.62343	0.81087	0.58650	0.81087	Agree

The degree of agreeableness & the level of agreeableness with variance explained according to all 12 components (criteria) are presented in the following table.

Aspects		Initial Eigen	Degree of	Level of
$(\mathbf{C}^{\mathbf{p}})$		values	Agreeableness	Agreeableness
		% of Variance	Sim (C ^p , Ms) _{max}	
C ¹	technology adoption	23.600	0.81458	Agree
C^2	employee training	7.606	0.79053	Agree
C ³	employee morale	5.606	0.76533	Agree
C ⁴	experience of the	4.944		Strongly Agree
	employee		0.79608	
C ⁵	maintenance of	4.153	0.79821	Agree
	hotels			
C ⁶	accessibility of	3.588		Agree
	hotels		0.83373	
C ⁷	promotional aspects	3.308	0.71791	Agree
C ⁸	hotel tariffs	2.950	0.77282	Agree
C ⁹	legal aspects	2.615	0.78733	Agree
C ¹⁰	service quality	2.467	0.83560	Agree
C ¹¹	the taxation policy	2.324	0.80805	Agree
	by the government			
C ¹²	socio-political	2.230	0.81087	Agree
	change in hotel			
	operation			

From the above table we may conclude that out of the twelve factors, degree of agreeableness is above 80% in five factors, i.e. technology, accessibility, service quality, taxation policy and socio-political changes. This implies, the hotel personnel should give due importance to these

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **GE- International Journal of Management Research (GE-IJMR)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

factors. Again, though training is the second major contributor towards hotel operation but its degree of importance is less than 80%.

7. Limitations of the Study

The research work suffers from unavailability and paucity of data regarding, any such work done in this area as well as willingness of hospitality management professionals in developing such applications procedures. The study is generalization of the issues existing in the small sized commercial hotel segment where a great change of perception is taking place. The study has aimed at focusing on core functioning of the accommodation operations and management only. The data collected for interpretation, analysis relating to presence of small sized commercial hotels during different time intervals may be found wanting in accuracy.

8. Scope for further Research

Any research work can explore and make application of other disciplines in a limited way. In the current study, there are many aspects which need to be researched further. The present study provides considerable scope for further research and development. There is plenty of scope for further work in making the present applications into network based applications so that other can remain connected through their set of applications on terminals as users. Night auditing, an important work carried out every day as daily balancing could be taken into this ambit in network. Further study will throw light in developing applications to check and audit the accounting related work of above mentioned departments. The present study can be applicable on other types of hotels besides the small sized commercial hotels as well. There can also be comparable study among the hotels among cities in the countries.

9. Conclusion

The study and practices of hospitality operations and management has been interdisciplinary. But recently, in small sized commercial hotel segment, the negative connotation is giving way to a perception of affordability, efficiency and good experience. Sale of accommodation is prime product. Hence it is prudent for the hotel operations to match with the need. So it is to say that situation is ripe for study of other disciplines

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **GE- International Journal of Management Research (GE-IJMR)** Website: www.aarf.asia. Email: editoraarf@gmail.com , editor@aarf.asia

specifically ever increasingly computer and information technology by self developed applications implementation as the other studies. This convergence, as studied here, provides sufficient ground to remain ahead, work within cost constraints still providing unmatched independence in doing the needed work professionally and provide better grip over the situation resulting in more hospitable environment. It should be noted note that suitably qualified hospitality management professionals and trained people should take up positions in these hotels. Amidst such conditions, the situation provides ample of scope for development of simple application software suiting the department need for doing the routine, repetitive paperwork of monotony into easy to use operations procedures. During the process of working, the precious time saved can be entirely used for the fulfillment of guest service. The pleasantness and goodness of front office remains maintained, giving human qualities in possession a full opportunity.

<u>References</u>:

- [1] Akbaba, A. (2006). Measuring service quality in the hotel industry: a study in a business hotel in Turkey, *International Journal of Hospitality Management* 25 (2), pp. 170–192.
- [2] Bademar, H. & Gottwald, S. (1995) Fuzzy Sets, Fuzzy Logic, Fuzzy Methods with Applications, Wiley.
- [3] Bellman, R. E. and Zadeh, L. A. (1970). Decision making in a fuzzy environment. *Management Science* 17(4), pp. 141–164.
- [4] Chang, Y. H. and Yeh, C. H. (2002). A survey analysis of service quality for domestic airlines, *Tourism Management*, 23 (2), pp.107-115.
- [5] Florentino, A. (1995), Budget hotels: Not Just Minor Hospitality Products, International Journal of Tourism Management, vol. 16(6), pp 455-462.
- [6] Hassall, J. C. (1999) Developing Performance Models for Co-operative Information Systems in an Orgnisational Context unpublished thesis submitted for the degree of Doctor of Philosophy, Aston University, July 1999.
- [7] Lazim, M. A., Wan Salihin, W. A. and Abu Osman, M. T. (2004). Fuzzy Sets in Social Sciences: An Overview of Related Research. *Journal Teknologi*, 41(E), pp. 43-54.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories. **GE- International Journal of Management Research (GE-IJMR)** Website: <u>www.aarf.asia</u>. Email: <u>editoraarf@gmail.com</u>, <u>editor@aarf.asia</u>

- [8] Swig, R., (2000) Independent hotels: The New Brand Alternative. Hotel Online.
- [9] Viswanathan, M. (1999). Understanding how product attributes influence product categorization: development and validation of fuzzy set-based measures of gradedness in product categories. *Journal of Marketing Research*, 36(1), pp. 75–95.
- [10] Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, pp. 338-353.
- [11] Zadeh, L. A. (1970). The concept of a linguistic variable and its application to approximate reasoning. *Information sciences*, Part 1: 8, pp.199–249; Part 2: 8, pp. 301–357; Part 3: 9, pp. 43–80.